Spatial Texture Analysis: A comparative Study

Maneesha Singh and Sameer Singh
PANN Research, Department of Computer Science,University of Exeter, Exeter, UK

Abstract

In this paper we compare some of the traditional, and
some fairly new techniques of texture analysis on the
MeasTex and VisTex benchmarks to illustrate their
relative abilities. The methods considered include
autocorrelation (ACF), co-occurrence matrices (CM),
edge frequency (EF), Law's masks (LM), run length
(RL), binary stack method (BSM), texture operators
(TO), and texture spectrum (TS). In addition, we
iflustrate the advantage of using feature selection on a
combined set that improves the overall recognition
performance.
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1. Image Texture

The analysis of texture in images provides an
important cue to the recognition of objects. In this
paper, we have two objectives. First, to compare a range
of traditional and fairly new methods of texture analysis
on two popular benchmarks. Second, to investigate the
advantage of selecting the best features from each
technique to generate a feature set that gives better
texture recognition performance.

Texture benchmark evaluation is not a new area of
work, however previous work has either compared too
few algorithms or used very small number of
benchmark images that makes it difficult to generalise
results (see [19] for a criticism of various studies on
performance evaluation). Texture methods used can be
categorised as: statistical, geometrical, structural,
modei-based and signal processing features [21]. Van
Gool et al. [22] and Reed and Buf {16] present a
detailed survey of the various texture methods used in
image analysis studies. Randen and Hus@y [15]
conclude that most studies deal with statistical, model
based and signal processing techniques. Weszka et al.
[24] compared the Fourier spectrum, second order grey
level statistics, co-occurrence statistics and grey level
run length statistics and found the co-occurrence were
the best. Similarly, Ohanian and Dubes [11] compare
Markov Random Field parameters, multichannel
filtering features, fractal based features and co-
occurrence matrices features, and the co-occurrence
method perfermed the best. The same conclusion was
aiso drawn by Conners and Harlow [3] when comparing
run-length difference, grey level difference density and
power spectrum. Buf et al. [1] however report that
several texture features have roughly the same
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performance when evaluating co-occurrence features,
fractal dimension, transform and filter bank features,
number of grey level extrema per unjt area and
curvilinear integration features. Compared to filtering
features [15), co-occurrence based features were found
better as reported by Strand and Taxt [18], however,
some other studies have supported exactly the reverse.
Pichler ¢t al. {13] compare wavelet transforms with
adaptive Gabor filtering feature extraction and report
superior results using Gabor technique. However, the
computational requirements are much larger than
needed for wavelet transform, and in certain
applications accuracy may be compromised for a faster
algorithm. Ojala et al. [12] compared a range of texture
methods using nearest neighbour classifiers. The best
performance was achieved for the grey level difference
method.

This work analyses the performance of eight
popular texture methods on the publicly available
Meastex database {10,19] and Vistex database (23]. The
performance of the linear and ANN classifiers used is
evaluated using leave-one-out aoss-validated method.
The paper is organised as follows. We first present
details of the texture measures for data analysis.
Meastex and Vistex databases are discussed in brief
next followed by the experimental details. The results
are finally discussed for the linear and nearest
neighboour classifiers.

2. Spatial Texture Analysis

The texture extraction algorithins analyse the spatial
distribution of pixels in grey scale images. The differeat
methods capture how coarse or fine a texture is. The
textural character of an image depends on the spatial
size of texture primitives [7}. Large primitives give rise
to coarse texture (e.g. rock surface) and small primitives
give fine texture (e.g. silk surface). The eight feature
extraction methods used here are based on this spatial
element rather than analysing the frequency domain
information of the given images. Their brief description
appears below.

The autocorrelation method is based on finding the
linear spatial relationships between primitives. If the
primitives are large, the function decreases siowly with
increasing distance whereas it decreases rapidly if
texture consists of small primitives. However, if the
primitives are periodic, then the autocorrelation
increases and decreases periodically with distance. The
set of autocorrelation coefficients are computed by
estimating the relationship between all pixel pairs f(x,y)



and f(x+p, y+¢), where the upper limit to the values of p
and g is set by the user. The co-gccurrence approach is
based on the joint probability distribution of pixels in an
image [4]. A co-occurrence matrix is the joint
probability occurrence of grey levels i and j for two
pixels with a defined spatial relationship in an image.
The spatial relationship is defined in terms of distance d
and angle @ Thus texture directionality can be analysed
by comparing spread measures of co-occurrence
matrices constructed at various distances 4. From co-
occurrence matrices, a variety of features may be
extracted. The original investigation into co-occurrence
features was pioneered by Haralick et al. {5]. From each
matrix, 20 statistical measures are extracted. For edge
Jrequency method, we can compute the gradient
difference between a pixel fix,y) and its neighbours at a
distance d. For a given value of distance, the gradient
differences can be summed up over the whole image.
For diffcrent values of o (in our case Kd<50), we
obtain differemt feature measurements for the same
image. For Law’s method, a total of 25 masks are
convolved with the image to detect different featurcs
such as linear elements, rippies, etc. These masks have
been proposed by Law’s [8]. We compute five
amplitude features for each convolution, namely mean,
standard deviation, skewness, kurtosis, and energy
measurement. Finally, for primitive length features, we
evaluate the number of strings of pixels that have the
same grey level. Coarse textures are represented by a
large number of neighbouring pixels with the same grey
level, whereas a small number represents fine texture. A
primitive is a continuous set of maximum number of
pixels in the same direction that have the same grey
level. Each primitive is defined by its grey level, length
and direction. Five statistical features defining the
characteristics of these primitives are used as our
features. The detailed algorithms for these methods are
presented by Sonka et al. [20] and Prau[14].

In addition to the above well-known approaches to
texture classification, we consider three new approaches
including binary stack method, texture operators and
texture spectrum. Chen et al. {2] introduced the use of
binary stacks for texture analysis. For a total of L grey
levels, L binary images are generated by thresholding
the original image at each grey-level. The resulting
stack of binary images is analysed by grouping all L
and Ovalued pixels into connected regions. For each
connected region, measures of irregularity or circularity
are computed and weighted based on the total size of
connected components. The characteristics computed
include the number of lconnected regions, number of
O-connected regions and two weighted irregularity
measures. For these four characteristics, four statistical
measures of range and spread are calculated as texture
features. Manian et al. [9) presented a new algorithm
for texture classification based on logical operators.
These operators are based on order-2 elementary
matrices whose building blocks are numbers (b, 1, and —
1 and matrices of order Ixl. These matrices are
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operated on by operators such as row-wise join,
column -wise join, etc. A total of six best operators are
used and convolved with images to get texture features.
Features are computed using zonakfiltering using zonal
masks that are applied to the standard deviation matrix.
Features obtained include horizontal and vertical slit
features, ring feature, circular feature and sector feature.
He and Wang([6] proposed the use of texture spectrum
for extracting texture features. If an image can be
considered to comprise of small texture units, then the
frequency distribution of these texture units is a texture
spectrum. The features extracted include black-white
symmetry, geometric symmetry, degree of direction,
orientation features and central symmetry,

3. Texture Benchmarks

MeasTex 1s a publicly available text ure benchmark.
Each image has a size of 512x512 pixels and is
distributed in raw PGM format. We split each image
into 16 sub-images to increase the number of samples
available for each class, The textures are available for
classes asphalt (64 samples), concrete (192 samples),
grass {288 samples) and rock (400 samples). Images of
type ‘miscellancous’ have been excluded from this
study. Finally we get a total of 944 images from which
texture features are extracted.

All images in the Vision Texture (VisTex) database
are stored as raw ppm (P6} files with a resolution of
512x512 pixels. The original VisTex database consists
of 19 classes. Some of these classes have less than 5
sample images that have been removed from our
analysis. Each original image was divided into 4 images
to increase the number of available samples. We are
finally left with 7 classes that are: bark (36 samples),
fabric (80 samples), food (48 samples), metal (24
samples), sand (28 samples), tile (32 samples), and
water (32 samples). Examples images of the MeasTex
and VisTex benchmarks are shown in Figure 1.

The number of features extracted from each
method are as follows: autocorrelation (99), co-
occurrence matrices (20), edge frequency (50), Law’s
masks (125), run length (5), binary stack method (17),
texture operators (30), and texture spectrum (7). For
both MeasTex and VisTex, the pricipal component plots
show strong overlaps across different classes. For each
set of features, the principal components with eigen-
values greater than one are wed for further analysis.
This allows us a more compact representation of data
where features which capture the maximum variability
of the overall set are used.

4. Experiments and Results

In this section we present the experimental details
of MeaTex and VisTex data analysis. There are total of
944 samples for MeasTex data and 280 samples for
VisTex data. We use leave-one-out method of cross-
validation for exhaustively testing the data. In this



method, for ¥ samples, a total of N trials are conducted.
In each trial a sample is taken out from the data set and
kept for testing and the others are used for training. In
each trial, therefore, we have a different set of training
data and a different test data. The recognition
performance is averaged across all trials. This
methodology is superior to random partitioning of data
to generate training and test set as the resultant
performance of the system may not reflect its true
ability for texture recognition.

MeasTex and VisTex Results

The results of MeasTex analysis are shown in
Table 1. Clearly, the kNN classifier is far better as
classification compared to the linear classifier.
Although the binary stack method is superior using the
linear classifier with respect to its nearest competing
method, texture operators, we find that using the nearest
neighbour classifier, the texture operator method gives
the best performance. Both of these methods are better
than others considered here. Except for co-occurrence
matrices result, there is a wide margin in performance
between these leading and other methods.

Texture [ LDA [ kNN [ NN | £NN | &ANNT kNN
Method =1 k=3 | k=5 | k=T | k=9
ACF | 761 793782 [ 7741775 788
CM 792 [ 835 [ 841 [ 838 [ 829 [ 813
EF 635 69.0] 65.0 [ 693 | 69.7| 713
LM 228 | 633|678 699 | 709 | 69.8
RL 431 | 453 | 46.1 | 465 | 51.1 } 51.8
BSM 82819291 931 ([ 9301919 912
TO 627 | 94.6 | 936 | 941 [ 936 | 94.0
TS 61.0 { 683 [ 673 [ 679 [ 685 | 68.1
Table 1. MeasTex Data Analysis: Average
Leave-one-Out Recognition Rates

Texture § LDA | kNN | ANN | ANN | ANN | ANN
Method =1 | k=1 | =1L =1L k=L
ACF 72.1 |} 87.1 | 786 | 764 | 664 | 65.0
CM 739 | 757 1 7139 1 679 | 67.1 | 625
EF 53.2 | 693 ] 704 | 67.1 | 65.7 | 62.9
LM 68.8 | 507 | 550 | 532 | 56.1 | 57.8
RL 348 | 36.8 | 361 | 36.1 | 38.6 | 40.0
BSM 779 | 782 | 73.6 | 68.6 | 66.1 | 63.6
TO 443 | 932 | 896 | 896 | 900 | 90.0
TS 400 | 3791 372 | 357 ] 33.5] 336
Table 2. VisTex Data Analysis: Average Leave-
one-Out Recognition Rates

On VisTex analysis shown in Table 2, as before the
binary stack method is better than the texture operator
method out of the two leading methods but the reverse
becomes true on the use of nearest neighbour classifier.
In this experiment, we get three clusters of
performance. The leading method (texture operator),
mediocre  performances (binary stack method,
autocorrelation, co-occurrence matrices, edge
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frequency, Law’s masks), and poor performances (run
length, texture spectrum}. For the texiure operator
method of Manian et al.[?], the best performances of
94.6% and 93.2% correct recognition are very
impressive compared to previously reported results on
these benchmarks including our own reports [17].

Selection

Combined-data and Feature

Approach

The above comparative study helps us understand
the relative strengths of eight texture analysis methods
on two publicly available benchmarks. We next pool
together the data from all texture feature sets and do
feature selection based on those features that maximise
the Mahalanobis distance. The sequential forward
selection approach is followed.

Figure 2 shows the performance of the MeasTex
and VisTex feature selection. A total of 48 features are
pooled together based on the selected principal
components of each method. On the combined set
without feature selection, we get an overall recognition
rate of 84.3% for MeasTex and 83.9% for VisTex. On
MeasTex database, Sequential Forward Selection aimed
at maximising the Mahalanobis metric does not
improve the performance against the best single method
(we get an overall best result of 34.2% correct by using
10 selected features from the pooled features, whereas
in table 1 we found texture operator method to yield the
best recognition rate of 94.6% which is stightly higher).
It is interesting to note which 10 features from the
pooled feature set were considered the best. These
includes features from ACF(2}, CM(3), EF(1), BSM(2)
and TO(2). Next we consider feature selection for
VisTex benchmark. We get a best recognition rate of
97.2% with 15 selected features which improves the
previous best of 93.2% correct recognition using texture
operators alone, It is interesting once more to note the
composition of the selected !5 features. The features
from the following algorithms are selected: ACF(2),
CM(3}, LM(2), EF(2), BSM(4), TO(2). It is interesting
to note in both cases, run length features or texture
spectrum features were note considered important.
Also, the contribution of texture operator features in the
VisTex best 15 features is not significant and a range of
methods have balanced contribution.

5. Conclusion

We find that for both Meastex and Vistex data
excellent results are obtained with the binary stack
method and the texture operator method. The other
feature extraction methods co-occurrence matrices,
autocorrelation, Law’s masks and edge frequency give
similar but slightly inferior results. The run-length and
texture spectrum performunces are considerably poor.
The performance of the linear classifier is fairly good
but it improves considerably when using the nearest



neighbour classifier. Also, we find that feature selection
on pooled data gives the overall best performance.
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