Announcement (cont’d)

- Generate two cropped & downsampled face images
 - A little extra work for Part-II 7
 - For use in next labs
 - Face image → matrix representation
 - Crop facial part by selecting the corresponding part in the matrix
 - Matlab function for resizing “imresize”
 - Obtain a 128x128 and a 32x32 face image
 - Write into a JPEG image with default quality factor
 - Put the original and the two new one on webpage

Review of Last Class

- Vector/matrix representation of 1-D & 2-D sampled signal
 - Representing an image as a matrix or sometimes as a long vector
- Basis functions/vectors and orthonormal basis
 - Used for representing the space via their linear combinations
 - Many possible sets of basis and orthonormal basis
- Unitary transform on input \mathbf{x} → $A^T = A^*$
 - $y(i) = \sum a_i y(i)$ – represented by basis vectors $\{a_i\}$
 - Rows (and columns) of a unitary matrix form an orthonormal basis
- General 2-D transform and separable unitary 2-D transform
 - 2-D transform involves $O(N^4)$ computation
 - Separable: $Y = AXA^*$ → $(AX)A^* = O(N^3)$ computation
 - Apply 1-D transform to all columns, then apply 1-D transform to rows
Warm-up Exercises

- **Unitary or not?**
 - Find basis for unitary one

- **Find basis images and represent image \(X \) with basis images**
 - \(X = A^H Y A^* \) (separable)
 - \(x(m,n) = \sum_k \sum_l a^*(k,m)a^*(l,n) y(k,l) \)

- Represent \(X \) with \(N \times N \) basis images weighted by coeff. \(Y \)

- Obtain basis image \(\{ a^*(k_0,m)a^*(l_0,n) \}_{m,n} \) by setting \(Y = \{ \delta(k-k_0,l-l_0) \} \) & getting \(X \)

- In matrix form \(A^*_k l = a^*_k a^*_l \)\(^T\)

- \(a^*_k \) is \(k \)th column vector of \(A^* \)

- \(a_k \) is \(k \)th row vector of \(A \)

- Transf. coeff. \(y(k,l) \) is the inner product of \(A^*_k l \) with the image

*Jain’s e.g.5.1, pp137

\[
A = \begin{bmatrix}
1 & 1 \\
\sqrt{2} & -j \\
1 & -1
\end{bmatrix},
X = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\]

Clarifications

- **“Dimension”**
 - Dimension of a signal \(\sim \) # of index variables
 - audio and speech is 1-D signal, image is 2-D, video is 3-D
 - Dimension of a vector space \(\sim \) # of vectors in its basis

- **Eigenvalues of unitary transform**
 - All eigenvalues have unit magnitude (could be complex valued)
 - By definition of eigenvalues \(A X = \Lambda X \)
 - By energy perservation of unitary \(||A X|| = ||X|| \)
 - Eigenvalues here are different from the eigenvalues in K-L transform
 - K-L concerns the eigen of covariance matrix of random vector
 - Eigenvectors \(\sim \) we generally consider the orthonormalized ones

Overview of Today’s Lecture

- **Examples of unitary transforms**
 - DFT
 - DCT
 - K-L transform
 - Haar

1-D DFT with Representation in Unitary Transform

\[
\{ z(n) \} \Leftrightarrow \{ Z(k) \}
\]

- \(n, k = 0, 1, \ldots, N-1 \)
- \(W_N = \exp\{ -j2\pi/N \} \)
- Complex conjugate of primitive \(N \)th root of unity

- **Basis vectors**
 - \(Z = \sum_k Z(k) \omega \) \(\Rightarrow \) what are the \(\{ \omega_k \} \)?
 - \(\omega_k = [1 \ W_N^k \ W_N^{2k} \ldots W_N^{N-1k}] / \sqrt{N} \)
 - \(z = \sum_k Z(k) \omega_k \)
 - Use \(\omega_k \) as row vectors to construct a matrix \(F \)
 - \(Z = F \tilde{z} \Leftrightarrow \tilde{z} = F^* Z \)
 - \(F \) is symmetric and unitary
2-D DFT

- 2-D DFT is Separable
 - \(Y = F X F^* \) \(X = F^* Y F \)
 - Basis images: \(B_{kl} = (f_N^n - k)(f_N^m - l) \)

Properties of 2-D DFT

- Conjugate symmetry for real image
 - Recall similar symmetry for 1-D DFT
- \(N^2 \) independent element from input => same independence in output
- 2-D circular convolution vs. multiplication
 - See Jain's book pp147 for more details.

In general, DFT is complex valued

1-D Discrete Cosine Transform (DCT)

- Transform matrix \(C \)
 - \(c(k,n) = \alpha(0) \) for \(k=0 \)
 - \(c(k,n) = \alpha(k) \cos(\pi(2n+1)/2N) \) for \(k>0 \)
- \(C \) is real and orthogonal
 - Rows of \(C \) form orthonormal basis
 - \(C \) is not symmetric!
 - DCT is not the real part of unitary DFT!
 - Related to DFT of a symmetrically extended signal

Example of 1-D DCT

From Ken Lam's DCT talk 2001 (HK Polytech)

Example of 1-D DCT (cont'd)

From Ken Lam's DCT talk 2001 (HK Polytech)
Fast Transform via FFT

- Define new sequence
 - reorder odd and even elements
 \[
 \tilde{x}(n) = x(2n), \quad \tilde{x}(N-n-1) = x(2n+1) \quad \text{for } 0 \leq n \leq \frac{N-1}{2}
 \]
- Split DCT sum into odd and even terms

Other real-value fast algorithms

\[
\begin{align*}
2 \leq t \leq 0 & \Rightarrow \left(\begin{array}{c}
\lambda_1 = \lambda_2 = \ldots = \lambda_{t-1} = 0 \\
\lambda_t, \lambda_{t+1}, \ldots, \lambda_N
\end{array} \right) \Rightarrow \\
& = 0
\end{align*}
\]

2-D DCT

- Separable orthogonal transform
- \[Y = C X C^T \quad \Rightarrow \quad X = C^T Y C \]
- DCT basis images

K-L Transform (Principal Component Analysis)

- Recall the unanswered question
 - what unitary transform gives the best compaction and decorrelation?
- Consider an \(N \times 1 \) zero-mean random vector \(x \)
 - Covariance (autocorrelation) matrix \(R = E[x x^H] \)
 - give ideas of correlation between elements
- Eigen decomposition of \(R \)
 - eigen vectors \(R \vec{u}_i = \lambda_i \vec{u}_i \)
- K-L transform \(y = U^H x \) with \(U = [\vec{u}_1, \ldots, \vec{u}_N] \)
 - Basis vectors of K-L transf. is the orthonormalized eigenvectors of \(R \)
 - Note \(U^H R U = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_N) \)
 - For convenience, reorder \(\{\vec{u}_i\} \) so that \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N \)

Properties of K-L Transform

- **Decorrelation**
 - \(E[y y^H] = E[U^H x x^H] U^H U = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_N) \)
 - Other matrices (unitary or nonunitary) may also decorrelate the transformed sequence (Jain’s e.g.5.7 pp166).
- **Minimum MSE**
 - If only allow to keep \(K \) coefficients for any \(1 \leq K \leq N \), what’s the best way?
 - Answer in MMSE sense \(\Rightarrow \text{Keep the coefficients w.r.t. the eigenvectors of the first largest eigenvalues} \)
 - **Proof**: Theorem5.1 in Jain’s (pp166)
K-L Transform for Images
- Work with 2-D autocorrelation function
 \[R(m,n; m',n') = E\{ x(m, n) x(m', n') \} \] for all \(0 \leq m, m', n, n' \leq N-1 \)
 - K-L Basis images is the orthonormalized eigenfunctions of \(R \)
- Rewrite images into vector form (\(N^2x1 \))
 - Need solve the eigen problem for \(N^2xN^2 \) matrix! \(\sim O(N^6) \)
- Reduced computation for separable \(R \)
 \[R(m,n; m',n') = r_1(m,n) r_2(m',n') \]
 - Only need solve the eigen problem for two \(NxN \) matrices
 \(\sim O(N^3) \)

Pros and Cons of K-L Transform
- Optimality
 - Decorrelation and MMSE for the same # of partial coeff.
- Data dependent
 - Have to estimate the 2nd-order statistics to determine the transform
 - Can we get data-independent transf. with similar performance?
 - DCT
- Applications
 - (non-universal) compression
 - pattern recognition: e.g., eigen faces
 - analyze the principal (“dominating”) components

Energy Compaction of DCT vs. K-L Transform
- Excellent energy compaction of DCT
 - for highly correlated data
- DCT is close to K-L transf. of 1st-order stationary Markov
 - DCT basis vectors are eigenvectors of a symmetric tridiagonal matrix \(Q_\epsilon \)
 - Covariance matrix \(R \) of 1st-order stationary Markov sequence has an inverse in the form of symmetric tridiagonal matrix
 - For highly correlated sequence, the scaled version of \(R^{-1} \) approx. \(Q_\epsilon \)
 - See Jain’s pp183 for details.
- DCT is a good replacement for K-L
 - Close to optimal for highly correlated data
 - Not depend on specific data like K-L does
 - Fast algorithm available

Construction of Haar functions
- Unique decomposition of integer \(k \propto (p, q) \)
 - \(k = 0, \ldots, N-1 \) with \(N = 2^n, 0 \leq p \leq n-1 \)
 - \(q = 0, 1 \) (for \(p=0 \)); \(1 \leq q \leq 2^p \) (for \(p>0 \))
 - e.g., \(k=0 \propto (0,0), k=1 \propto (0,1); k=2 \propto (1,1), k=3 \propto (1,2) \)
- \(h_k(x) = h_{p,q}(x) \) for \(x \in [0,1] \)
 - for \(x \in [0,1] \)
 \[h_k(x) = h_{p,q}(x) = \frac{1}{\sqrt{N}} \left\{ \begin{array}{ll}
 1 & \text{for} \ \frac{g_1}{2^p} \leq x < \frac{2g_1}{2^p} \\
 \frac{1}{\sqrt{N}} 2^{p/2} & \text{for} \ \frac{g_1}{2^p} \leq x < \frac{g_1}{2^p} \\
 0 & \text{for other} \ \ x \in [0,1]
 \end{array} \right. \]
Haar Transform
- Haar transform H
 - Sample $h_k(x)$ at $\{m/N\}$
 - $m = 0, ..., N-1$
 - Real and orthogonal
 - Transition at each scale p is localized according to q
- Basis images of 2-D (separable) Haar transform

Summary
- Common unitary transforms
 - 1-D transform and basis vectors
 - 2-D separable and basis images
- DFT
- DCT
 - Real valued
 - Good energy compaction for highly correlated data
- K-L
 - Best energy compaction but data dependent
- Haar
 - Localize transitions

Preview of Next Time
- Use as few bits as possible to encode an image
 - Image compression
- Basic tools
 - Lossless tools
 - Lossy tools
- Which domain to work with?
 - Directly with pixels?
 - Will some smart transforms help?

Assignment
- Readings
 - Jain’s book 5.4-5.6, 5.9, 5.11
- Reminder
 - Assignment-1 Due Wed. 9/19 11:59pm
 - New addition to Part-II
 - Hand-in writeup
 - Put images and computer codes online
 - Thurs. class will be in Jasmine.