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Abstract

The_ fractional Fourier transform (FRFT) is one-
parametric generalization of the classical Fourier trans-
form. FRFT was introduced in eighties and found a lot
of applications in signal processing. The time and spec-
tral domains are both the special cases of the fractional
Fourier domain. They correspond to the Oth and st frac-
tional Fourier domains, respectively. In this paper, we in-
troduce the classical and quantum fractional Haar~Wavelet
transforms and develop corresponding fast algorithms.

1. Introduction

The singular-value decomposition (SVD) and eigen—
decomposition (ED) is a tool of both practical and theo-
retical importance in digital signal processing.. The SVD
an ED transforms are applicable to many image processing
problems such as image coding and restoration, data com-
pression, and power spectrum analysis. They are defined
following way.

Let M = [M(3 )]ﬁ ;o be an arbitrary discrete nonsin-
gular (N x N')-transform. We form two product M ¢ M and
MM, where “t” is the transpose symbol. Last matrices
are symmetric and hence they have eigen~decompositions:
MMt = VAVH, MIM = WAWT, where A :=
diag{)o, A1, ..., An—1} and + denote the Hermitian con-
jugate. Then, it is well known that we can express M as the
singular value decomposition M = VDW * where
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are matrices of eigen—vectors of MM¢ and MM trans-
forms, respectively, and D := VA. Ifag,...,on_y are an
arbitrary real numbers then

Moo=t = VDG, .., AN W (D)
is called the multi~parametric fractional M-transform. 1f
a; =a, Vi =0,1,...,N — 1 then this transform is called
[fractional M—transform.

In 1937, Gondon wrote a paper called "Immersion of
the Fourier transform in a continuous group of functional
transformation” (2]. In 1961, Bargmann extended the frac-
tional Fourier transform in his paper [1], in which he gave
definition of the fractional Fourier transform, one based
on Hermite polynomials as an integral transformation. If
H,(v/2xt) is a Hermite polynomial of order n then func-
tions

9l/4 o
¥,(t) = = H,,(V2rt) exp(—nt? 2)
forn =0,1,2, ... are eigen~functions of the Fourier trans-
form
1 [t -
Fl0,(1)] = 2—/ U, ()™ dt = A, T, (1),
T J—oo

" with )\, = i" being the eigen—value corresponding to the
nth eigen—function. They form an orthogonal set of func-
tions on the interval (—oo, 00) with respect to weight func-
tion e™"
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According to Bargmann the fractional Fourier transform
F* is defined through its the eigen—funétions by

Fo = [F¥w,1)] [Zv (@) ( )]
n=0
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where F*(w, t) is the kernel of the fractional Fourier trans-
form. Obviously, a functions ¥, (t) are eigen—functions
of the fractional Fourier transform F *[¥,,(t)] = AZW,.(t)
corresponding to the nth eigen—values A3, n = 0,1,2, ...
Of course for @ = 1 Fl{w, t) = e/*t.

In 1980, Namias reinvented the fractional Fourier trans-
form again in his paper (17]. This approach was ex-
tended by McBride and Kerr [16]. The fractional Fourier
transform was restricted to pure mathematical purposes.
Very few publications appeared. Then Mendlovic and
Ozaktas introduced the fractional Fourier transform into
the field of optics [18] in 1993. Afterwards, Lohmann
[15] reinvented the fractional Fourier transform based on
the Wigner—distribution function and opened the fractional
Fourier transform to bulk—optics applications. In the series
of papers [10],[19]-[22] authors developed the fast algo-
rithms for a wide class of classical fractional transforms.

In this paper, we introduce the classical and quan-
tum fractional Haar-Wavelet transforms and develop cor-
responding fast classical and quantum algorithms.

2. Classical Haar—Wavelet transforms

The Haar-Wavelet transform can be defined from the
Haar functions and has the following factorization [9]:

HW,. = | (72 ® Lnes) © Ion i | o, )

i=1

where F, = @ 1 _i

transform, where II»» is the perfect shuffle permutation
matrix [5]. Classical description of I~ can be given
by describing its effect on a given vector. If v =
(vo, V1, .., V2n—2,Von 1 ) is a 27D vector, then the vector
w = I3 v is obtained by splitting v in half and the shuf-
fling the top and bottom halves of the deck. Alternatively, a
description of the matrix [Tz~ , in terms of its elements IT;5,

is the Walsh (2 x 2)-

fori,j =0,1,...,2™ — 1, can be given as

1, ifj=i/2and iiseven,orif j = L 4+ 277!
and 4 is odd,
0, otherwise.

Hij =

C))
The short description of II»» can be given by the
left cyclic bit-shift of i-indexes v, _y in_s,...i1.i0
Hon (fnet11fa—2, .-, %1,%) = (f0,n—1,9n=2,.--,%1)-
Note, that IT4,, performs the right cyclic bit-shift operation,
i.e. H%n (in—lyin—Za e 7i17i0) = (Z’n,Q, .o ,’L‘L,Z'(),Z'n_l).

The perfect shuffle permutation matrix IT,- has the fol-
lowing factorization [5]:

n
I = H(IQVL—\' QM ® I-Zi-—Z),
i=2
where Il is the “bit swap” operator, i.c., Il4(i1,d0) =
(40, 1)

There are two families of generalized Haar transforms
[71-[14]. The first family (discrete controlled) has the fol-
lowing form:

ngkl,kg,...,kﬂ) -

= ﬁ [([zki RF2® I?"-i) (&) Izn_zn—i+1—ki}n2n, )
i=1

where the set of numbers (k1, k2, . . . , kn) marks (and con-
trols) the generalized Haar transforms, moreover,0 < k; <
0,0 < ko <1, ,0 <.k, < n— 1. In particu-
lar, Hég’o""‘o) = Hjn is the standard Haar transform and
Hgg‘l """ ") = Wan is the Walsh transform.

The second family (discrete and continuous controlled)
contains the multi—parametric Haar-Wavelet transforms of
the following form: »

(K12, kn)
HW (o on) =

ﬁ[(fzk ®CSa(p) D Ipn1) DIy yn-s1-4,Jllan, (6)

Cos @
sin @

sin ¢

where CS7(p;) := [ —cosp

} . Obviously,
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= Rot, (g) D, (1, -1)Rot; (-‘;3) D
where
" cos¥ sin¥% 1
R0t2(§)= y Dg(l,—1)=
—sin¥ cos¥% -1
o ) 11
— V2 -
In pa:mcular, Fo= 325 [ 1 -1 ] =
cos§ sing 1 cosg —sing
—sing cos¥ —1]|sin}g cos §
T T
= (g) a, -1)Rot2 (g) ®)
where cos § = ——"2;‘/5 and sin 3= 32;@5 .
Obviously, (o] g‘“ a2) (p) =
cos £ sin [ eI cosf —sin¥
—sin¥ cos ¥ e || sin?  cos¥

= Rot, <:—S€> DQ(CZH’jO(l s 6”ja2)R012 (g) , 9

2
and ) ' ]-'2(""0‘2) =
cos ¥ sin% ez’”"-’1 cosE —sink
- sinf cos% e™e2 |Ising  cosg N

= Rot, ( 8) Dg( 2ries o792 \Riot, (g) (10)

are the fractional CS, and Walsh-(2 x 2)-transforms.

3. Classical fractional Haar-Wavelet trans-
forms

The substitution of (9) into (6) gives the SVD of Haar—
Wavelet transforms
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Now we can define two types of classical Haar~Wavelet
transforms. )

1. The 2n-parametric fractional Haar—Wavelet trans-
forms with a separable diagonal matrix

HW k2 k;,))(al 1,01,2; .-

(¢1.92.- 7a1,1zxa2,n) =

(1 0 Rots (£) & 1) @ ]
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In particular, '
. HW(Z’ihkz ,,,,, k")(a1,1,ai,27 e QLn, Qo) =
n - .
1 H [(I.zk" ®nga1'i ,az'i)(g) ®Izn—i) @I2n 72n7i+1-k;]H2n.
i=1
(16)
and

HWon(a1,5,012, ..+, 01,0, Q20) =

n . - R
N . ™
-1I [csg"‘»““ﬂ-') (g) ® Ipns @IQ—H_%M]HQH an
i=1 .
are classical fractional Haar-Wavelet transform associated
with ng‘:;"’”’-“’k"’ and FHIW 2., respectively. We see
that the fractional Haar—Wavelet transforms (15)-(17) have

- the Haar-like fast algorithms.
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2. The 2" —parametric fractional Walsh transform with a
non-separable diagonal matrix

HW(kl,kz,.--.kn)

(p1.02,.-.0n) NIANVES

(ag,al,...

n

=11 [(Izk‘. ® Roty (%) ® 12n_i) ® 12,‘_2"_;“,,‘,,.] x

i=1
X [DQn(ao,al,. . .,azn_l)] X
< T [t 67582 (£) ©Tav-) ©1T0 gn1 T,
i=1

18)
where Dan (o, g, ..., an—1) is a diagonal (27 x 27)—

matrix.

4 Quar'ltum' fractional Haar—Wavelet trans-
form

All operations in quantum computation are realized by
means of transformations on the QU-BIT’s contained in a
quantum register. The possible transformations a quantum
computer can carry out are the elements of unitary group
U(C?"). A quantum logic gate is an elementary quantum
computing device which performs a fixed unitary transfor-
mation on selected QU-BIT’s in a fixed period of time. A
transformation gate takes an input quantum state and pro-
duces a modified output quantum state. The gates have the
same number of inputs as outputs, and a gate of n inputs
catries a unitary transformation of the group/(C?"), i.e.,a
generalized rotation in the Hilbert space C?¥ . To study the
complexity of performing unitary transformations on QU-
2"REG, we introduce two types of quantum logic gates [4]~
[6].[23]:

o Local unitary operations on k—~th QU-BIT are matrices
of the form U = Iok—r @ Uy ® Ipn—x, where Us is an
element of the unitary group U(C?) of (2 x 2)-matrices.
For these operations we have

I:Izi-l ® UQ R Izn—i] |ql> ®R...Q l(h> ® L. !qn> =

=lg)®...® [U?i%’)] @l ®lgn)-

o For any unitary [2"* x 2"~*]—transformation Ujn—x
we define the n—BIT transformation U, by

ULF := Iy gt ® Ugn—s. (20)

This operator is called the (1, %)~controlled Usn—operator,
where Uj:® acts as identity transforms in the subspace
C2"~2""" and as Uyn-« in the second subspace C2°, if

19

q1,92,---,9 = 1 and ggt1,...,qn 96 0. Here CZ" =
C?" """ ¢ " In particular, if Uya—x is the tensor prod-
uctof n—k (2x2)-matrices Usn—r := Uy py1 ® Uz g2 ®
- @ Uspp, then

Ik
[U2,k+1 ® - ® U2,n]2ﬂ %

x(la) @ .. @ o) ®laer) @ ... ® lgn)] =
lan®. . 8le) ® (U E laerd| ®. 0 [Us Flaa)] . @D
If Ugn-x 1= Uz(f;)_,c = Ipi-1 ® U ® Iyn—r-;, then
Tk
[Izi—1®U2®Izn—k—iL" [lQ1>®»-~®|Qk+j)®~..®lqn)] =

=la)®...0 [UFlgus)] @ 0l). @

e For any diagonal unitary (2 x 2)—transformation
Dgt“""t"“’o) we define the (2" x 2")~transformation by

Dgtnz,,,.,tn_l,o)z Dzﬁ(ezj'na(,l__,,\,ﬂ_“o,’ ejna(gl‘,_,‘,“_x_”) _

This operator is called the (¢;,. .. ,tn—1,0)~controlled op-

erator. Obviously,

QD9

1 1 .
t1,eerbn—1.0
= H'-;H[I(m.,,t.,_l,o)@Dg" ' )@I(El ,,,,, 2"1_1,0)]
t1=0 tp-1=0
(24)

We shall use a standard graphical notation for quantum
circuits. [41-{6],[23] In this notation the tensor structure of
the Hilbert space C¥" = C? @ C? ® ... ® C2 is reflected
by drawing n parallel lines (=quantum wires) each of which
represents one tensor component C2. A box sitting just on

one wire denotes a local transformation Uéi) whereas the

(1, %)~controlled Uzl,;’ik—gate occupies all n wires: k for the
control and n — & for the transformation (see Fig. 1).

The quantum network (gate array)is a quantum comput-
ing device consisting of quantum logic gates whose compu-
tational steps are synchronised in time. The quantum net-
work is the natural quantum generalization of the acyclic
combinatorial logic circuits studied in conventional compu-
tational complexity theory. The output of some of the gates
are connected by wires to the input of others and they inter-
connected without fanout or feedback by quantum wires. A
quantum computer will be viewed here as a quantum net-
work (or a family of quantum networks). Quantum compu-
tation is defined as unitary evolution of the network which
takes its initial state “input” into some final state “output”.

In order to realize quantum fast fractional Haar-Wavelet
transforms, we introduce
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e input “time” quantum register

QU-2"REG(]t)) = LIF1)|I%2) - Jie)

o output “frequency” quantum register

QU-2"REG(jw)) = [} - )

According to (19), (20) we can introduce quantum counter-
parts of transforms (12), (14), (15) and (18)

Q’HW%,, = Inl [ngl,iaf’?,i]zj_l’n)’
i=1

e = i oo (£)]

i=1

o =Tl [ (5)] e

i=1
oUW}, = [Qvan] [l 0] [owan .

In the language of quantum circuits, these transforms are
presented in Fig. 2 and Fig. 3, respectively.
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Figure 1. Quantum gates for a) UQ(f), b) (1, k)~controlled Ugl,‘,'i,c—operator, ©) [Uéf Qe ® Uzl—ﬂ and
d) Q’Dgt,.1 Farate) respectively
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Figure 3. Quantum fast 2"—parametric Haar-Wavelet transform QHW,., if [Uz]5 (: C)S2 ,
T i+kn i
or left QVs. (right QW,- ) eigen—transforms, if [Uz]gi"l) = [Rotz (%) ] Jforn =4
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Figure 3. Quantum fast 2"-parametric Haar-Wavelet transform Q?—[Wé‘i“’m """ oz "), n=4
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