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Abstract—In this article, we extended arithmetic-
Haar transform from the first eight functions (n =
3) to higher values of n. The new recursive relations
are given in the form of layered Kronecker matrices
and hence they have fast transforms and are com-
putationally advantageous. As the new generalized
arithmetic-Haar transform has a structure similar to
that of the Haar and arithmetic transform matrices,
computational advantage of these two transforms are
held in the expanded transform as well.

I. INTRODUCTION

Both the Haar wavelet transform (non-normalized ver-
sion of the transform where only signs are entered into
the transform matrix) and arithmetic transform have been
used in many applications of logic design [1]-[4]. As each
of these transforms has same advantages and disadvan-
tages it is also beneficial to calculate the spectrum of a
logic function by means of some other known spectrum of
the same function without needing to regain the original
function. Such a conversion for arithmetic and Haar spec-
tra for arbitrary n were shown in [5]. In [6] an idea of a
combined arithmetic-Haar transform was proposed. Such
a transform was defined for the first eight functions and
experimental results shown in [6] proved that arithmetic-
Haar transform is more efficient than other used trans-
forms in logic design such as Walsh, Haar and arithmetic
for some benchmark functions. Therefore it is interesting
not only theoretically but also practically, to develop this
arithmetic-Haar transform for higher matrix dimensions
and this is the main contribution of our article.

II. ARITHMETIC-HAAR TRANSFORM FOR THREE
VARIABLES

For a 3-variable function f(z1,z2,3), the arithmetic-
Haar expansions are given by the symbolic matrix [6]:

X = [1 r3 I

7173(1 — 229) 1T3(1 — 272)

173 T1T3(1 — 223)

131323(1 - 2I2)}.

1)

Let the symbol '®’ represent Kronecker product of two
matrices. The basic functions of arithmetic-Haar expan-
sions can be combined from two sets of basic functions.
The first four basic functions are generated from the pos-
itive Davio expansion (4] for variables z; and z3:

1 z]® x3]=[1 z3 71 x173) (2)

The other four basic functions are generated from the
Shannon expansion {4] for variables z; and 3, with mul-

tiplication by (1 — 2z2) [6]:
{[Tl .Z'lJ ® [T;; [I)g]} X (1 - 212) = [TI_Z‘_;;(I — 21}2)
Tiz3(l — 2x2) x:1Z3(1 — 2z2) z123(1 — 222)].
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IIT. ARITHMETIC-HAAR TRANSFORM FOR HIGHER
NUMBER OF VARIABLES

A. Definition of Generalized Arithmetic-Haar Transform

For an n-variable function f(z1,%2, * &r, "+ Tn—1,Tn),
the basic functions for the generalized arithmetic-Haar ex-
pansions can be combined from two sets of basic functions.
The first 2"~ ! basic functions are generated from the pos-
itive Davio expansion for variables z; to z,, excluding z,
where 1 <r < n:

[1 Z],}@[l l’z}@"'@[l (Er_1]®[1 xr+1]®

@l @1 zo] (4)
For the other 271 basic functions, the functions can be
generated from multiplying the Shannon expansion for
variables z; to z,, excluding z, where 1 <7 < n:

1 z1]®[T2 22 Q- ®[Fr—1 Z,—1]®
Zrt1 Zr41]® - ®[Tne1 Tn-1] @ [En  Tn]
by (1—-22,).  (5)

Such an approach allows us to generalize the higher
dimensions of final arithmetic-Haar matrices and corre-
sponding expansions in many ways by selecting the final
r, so this is a general method that can provide compact
spectral representation with many zeros for any n-variable
logic function.

Definition 1 From the generalized arithmetic-Haar ex-
pansions, the rth-order generalized arithmetic-Haar trans-
form matrix AH,.(n) and its inverse AH,!(n) can be

defined as:
-1(1 1 n=r ] :
& h (1) ®1]®(@r [1 [1)]):
AH,(n)=| >7IH o 20 Pir A NN EE (0
2o 1] )®~1 ®(i§1 [o 1 )
-1 1 0 7110
(el e wefz] S
AH Yn)=dl - - = — = - — = — - — — ——

where n =2,3,4--- and 1 <r <n.

J
In the above equations, the symbol ’ & ’ represents the

i=1
Kronecker product of j matrices. When the Kronecker
product of j matrices is carried out for the above equations

j
for 7 = 0, then the term "®1’ disappears from the above
im
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equations. The vertical dotted lines denote the layered
vertical Kronecker matrices, and the horizontal dashed
lines denote the layered horizontal Kronecker matrices,
respectively. The layered horizontal Kronecker matrix is
defined as the horizontal sum of Kronecker matrices [7],
and the layered vertical Kronecker matrix is defined as the
vertical sum of Kronecker matrices [5].

Definition 1 has shown the generation of both the for-
ward and inverse generalized arithmetic-Haar transform.
Using (6) and (7) the corresponding generalized arithme-
tic-Haar transform matrix can be calculated.

Example 1 For n = 4 and r = 3, the generalized
arithmetic-Haar forward transform matrix AH3(4) can
be generated by (6) as follow:

&0t el
AH;(4)=| Y ! -

10 11 .10
&1 1)l 1)els 1]
0 00 0 0001 0O000O0UO0TO0 O0]
11000000O01000O0O00
1000000O0O0-100U0U0TU0T 0O
11 000000O0O0-1000D0TU00
1010000O0O0OO0T1O00O0GO0OTOUO
11 110000O0O0O0T1O0O0T00O0
1010000O0O0CO0-100000
11 110000O0GO0O0O-120000
10001000UO0O0O0OGO0OT1TQO0TGO0OO]/
11 00110000O0UO0O0T1T00
10001 000O0GO0O0GO0-1000
1100110000UO0GO0O0-100
1010101000W0O0O0O0T1O0
111111 11000000O01
1010101000UO0O0GO0O0-10
11111 111000000 0-1

inverse AH;'(4) can be calculated by

(E[2 oo el 0

Similarly, its
(7) as follow:

1 1
e N coa |
(S[O 1D®[1 ‘1]®{0 1]
r1 01 0 0 0 0 0 0 0 O0O0O0O0 0 0]
-1 1-1 1 0 0 0000O0O0O0O0OUO0O0
-1 0-1 0101000000000
1-1 1-1-1 1-11 0 0 0 0 0 0 0 0
-1 0-1 0000010100000
1-1 1-1 0 0 00-1 1-1 1 0 0 0 0
101 0-1 0-10-10-1010 10
1f-1 1-1 1 1-1 1-11-1 1-1-11-1 1
2] 1 0-1 00 000O0O0UO0OO0O0TG OO0 O
01 0-1000O0O0OCO0O0GOO0O0 0
000010-10000O0UO0T0 0TU 0O
000O0OT1@O0~10000U0TG 00O
0000O0OO OO OT10-100000
0000O0OOOO0OT1O0-1200T00
0 0000O0OOOGOGOO0OOT10-10
L000000000000010~1_

Comparatively, the most known transform which has
been applied to many areas including logic synthesis and
optimization is Walsh-Hadamard transform {2]-[4], {7].

Similarly, the new arithmetic-Haar transform can also be
used for the logic design.

Example 2 Consider a 4-variable function f1(z1, z2, z3,
z4) = .(3,5,6,7,11,12,13,14,15). Using the gen-
eralized arithmetic-Haar transform in Example 1 and
Walsh-Hadamard transform for f;, the correspond-
ing arithmetic-Haar coefficients and Walsh-Hadamard
coefficients can be calculated respectively as follow:

(o‘ [ 0] [o] [ 9]

0 1 0 -3

0 1 0 -3

1 0 1 1

0 0 0 -5

1 0 1 -1

1 1 L -1

o IRESE Y A S R
AH; (@) x g1 =3] o (E’l[l —1]) “lo|716| -1
0 -1 0 -1

0 -1 0 -1

1 0 1 -1

1 0 1 1

1 -1 1 1

1 0 1 1

1] | o 1] | 1

Using Eqgs. 4 and 5 the corresponding arithmetic-Haar
expansion for the function fi is:
fi = %[1‘2 + z4 + 2122 — T1Z2%4 — T1Z2x4(1l — 2x3) —
T179%4(1 — 2x3) — T1ZTax4(1 — 2133)].

From the Walsh-Hadamard coefficients calculated above,
the corresponding Walsh-Hadamard polynomial expan-
sion for the function f; is:
fi=%[9—3(1 —2z4) — 3(1 - 223) + (L — 223)(1 ~ 224) —
5(1—2xz5) — (1 —222)(1 — 2z4) — (1 — 2z2)(1 — 223) + 3(1 —
2z2)(1 — 2x3)(1 — 224) — (1 — 2z1) — (1 — 21)(1 — 224) —
(1 = 2z1)(1 — 223) — (1 - 221)(1 — 223)(1 — 224) + (1 —
2¢1)(1 —222) + (1 — 221 )(1 — 222) (1 — 2z4) + (1 — 227 ) (1 -
23}'2)(1 - 2:1}3) + (1 - 2(]71)(1 - 21‘2)(1 - 21‘3)(1 - 2(1}4)]

In this example, it is obvious that the arithmetic-Haar
coefficients have less non-zero coefficients than the Walsh-
Hadamard coefficients, so the arithmetic-Haar transform
and the corresponding polynomial expansion are more effi-
cient than the Walsh-Hadamard transform and its expan-
S1011.

B. Fast Algorithms and Computational Costs

Since the generalized arithmetic-Haar transform has the
recursive relations given in the form of layered Kronecker
matrices, it is possible to derive fast algorithm for the
calculation of the generalized arithmetic-Haar transform
matrices. Similar to the fast Walsh transform and other
known fast transforms, the generalized arithmetic-Haar
transform matrix can be calculated by the products of
the factored matrices. The fast algorithms for the for-
ward and inverse generalized arithmetic-Haar transforms
are presented in the following properties.
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Property 2 The inverse generalized arithmetic-Haar
transform AH1(n) can be factorized as:

A ) = STTE ) (9)

where Ej(n)=

0 \s=1{0 1 1 1] \i=1/0 1[/] .
- for I<i<n— 4+ 1,
0 ® "él 10
1 J=1101

1000
rti—n—-1[1 O\ HO010| fon—i—r~110
for n—r+1<i<n,
(j§1 {0 1D®0100@( P TmD ornortlsi<n
boo1

GEPL LD e

Such fast algorithms will greatly reduce the number of
arithmetic operations as compared to the computation of
generalized arithmetic-Haar transform by the whole ma-

0 P trix. Using this approach, the computational costs for
\'-lk\vl}vv \/ \' all the cases of the generalized arithmetic-Haar transform

A ‘v"’i ‘ are (n + 3)2"~1, where the computational costs mean the
.k\'l”..'iev o o number of additions and subtractions required for the gen-
Q o A o eration of forward and inverse transforms.
NN

7 \%‘V R Example 3 From Property 1, AH3;(4) in Example 1 can
N ° ) P be factorized using (8). Hence, AH3(4) can be expressed
as the product of four matrices as follows:

Fig. 1. Fast butterfly diagram for (a) forward and (b) inverse gen-
eralized arithmetic-Haar transforms, » = 3 and n = 4.
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00000101000000O00O0
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Fig. 2. Fast butterfly diagram for (a) forward and (b) inverse Walsh- 0000000001010000
Hadamard transforms where n = 4. 0000000010-10000O00O0
00000000010-10000

Property 1 The forward generalized arithmetic-Haar 0000000000001 010
transform AH,(n) can be factorized as: 0000000000G00CO010T1
n 0000000000001 0-10

AHT(n)ani(n) 8) (0000000000000 10-1

=1 1 0 00 00O0OO0OO0OCDOTOOODOOOO

01 00O0O0COOOOO0OOOTOGO0OO0

where 0 00010O0O0OO0OO0OOCOOOOO0ODQO
Cé{1‘1>® 11}®Cé11‘q) for i=1, 0000O0100000O0O0O0O0O

=110 1 =1} "\=101 1010000000O0CO0O0O0O0O0

1000 01 0100O0O0OO0O0ODDO0O0OO0OO0OO0OOQO0

r—i[1 0 0010] fr+i—r—2|1 O . 0 000O0OO0OT1O0O0CO0O0OCDO0OCDO0OGO0CO0OOQ
<§1{01D®1100®(]§1 [0 1]) rl<isn 100 0000010000000 0
Di(n)= 0001 0 000O0O0O0GCO0O10O0CO0OO0O0OQO0OQ
ol el 9651 ) RN

=110 1 11 =110 1

______________ forr<i<n. |00 0 0000000000100

- 0 0000OO0GCOO0OC10100O0TO0TO0

@q®@ﬂlﬂ) 0000000O0OT10T10000
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Similarly, the inverse generalized arithmetic-Haar trans-
form AH; %(4) in Example 1 can be also factorized us-
ing (9). From the representation of AH;(4) and AH; ¥(4)
by products of the factored matrices, the corresponding
fast flow diagrams for the calculation of forward and in-
verse generalized arithmetic-Haar transform matrices can
be drawn as shown in Fig. 1 (a) and (b), accordingly. In all
the figures in this article, the solid lines and dotted lines
represent addition and subtraction, respectively. In com-
parison with the generalized arithmetic-Haar transform,
the fast diagrams for calculation of forward and inverse
Walsh-Hadamard transforms for 4-variable functions are
shown in Fig. 2 (a) and (b), accordingly [4], [7]. Compar-
ing Fig. 1 and Fig. 2, the computational advantages of the
generalized arithmetic-Haar transform over known Walsh-
Hadamard transform are clearly seen as the total number
of operations required to perform the new transform are
less than the ones for Walsh-Hadamard transform.

The computational costs of generalized arithmetic-Haar
transform have been discussed in this section, and the
computational costs of Walsh transform and arithmetic
transform are known as n2"*! and n2", respectively.
Consequently, the computational costs of generalized
arithmetic-Haar transform, Walsh transform and arith-
metic transform can be compared in detail. Table I shows
that the computational costs of Walsh and arithmetic
transforms increase considerably when compared with
the generalized arithmetic-Haar transform for higher n.

This shows the computational advantages of general-
ized arithmetic-Haar transform over Walsh and arithmetic
transforms.

IV. CONCLUSION

In this paper, new relations for higher dimensions of gen-
eralized arithmetic-Haar transform are presented. Since
the given equations are very general, they can develop the
whole family of generalized arithmetic-Haar transform,
where each of the member of this family has a little bit
different structure and properties. Such an approach will
allow to use the best arithmetic-Haar transform for a given
logic function in different situations. The fast algorithms
of generalized arithmetic-Haar transform are also intro-
duced in this article, which provide the efficient way to
calculate the spectrum. In comparison with known Walsh
and arithmetic transforms, generalized arithmetic-Haar
transform showed the computational advantages over the
other two transforms.

While the application of generalized arithmetic-Haar
transform in this paper is focused on logic design, the
presented derivations may be also useful for applications
of generalized arithmetic-Haar transform in areas others
than logic design, for example in digital signal and image
processing.
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TABLE 1
COMPARISON OF COMPUTATIONAL COSTS
arithmetic-Haar Walsh arithmetic
n (n+3)2" | n2" T n2"
2 10 16 8
3 24 48 24
4 56 128 64
E) 128 320 160
6 288 768 384
7 640 1792 896
8 1408 4096 2048
9 3072 9216 3608
10 6656 30480 10240
11 14336 45056 22528
12 30720 98304 19152
13 65536 212992 106496
T4 1392964 458752 329376
15 294912 083040 491530
16 622592 2097162 1048576
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