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Abstract —Unnormalized Haar spectra and Ordered Binary Decision
Diagrams (OBDDs) are two standard representations of Boolean
functions used in logic design. In this article, mutual relationships
between those two representations have been derived. The method of
calculating the Haar spectrum from OBDD has been presented. The
decomposition of the Haar spectrum, in terms of the cofactors of
Boolean functions, has been introduced. Based on the above
decomposition, another method to synthesize OBDD directly from the
Haar spectrum has been presented.
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1 INTRODUCTION

THE various transformations which map a data vector (truth table)
onto another vector have been used in digital logic design for
more than 30 years. Spectral techniques have been applied to
Boolean function classification, disjoint decomposition, parallel
and serial linear decomposition, spectral translation synthesis
(extraction of linear pre- and post-filters), multiplexer synthesis,
prime implicant extraction, threshold logic synthesis, state as-
signment, and testing and evaluation of logic complexity [14], [16],
[22], [30], [31], [34]. The renewed interest in applications of spectral
methods in design of VLSI digital circuits is caused by their excel-
lent design for testability properties and the possibility of per-
forming the decomposition with gates other than the ones used in
most classical approaches.

There are at least two transforms which are based on square-
wave-like functions that are well suitable for Boolean functions:
Haar and Walsh transforms. All but two basis functions in the
Haar transform consist of a square wave pulse located on an oth-
erwise zero amplitude interval. When applied to logic design, an
unnormalized Haar transform [16], [17], [30], [34] is usually used.
An extension of the Haar transform to deal with an incompletely
specified Boolean function, where each spectral coefficient has an
easy interpretation in the terms of basic logic gates, has recently
been introduced [8]. The Walsh functions are global, like the
Fourier functions, and consist of a set of irregular rectangular
waveforms with only two amplitude values +1 and -1 [1], [13],
[14], [15], [16], [33], [34]. Walsh spectral coefficients of Boolean
functions have easy interpretation, and efficient methods of cal-
culation of such spectra directly from the reduced representation
of Boolean functions, in the form of disjoint cube representation
for different Walsh orderings, have recently been introduced [7].
Computation of the fast Haar transform (FHT) requires order N

(N is a number of spectral coefficients) additions and subtractions,
which makes it much faster than the fast Walsh transform (FWT)
[1], [4], [25], [30], [32], [33], [34]. Hardware-based fast Haar chips
have been developed [4]. Due to its low computing requirements,
the Haar transform has been used mainly for pattern recognition
and image processing [33], [34]. Such a transform is also well
suited in communication technology for data coding, multiplex-
ing, and digital filtering [17], [29], [34]. The Haar system is a pro-
totype for wavelets and has many, but not all, of the properties of
orthogonal wavelets [32]. The advantages of computational and
memory requirements of the Haar transform make it of big inter-
est to VLSI designers as well. For example, the authors of [26], [27]
presented a set of CAD tools to perform a switch-level fault detec-
tion and diagnosis of physical faults for practical MOS digital cir-
cuits using a reduced Haar spectrum analysis. In their system, the
unnormalized reduced Haar binary spectrum was used as a means
not only for diagnosing digital MOS ICs as a tool external to the
circuit, but also as a possibility for a self-test strategy. The use of
this set of CAD tools allowed the derivation of strategies for test-
ing MOS circuits when memory states were encountered as a con-
sequence of some fault types. The advantage of using Haar func-
tions instead of Walsh functions in CAD systems based on spectral
methods for some classes of Boolean functions was shown in [16],
[34]. For example, the analysis in [16] shows that the spectral com-
plexity of conjunction and disjunction increases with the number
of variables, exponentially for the Walsh functions and only line-
arly for the Haar functions. The circuit of the spectral multifunc-
tional logical module [16], [17], [34] to generate arbitrary Boolean
functions is shown in Fig. 1. It consists of a generator of basis
functions, an adder, a multiplier, and the memory to store spectral
coefficients. The module can be reprogrammed by changing dy-
namically its memory content. Such a behavior of the module is
useful in real-time adaptive control systems [17], [34]. Karpovsky
[16] noticed that the size of the memory block can be optimized
only when the Haar basis is used. It is due to the fact that the
number of nonvanishing Haar coefficients is reduced with input
permutation of variables—the situation which does not apply to
the Walsh basis. It should be noted that the realization of a per-
mutation requires no special hardware [16]. Another advantage of
the Haar spectrum in this application is the smallest number of
required arithmetic operations, as there are many zero entries in
the Haar transform matrix, and the number of nonvanishing Haar
coefficients is reduced. The basic module from Fig. 1 can be modi-
fied to cater for the synthesis of sequential circuits [17].

Fig. 1. Basic structure of a spectral multifunctional module.

The recent article [6] caused even more interest in the Walsh
spectrum by showing an efficient method of calculating this spec-
trum directly from its recursive definition rather than from the
properties of the transform itself, as the earlier method [23], [24].
In the method [6], both the original data and resulting spectrum
are stored in the form of Decision Diagrams. This method was
later extended to the calculation of the Chrestenson Transform,
which is a generalization of Walsh functions based on complex
numbers, that is frequently used for the representation of multiple-
valued functions [16], [20]. Unfortunately, both mentioned meth-
ods, though general, can be applied only to such transformation
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matrices that can be represented by a single recursive equation
based on a standard Kronecker product structure. For example,
they can be used for the Reed-Muller transform [24]. These meth-
ods are not suitable for the cases when the transformation matrix
is not recursive, which was first noticed by [31]. Also, these meth-
ods do not apply to the case of Haar transform, as such a trans-
form cannot be represented recursively by a standard Kronecker
product. Instead, the recursive definitions of the Haar transform
are based either on new matrix operators and standard Kronecker
products applied to some block submatrices from the transform
matrix [33], or can be represented by a “Generalized” Kronecker
product [30]. Since the methods [6], [20] are not applicable to the
Haar transform, the new methods for such a case have to be
sought for. Such a new method should take into account the
unique properties of the transformation matrix in question, as well
as be optimized in terms of number of required operations and
memory space.

Although the properties of Haar spectra have considerable in-
terest and attraction, the majority of publications to date have em-
ployed the Walsh rather than the Haar transform in their consid-
erations. It is mainly due to the fact that, up to now, there has been
no efficient method of calculating Haar spectra directly from re-
duced representations of Boolean functions, such as Decision Dia-
grams, and vice versa. The present article addresses this important
issue of operating only on reduced representations of both Haar
spectra and original Boolean functions, and presents the mutual
relationship between them. It is the first time that such a relation-
ship between Haar spectra of Boolean functions and second com-
mon representation of such functions (so-called Binary Decision
Diagrams discussed in more detail in Section 4) has been estab-
lished. All the presented derivations are valid not only for com-
pletely specified Boolean functions, but also for incompletely
specified ones (i.e., functions that have don’t cares as some of their
logical values) as well. It is very important, since, in most practical
engineering design problems, the incompletely specified Boolean
functions have to be dealt with. Introduced algorithms allow more
efficient manipulation of different representations of Boolean
functions during the synthesis process, since both spectral and
OBDD representations of such functions are available to the de-
signer, and either of them can be used interchangeably, dependent
on the requirements of the design process.

2 BASIC DEFINITIONS AND PROPERTIES

An n-variable Boolean function F x x xn1 2, , ,Kb g  is a mapping F: {0, 1}n

→ {0, 1, −}k where the symbol “−” means a nonspecified value (a
don’t care) and k is the number of outputs. A Boolean function is
completely specified if all its outputs contain only the set {0, 1}, and
incompletely specified if any of its output is a nonspecified one.

A literal, ( & )xi  is a variable of a Boolean function in either af-
firmation ( )xi  or negation ( )xi . A minterm or normal term of an n-
variable Boolean function is an AND term of exactly n different
literals. A false (OFF) minterm is a minterm for which the value of
the function is zero, a true (ON) minterm is a minterm for which the
value of the function is one, and a don’t care (DC) minterm is a
minterm for which the value of the function is either zero or one.
An n-variable minterm can be represented by an n-bit integer, the
minterm number. In the minterm number, a variable in affirmation is
replaced by one and in negation by zero. Two minterms are said to
be adjacent when the Hamming distance between their minterm
numbers is equal to one.

An n-bit string is a vertex of an object called a 0-cube. An n-variable
Boolean function is represented as an n-dimensional space (n-
hypercube), in which each vertex represents a minterm. A collec-
tion of 2i, i ∈ {0, 1, ..., n} adjacent minterms is called an i-cube. A
cube can be represented by an n-string of 0, 1, and −, where 0 cor-

responds to the complemented value of the variable, 1 to the af-
firmative value, and − to the missing variable in the cube. The ON,
OFF, and DC cubes are cubes corresponding to the product term of
ON, OFF, and DC minterms, respectively. The sets of ON, OFF, and
DC cubes are called ON, OFF, and DC arrays, respectively. Two
cubes are disjoint if they do not have any minterm in common.
Otherwise, when they share some minterms, they are nondisjoint.

The Shannon’s decomposition of a Boolean function around the
variable xi  is [28]:

F X x F x Fi x i xi i
b g = +                                     (1)

where Fxi
 is a cofactor of F(X), with respect to xi , and Fxi

 is a co-

factor of F(X), with respect to xi .
A Binary Decision Diagram (BDD) [2], [3], [5], [10], [18], [19],

[21], [23], [24] is a Rooted Directed Acyclic Graph representation
with Node (or Vertex) Set V and Edge Set E. The Node Set consists of
two types of nodes: the nonterminal and terminal nodes. A nonter-
minal node v ∈ V has as attributes an index, denoted by index(v), to
identify an input variable of a function, and two children (or suc-
cessors), low(v) and high(v) ∈ V. A terminal node u ∈ V has no
child, and it has a value, denoted by value(u). value(u) = 0, 1, or 0.5
for the functional value of logical zero, one, or don’t care, respec-
tively. The Edge Set consists of two types of edges. A 0-edge is a
link from a node v to its low child low(v), and a 1-edge is one that
connects v to high(v). A root is the topmost or the first nonterminal
node in the BDD. A path is a set of nodes and edges traversed
from the root to a terminal node. An Ordered Binary Decision Dia-
gram (OBDD) is a BDD where the input variables in all paths ap-
pear in a fixed order, and each variable in a path appears, at most,
once. In an OBDD, an ordering vector for the input variables is
maintained, such that index(low(v)) < index(v) and index(high(v)) <
index(v) for all nonterminal nodes v ∈ V.

Fig. 2 shows an OBDD for a four-variable incompletely speci-
fied Boolean function consisting of an ON array, ON(F) = { ,x x x4 2 1
x x x x x x4 3 2 4 3 2, } , and a DC array, DC(F) = { , }x x x x x x4 3 2 4 2 1 . For the
purpose of an illustration, each nonterminal node of an OBDD is
labeled with a unique alphabet. An edge-connecting node a to
node b is denoted by the symbol hab . hab  is also called the output
edge of node a or the input edge of node b.

PROPERTY 1. A path with k nodes represents an (n − k)-cube, where k =
1, 2, ..., n, since an absent node corresponds to a redundant vari-
able in a term or “−” in a cube notation. For each node v in a path

Fig. 2. OBDD of an incompletely specified function, ON(F) =
x x x x x x x x x

4 2 1 4 3 2 4 3 2
, ,{ } , DC(F) = x x x x x x

4 3 2 4 2 1
,{ } .
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h, if its 1-edge is also contained in η, then the variable xi  is pre-
sent in the cube where i = index(v). Otherwise, the variable xi  is
present. The logical value of the cube follows the functional value ε
of the terminal node in the path. The cubes obtained from any two
paths of an OBDD are disjoint.

The orthogonal discrete Haar functions can be formulated as
[12], [15]:
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where x is a continuous interval [0, 1); l = 0, 1, 2, ..., n − 1 is a de-
gree of Haar function describing the number of zero crossings; and
k = 0, 1, ..., 2l − 1 is an order of Haar function describing the posi-
tion of the subset l within a function. Since H xdc ( ) is a constant
function, it is also called a direct current function.

The discrete Haar matrix Tn  is a 2 2n n¥  orthogonal matrix,

formed by a discrete sampling of the set of Haar functions at 1
2n

division in the interval [0, 1).The first two rows of Tn  are global

basis functions H xdc ( ) and H x0
0b gb g , respectively. All subsequent

rows are constituted by local basis functions H xl
kb gb g  in an as-

cending order of l and k.
In digital logic design, an unnormalized discrete Haar transform

is used instead [8], [9], [14], [16], [34]. The entries in the unnor-
malized discrete Haar matrix contain only the values of 1, −1, and
0 that are obtained by taking the signs of all the nonzero entries in
the discrete Haar matrix Tn . For simplicity, the same symbols

Hl
kb g  and Tn  are used to denote an unnormalized discrete Haar

function and the matrix, respectively. From now on, we will refer
to them as Haar functions and the Haar matrix, without the words
unnormalized and discrete.

For an n-variable Boolean function F x x xn1 2, , ,Kb g  the Haar

spectrum is given by [14], [16], [17], [34]: R T Fn= , where R is

the Haar spectrum (a column vector of dimension 2 1n ¥ ) and [F]
is a 2 1n ¥  column vector of the logical values of the function F(X)
(a truth table or minterm vector). Two types of coding are used for
the minterm vector [F] of a Boolean function before its spectrum is
computed [7], [8], [9], [14], [16], [34]. The truth vector for R coding
is coded by its original values: 0 for false minterms, 1 for true
minterms, and 0.5 for don’t care (DC) minterms. In the S coding,
false minterms are represented by 1, true minterms by −1, and DC
minterms by 0. Since there exists a linear relationship between the
Haar spectra for both R and S codings for completely and incom-
pletely specified functions [8], this article will use only R coding.

Each spectral coefficient of R spectrum can be derived by mul-
tiplying the coded minterm vector of the Boolean function [F] by
its corresponding Haar function. Besides the first two spectral
coefficientsrdc  (the so-called dc coefficient corresponding to the dc

function) and r0
0b g ,which are globally sensitive to F(X), the remain-

ing 2 2n -  Haar spectral coefficients are only locally sensitive to
the cofactors resulted from the repeated applications of Shannon’s
decomposition of F(X), with respect to some variable xi , i = 1, 2, ...,

n. Similar to Haar functions, Hl
kb g  spectral coefficients rl

kb g  are
characterized by their degrees l and orders k.

PROPERTY 2. For a Haar spectrum of an n-variable Boolean function F,
there are 2n i-  spectral coefficients of degree n − i. Each measures
a correlation of a different set of 2i neighboring minterms,

where i = 1, 2, ..., n. The value of the dc coefficient rdc , is equal to
the number of minterms of the Boolean function, and the coeffi-
cient r0

0b g  describes the difference between the number of minterms
of the cofactors decomposed around the variable xn  and xn , re-
spectively.

DEFINITION 1. A standard trivial function, uI , I = 2l + k and I ∈ {0,

1, ..., 2 1n - }, associated with each Haar function Hl
kb g  describes a

Boolean space of 2n l-  neighboring minterms (an (n − l)-cube) on a
Karnaugh map that has an influence on the value of a spectral co-
efficient rl

kb g , where l = 0, 1, 2, ..., n − 1 and k = 0, 1, ..., 2l − 1. For
each index I of uI , there exists a unique value of l and k. Formally,
uI  can be expressed as a product term:

u0 = u1 = 1 and u xI n l i
k

i

l
i= - +

-
’

1

 ∀l, k ∈ Z;

1 ≤ l ≤ n − 1 and 0 ≤ k ≤ 2l − 1                            (2)

where Z is the set of integers.

DEFINITION 2. A literal &xn l- , l = 0, 1, ..., n − 1 is called an extended
literal of the standard trivial function uI (I = 1, 2, ..., 2 1n - ). An
extended literal &xn l-  can be either in affirmation or negation and
will be called an extended variable xn l-  or xn l-  accordingly.

PROPERTY 3. An extended literal &xn l-  divides the corresponding stan-

dard trivial function, uI  (I = 1, 2,..., 2 1n - ) into two symmetrical
halves, equivalent to the cofactors of the Shannon’s decomposition
of the standard trivial function with respect to xn l-  and xn l-  ac-

cordingly. Consequently, Hdc =  u0 1= , Hl
kb g  = u x xn l n l1 - --c h

∀l and k, where I = 2 l + k.

PROPERTY 4. The degree l of the Haar function indicates the number of
literals present in a standard trivial function uI  (I = 0, 1, ...,
2 1n - ). All 2 l  Haar functions of degree l have the same extended
literal &xn l- .

PROPERTY 5. The order k of a Haar function Hl
kb g  indicates the polarities

of the literals present in the standard trivial function uI . The order k
can be expressed as a binary l-tuple by writing a 1 or 0 for each vari-
able in uI , according to whether this literal appears in affirmation or
negation, with the most significant bit corresponds to the literal &xn
and the least significant bit corresponds to the literal &xn l- +1.

EXAMPLE 1. For a four variable Boolean function, the Haar coeffi-

cient r3
1b g  has the standard trivial function u9. Since l = 3, k

can be expressed as a binary 3-tuple 001. From (2),
u x x x9 4 3 2= , and the extended literal is & &x x4 3 1- = .

3 ALGORITHM FOR COMPUTATION OF HAAR SPECTRUM
FROM OBDD

The OBDD is canonical if there exists no nonterminal node v with
index(low(v)) = index(high(v)). In this paper, we consider only ca-
nonical or reduced OBDD.

DEFINITION 3. The total number of truth, false, or don’t care minterms
covered by the term u xI n l& -  is denoted by Â -M u xI n le , &c h  where ε
∈ {0, 1, 0.5}, uI is the standard trivial function uI and &xn l-  is its

corresponding extended literal.

Â -M u xI n le , &c h  can be evaluated by a matching process. Each
path is either selected or rejected based on the outcome of the
comparison of every output edge with the affirmative (logical 1) or



IEEE TRANSACTIONS ON COMPUTERS,  VOL.  46,  NO. 11,  NOVEMBER  1997 1275

negative (logical 0) value of the associated literal in uI . Starting
from the root, a preorder traversal is performed. If the top variable
xi  (i = index(v)) of a nonterminal node v is present in uI , only one
of its two children will be traversed depending on the polarity of
the corresponding literal in uI . If the literal is complemented,
low(v) will be visited, otherwise, high(v) will be visited. If the top
variable of v is the extended literal (i.e., index(v) = n − l) or is absent
in uI, both children of v will be traversed. However, an exception
occurs in the above matching process. Let v be the present node
and u ∈ {low(v), high(v)} be the next node to be visited according to
the above rule. Then, u will not be visited if index(v) > n − l and
index(u) < n - l. In other words, any path that does not contain the
extended literal will be pruned early, before the terminal node is
reached. During the recursive preorder traversal, whenever a
terminal node is encountered, a path with terminal value ε Œ
{0, 1, 0.5} is selected. The selected path represents a disjoint (n − p)-
cube if it consists of p nonterminal nodes. If j out of all l literals
in uI  are missing in the path, M u xI n

n p j
e , & -

- -=1 2c h . Â -M u xI n le ,c h
(or Â -M u xI n le ,c h ) is obtained by accumulating the minterm con-
tributions by each selected path that terminates in F = ε and con-
tains the extended variable xn l-  (or xn l- ).

In the algorithm computing the Haar spectrum, either the paths
that terminate into F = 1 and 0.5 or F = 0 and 0.5 are to be consid-
ered, but not both. The set of paths to be selected depends on the
type of the Boolean function, and the condition ruling the selection
is given later, as a remark following Algorithm 1.

Algorithm 1: Calculation of Haar spectrum for completely and
incompletely specified Boolean functions.

1) Computation of rdc  .
The first spectral coefficient, rdc  is given by :

r M F M Fdc = Â + Â1
1
21 11

2
, ,c h c h                              (3)

where Â M F1 1,c h  is the sum of the number of true minterms

of the function F(X) and Â M F1
2

1,c h  is the sum of the num-

ber of DC minterms of the function.
2) Computation of all but rdc  spectral coefficients.

All other spectral coefficients, rl
kb g , l ≥ 0  can be computed by

the following procedure:

(i) Carry out the matching process described previously
to select the desired paths.

(ii) For all selected paths that terminate in 1, add the num-
ber of minterms contributed by paths containing the
top variables xn l-  to obtain Â -M u xI n l1 ,c h  and those

containing xn l-  to obtain Â -M u xI n l1 ,c h , respectively.
(iii) For all selected paths that terminate in 0.5, add the

number of minterms contributed by paths containing
the top variable xn l-  to obtain Â -M u xI n l1

2
,c h  and

those containing xn l-  to obtain Â -M u xI n l1
2

,c h .

(iv) The spectral coefficient, rl
kb g , is given by:

r M u x M u xl
k

I n l I n l
b g c h c h= Â - Â +- -1 1, ,

1
2 1

2
1
2

Â - ÂL
NM

O
QP- -M u x M u xI n l I n l, ,c h c h .                  (4)

It is obvious that, for a completely specified Boolean function,
there is no DC minterms and (3), (4) do not have terms with Â M 1

2
.

For the OBDD that has more terminal values 1 than 0, the
spectral coefficients are calculated more efficiently by considering
the paths that terminate in F = 0 instead of F = 1. For such cases,
Â M1 in (3) and (4) are replaced by Â M0  . The calculated spectrum

is the spectrum of the complemented function F Xb g, denoted by

R . The actual R spectrum of F(X) can be calculated from R  by the
following set of equations [9]:

r rdc
n

dc= -2  and r rl
k

l
kb g b g= -  ∀l,

k ∈ Z; 0 ≤ l ≤ n − 1 and 0 ≤ k ≤ 2l −1.                       (5)

EXAMPLE 2. Consider the incompletely specified Boolean function
represented by the OBDD in Fig. 2. A sample calculation of
the first three spectral coefficients is given as follows.

For all paths that terminate in 1 and 0.5, we have:
M F1

2
1,c h  = 1 for habdh (0.5), M F1

2
1,c h  = 2 for habe (0.5), M1  (F, 1)

= 1 for hacfi (1), and M1 (F, 1) = 2 for hacf (1) and hacg (1). From

(4), rdc  = (1 + 2 × 2) + 0.5(1 + 2) = 6.5. M u x1 1 4,b g  = 1 for

hacfi (1), M u x1 1 4,b g  = 2 for hacf (1) and hacg (1), M u x1
2

1 4,c h  = 1

for habdh (0.5) and M u x1
2

1 4,c h  = 2 for habe (0.5). Since

Â M u x1 1 4,c h = Â M u x1
2

2 4,c h = 0, from (5), r0
0b g  = 0 − (1 + 2 × 2)

+ 0.5[(1 + 2) − 0] = −3.5. M u x1
2

2 3,c h  = 2 for habe (0.5) and

M u x1
2

2 3,c h  = 1 for habdh (0.5). Since Â M u x1 2 3,c h  =

Â M u x1 2 3,c h  = 0, from (5), r1
0b g  = 0 + 0.5(1 − 2) = −0.5.

All other higher degree spectral coefficients are computed simi-
larly. The other nonvanishing coefficients are calculated to be: r1

1b g =

r r r r r r2
1

2
2

3
5

2
0

2
3

3
01 0 5 2 0 5b g b g b g b g b g b g= = = = = - = -, . , , .and .

It should be noted that the Haar spectrum for a different vari-
able ordering as that of the initial OBDD is also possible by Algo-
rithm 1. In this case, the literals in uI  may not appear in adjacent
order in the OBDD. Pruning of paths that does not contain the
extended literals has to be delayed until the path is selected based
on the matching process. The modified algorithm can also be ex-
tended to calculate the Haar spectrum from Free Binary Decision
Diagram (FBDD) [5], [11], where each variable appears, at most,
once in each path, but the variables encountered in any two paths
may appear in different order.

4 DECOMPOSITION OF HAAR SPECTRAL COEFFICIENTS

When an n- variable Boolean function F(X) is decomposed with
respect to xn  or xn , the residue Haar spectra ¢R  of the cofactor Fxn

and ¢¢R  of the cofactor Fxn
 can be computed by:

¢ = -R T Fn xn1  and ¢¢ = -R T Fn xn1 .                          (6)

LEMMA 1. The relationships expressing the 2 1n-  residue Haar spectral
coefficients of the cofactors Fxn

 and Fxn
 in terms of the Haar spec-

tral coefficients of n-variable Boolean function F(X) can be derived
as follows:

¢ = +r r rdc dc
1
2 0

0b ge j  and r r ll
k

l
kb g b g¢ = "+1 ,  k Œ Z;

0 £ l £ n - 2 and 0 £ k £ 2 1l -                                          (7)

¢¢ = -r r rdc dc
1
2 0

0b ge j  and r r ll
k

l

klb g e j≤ = "+

+

1

2
,  k ∈ Z;

0 ≤ l ≤ n − 2 and 0 ≤ k ≤ 2 1l -                                            (8)

where the symbols with single and double prime superscripts denote
the spectral coefficients of the cofactors Fxn

 and Fxn
, respectively.

PROOF. Since the cofactor with respect to xn  can be obtained by

considering only the first 2 1n-  minterms of F(X), the local
basis Haar functions of Tn  in the time interval [0.5, 1) have
no direct contribution to the residue spectrum of the cofac-
tor. When the basis functions of Tn  in the interval [0, 0.5)
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are compared with those of Tn-1 , the following relationships

are obtained: ¢ = +H H Hdc dc
1
2 0

0b ge j  and H Hl
k

l
kb g b g¢ = +1  ∀l, k ∈

Z|0 ≤ l ≤ n − 2 and 0 ≤ k ≤ 2l − 1, where Hl
kb g¢  denotes the

Haar functions of Tn-1 .

Since r Hdc dc= [F] and r H Fl
k

l
kb g b g= , all symbols H in the

above relations can be substituted by corresponding to them
symbols r for all concerned degrees and orders of the Haar
functions. Hence, (7) is derived.

Equation (8) can be similarly proven  by comparing the
basis Haar functions of Tn  in the time interval [0.5, 1) with

that of Tn-1  and performing some arithmetic operations on

the basis functions of Tn . �

Equations (7) and (8) closely parallel the definition of Shan-
non’s decomposition from (1), except that the decision variable xi
must be evaluated in a descending order of the index i (i = n, n − 1,
..., 1). The size of the resulting spectrum ¢R  or ¢¢R  is halved
through each iteration. After n iterations, only a single spectral
coefficient is left. The value of this coefficient is either 0, 0.5 or 1,
representing the R coded functional value of the minterm formed
by the conjunction of all decision variables along the path.

PROPERTY 6. When the dc coefficient of a residue spectrum is equal to 0,

the logical function describing the cofactor is 0.

The following Properties 7 to 10 and Lemmas 2 and 3 are
given for the case when the Boolean function is always depend-
ent on the variable xn  or the decomposition of the function starts
with the variable xn . Such formulation of properties is useful in
the following algorithm. However, it should be noticed that the
more general case of the functional dependence on a variable xi

or the decomposition with any variable xi , 1 ≤ i ≤ n is possible.
Similar properties can be given for the decomposition according
to any cofactor F

x g Xi
&d i  or F

x g Xi
&d i  where g X g x x xi i n

& & , & , , &d i c h= + +1 2 K

and the corresponding residue spectra ¢R  and ¢¢R  of 2 1i-   spec-
tral coefficients.

PROPERTY 7. When all but the dc coefficients of a spectrum are zero, the
n-variable function is either a tautology or all its space is full of
don't cares. Coefficient rdc  has the maximum value 2n  for the tau-

tology and 2 1n-  for the second case.

PROPERTY 8. When an n-variable function or a cofactor is dependent
only on the most significant variable xn , it can be represented by a
BDD with only one nonterminal node v where index(v) = n and
low(v) and high(v) are both terminal nodes. The six possible com-
binations of ON-, OFF-, and DC-terminal values associated with
low(v) and high(v) are shown in rows 1a to 1f of Table 1.

TABLE 1
 HAAR SPECTRA FOR n-VARIABLE ELEMENTARY FUNCTIONS
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PROPERTY 9. When an n-variable Boolean function is independent of the
most significant variable xn , its spectrum is characterized by

r0
0 0b g =  and r r ll

k
l

kl

+ +

+
= "1 1

2b g e j
, k ∈ Z ; 0 ≤ l ≤ n − 2 and 0 ≤ k ≤

2l − 1.

Property 9 is derived by equating (7) with (8) since the cofac-
tors of such a function decomposed about the variable xn  are
identical. From Lemma 1, whenever this condition occurs in the
synthesis process, the value of rdc  is halved and the degrees of the
remaining coefficients are decremented by 1 while their values
remain unchanged.

PROPERTY 10. Similar to Property 9, there are six possible combinations of
elementary functions generated from each basic logical operation on
n nonredundant variables. The nonvanishing spectral coefficients for
these elementary functions are given in rows 2a-2f to 4a-4f of Table 1.
In Table 1, OR = x1 ⁄  x xn2 ⁄ ⁄K , AND = x x xn1 2Ÿ Ÿ ŸK ,
XOR = x x1 2ƒ ƒ ƒK  xn , and z is the Hamming weight of the
order k, i.e., the number of ones in the binary n-tuple of the decimal
number k. The BDDs of these elementary functions can be easily
derived.

LEMMA 2. Let OBDD(F) be an OBDD of an n-variable completely
specified function F and OBDD(G) be an OBDD of an incom-
pletely specified function G obtained from OBDD(F) by changing
the terminal node with terminal value 0 to 0.5. If superscripts f
and g are used to denote the spectral coefficients of F and G, re-
spectively, then

r rl
g k

dc
f nb g e j= +1

2 2  and r r ll
g k

l
f kb g b g= "1

2 , k ∈ Z;

 0 ≤ l ≤ n − 2 and 0 ≤ k ≤ 2 1l -                                             (9)

PROOF. Let t0  and t1  be the number of false and truth minterms for F.

t tn
0 12= -  and r tdc

f = 1 . Since the number of don’t care min-

terms in G = t0 , r t t tdc
g n= + = + =1 0 10 5 0 5 2. . e j  0 5 2. rdc

f n+e j .

From (4), since F is completely specified, r M u xl
f k

I n l
b g c h= Â --1 ,

Â -M u xI n l1 ,c h . In addition, for any spectral coefficient of de-

gree l of G, Â = - Â- -M u x M u xI n l
l

I n l1
2

2 1, ,c h c h  and

Â =-M u xI n l1
2

,c h 2 1
l

I n lM u x- Â -,c h. From (4),

 r M u x M u xl
g k

I n l I n l
b g c h c h= Â - Â +- -1 1, ,

1
2 1 12 2l

I n l
l

I n lM u x M u x- Â - + Â- -, ,c h c h =

1
2 1 1

1
2Â - Â =- -M u x M u x rI n l I n l l

f k, ,c h c h b g .                   �

LEMMA 3. If OBDD(G) in Lemma 2 is obtained from OBDD(F) by
changing the terminal node with terminal value 1 to 0.5, then
R Rg f= 0 5. .

PROOF. Similar to proof of Lemma 2. �

Similar to the output complement attribute edge [3], the re-
placement of the terminal node with value 0 by that with value 0.5
and the terminal node with value 1 by that with value 0.5 of a BDD
can be regarded as two additional new attribute edges op0 and op1
respectively. The introduction of op0 and op1 not only maximizes
the space efficiency but also increases the hit ratio of the hash-
based cache compute table. From Lemmas 2 and 3, it is obvious
that halving the summation of all higher coefficients constitutes a
simple and effective hash function for both op0 and op1. Given the
above preliminaries, the algorithm for constructing OBDD from
Haar spectrum is based on the successive applications of (7) and
(8). The decision variable is in the descending order of the index i

(i = n, n − 1, ..., 1).

Algorithm 2: Synthesis of OBDD from Haar spectrum for com-
pletely and incompletely specified Boolean functions

1) Using Properties 9 and 10, verify if the spectrum describes a
single variable function or an elementary function. If it is the
case, replace the spectrum by the corresponding OBDD and
exit.

2) Set the index  i = n, where n is the number of variables of the
function in the first iteration and the number of variables of
the considered cofactors subsequently. Assign the variable
xi  to the root of OBDD with two output edges.

3) Using (7) and (8), compute two residue Haar spectra, each
of 2 1i-  coefficients for the cofactors Fxi

 and Fxi
 correspond-

ing to the low and high children. Reduce the index i by 1.
4) When any edge has a dc coefficient (either ¢rdc  or ¢¢rdc ) equal to

0, connect it to the 0-valued terminal node.
5) When any edge has a dc coefficient equal to the maximum

value 2 i , connect it to the 1-valued terminal node. Skip
Step 6 if the function is completely specified.

6) When any edge has a dc coefficient equal to 2 1i-  and all
other coefficients are zero, connect it to a 0.5-valued (don’t
care) terminal node.

7) When any edge has a residue spectrum such that the zero

degree coefficient is equal to 0 and r rl
k

l

kl

+ +

+
=1 1

2b g e j
 for ∀l, k ∈ Z;

0 ≤ l ≤ n − 2 and 0 ≤ k ≤ 2l − 1, delete the coefficients r0
0b g  and

rl

kl

+

+

1

2e j
. The value of rdc  is halved and the degrees l of the

remaining coefficients rl
kb g  are decreased by one while their

values remain unchanged.
8) When some  spectra  corresponding to two or more output

edges from some node xi  are identical, direct all the output
branches to only one copy of such a spectrum.

9) For any nonterminal branches, repeat Steps 1 to 9 until all
edges are terminated.

EXAMPLE 3. For the set of Haar coefficients calculated in Example 2,
the partial OBDDs resulting from each iteration of the above
Algorithm are shown in Figs. 3a-3c. Different numbered
steps of Algorithm are indicated by arrows pointing to ei-
ther terminal values or subtrees in Fig. 3. The final OBDD is
identical to that shown in Fig. 2.

5 EXPERIMENTAL RESULTS

The presented algorithm has been implemented in C. Table 2
shows the results of the calculation of complete Haar spectra for
selected MCNC benchmark functions obtained from their OBDD
representations. The ordering of variables is derived from the cir-
cuit topology. To give an impression of size of the considered cir-
cuits and resulting Haar spectra, some information on the MCNC
benchmark functions is provided in Table 2. The columns “Inputs“
and “Outputs“ show the number of input and output variables of
the benchmark functions respectively, and the column “Number“
represents the number of essential nonvanishing Haar spectral
coefficients, while the column “Time“ is the system execution time
in seconds required to calculate the Haar spectrum on a HP Apollo
Series 715 workstation. It should be noted that the algorithm can
accept a more general FBDD representation.

6 CONCLUSION

The essential relationships between classical (OBDDs) and spectral
(Haar spectra) representations of Boolean functions used in the
design of VLSI digital circuits have been stated. The fundamental
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formulas presented in Sections 3 and 4 are very useful, since either
representation can be more convenient in different stages of the
VLSI design process. The stated formulas give us the working tool
to translate in both directions the spectral and classical knowledge
about the underlying Boolean function. The research summarized
here will have not only impact on the more efficient applications
of both representations of Boolean functions in the design process,
but also gives the insight onto the links between computer and
communication technologies: two areas that use extensively Haar
spectra in many applications. In both technologies, Haar spectra
are the most promising approaches dealing with the problems of
test generation and response data analysis and compression [26],
[27]. A major advantage of the approach presented here to mutual
Haar spectrum/OBDD conversion process is its convenience for
computer implementation, and, by using reduced representations
for both original data and corresponding spectra, its ability to
yield solutions to problems of very large dimensions. A similar
approach can also be applied to calculate other spectra that do not
have recursive transformation from Decision Diagrams, for exam-
ple, the spectra of different Discrete Wavelet Transforms [32].
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