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Abstract—In this paper, a new algorithm for texture classifica-
tion based on logical operators is presented. Operators constructed
from logical building blocks are convolved with texture images. An
optimal set of six operators are selected based on their texture dis-
crimination ability. The responses are then converted to standard
deviation matrices computed over a sliding window. Zonal sam-
pling features are computed from these matrices. A feature selec-
tion process is applied and the new set of features are used for tex-
ture classification. Classification of several natural and synthetic
texture images are presented demonstrating the excellent perfor-
mance of the logical operator method. The computational superi-
ority and classification accuracy of the algorithm is demonstrated
by comparison with other popular methods. Experiments with dif-
ferent classifiers and feature normalization are also presented. The
Euclidean distance classifier is found to perform best with this algo-
rithm. The algorithm involves only convolutions and simple arith-
metic in the various stages which allows faster implementations.
The algorithm is applicable to different types of classification prob-
lems which is demonstrated by segmentation of remote sensing im-
ages, compressed and reconstructed images and industrial images.

Index Terms—Image classification, logical operators, texture
analysis, zonal filtering.

I. INTRODUCTION

T EXTURE classification is an image processing technique
by which different regions of an image are identified

based on texture properties. This process plays an important
role in many industrial, biomedical and remote sensing appli-
cations. Early work utilized statistical and structural methods
for texture feature extraction [1]–[4]. Gaussian Markov random
field (GMRF) and Gibbs distribution texture models were
developed and used for texture recognition [5], [6]. Power
spectral methods [1] using the Fourier spectrum have also been
used. DCT, Walsh–Hadamard, and DHT have been used for
recognition of two-dimensional binary patterns [7]. One of the
major developments recently in texture segmentation has been
the use of multiresolution and multichannel descriptions [8]
of the texture images. This description provides information
about the image contained in ever smaller regions of the
frequency domain, and thus provides a powerful tool for the
discrimination of similar textures. The use of scale-space-fil-
tering is equivalent to a decomposition of the image in terms
of wavelets. Several wavelet transform algorithms such as the
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pyramidal and tree structured wavelet transforms [9]–[12],
Gabor filters [13], and the Haar [14] basis functions have been
used for multiresolution and multichannel texture classifica-
tion/segmentation. Laws [15] proposed a simple scheme which
used local linear transformations and energy computation to
extract texture features. This simple scheme often gives good
results but is not consistent in performance. The statistical
methods share one common weakness, of primarily focusing
on the coupling between image pixels on a single scale and are
also computationally intensive processes.

Logical operators have been used for Boolean analysis,
minimization, spectral layered network decomposition, spectral
translation synthesis, image coding, cryptography and commu-
nication. Logical systems considered in this work are logical
Hadamard transform, adding and arithmetic transforms and
logical operators such as equivalence, negation, and conjunc-
tion. A family of all essential RADIX-2 addition/subtraction
transforms [16] has been developed. One of it is the well known
Hadamard transform, the other is called arithmetic trans-
form when applied to binary vectors. The third is the adding
transform. The arithmetic and adding transforms are based
on addition/subtraction of real numbers and are counterparts
of generalized Reed Muller canonical expressions based on
modulo-2 algebra. Fast computer implementation of these two
transforms for logic design is presented in [17], and ways of
generation of forward and inverse fast transform for orthogonal
arithmetic and adding transform have been developed [18].
In [19], a new algorithm for computing Hadamard transform
is presented. For simplicity, all the above logical systems are
called operators in this work. Logical operators have been
used recently for image compression [20]. As pointed out,
fast algorithms [21] are already available for implementation
of these schemes. But, surprisingly their usefulness in image
classification has not been exploited. This is the first paper in
open literature that applies the logical systems for applications
other than in logical synthesis. This work is a unique attempt
in the following respects:

1) construction of a texture feature space using logical oper-
ators;

2) the algorithm is computationally attractive with excellent
performance over a wide variety of images.

This paper is organized as follows. Logical operators are de-
scribed in Section II. In Section III, texture analysis using the
operators is explained and the algorithm for texture classifica-
tion is presented. In Section IV experimental results of clas-
sifying different types of images and comparison with other
methods are presented. Section V presents application of the al-
gorithm to segmentation problems. Finally, Section VI gives the
conclusions and a few pointers on future directions.

1057–7149/00$10.00 © 2000 IEEE



1694 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 10, OCTOBER 2000

Fig. 1. Basic operator generation matrices.

II. L OGICAL OPERATORS

The logical operators considered here are order-2 elementary
matrices. The building blocks for defining these matrices are 0,
1, 1, matrices of order . The matrices can be formed by
defining the following operations on these basic building blocks.
This process of generation of order-2 matrices and operations
have been described in [16].

A row-wise join (RWJ) or concatenation of a matrix of
order and a matrix of order is the partitioned
matrix of order 2 , such that its first rows are exactly
the same as the rows of matrixand the rows from to
belong to matrix . When this operation is applied to the above
order matrices for all possible concatenations, there are
nine different matrices of order , which are shown in Fig. 1.

A column-wise join(CWJ) or concatenation of a matrixof
order and a matrix of order is the partitioned
matrix of order , such that its first columns are exactly
the same as the columns of matrix and the columns from

to belong to matrix . When this operation is applied
to the order matrices shown in Fig. 1, for all possible
concatenations, there are 81 different matrices of order ,
some of which are shown in Fig. 2.

Generation of Higher Order Matrices:The Walsh functions
in Hadamard order are generated when the standard Kronecker
product of the elementary Hadamard matrix is performed
with itself. Similarly, the arithmetic and adding operator ma-
trices of higher orders are obtained by successive application of
the Kronecker product to the core matrices shown in Fig. 2(b)
and (c). When all these elementary matrices are denoted by the
same symbol , then higher order matrices are given by

(1)

where

exponent means the application of the Kronecker
product times;
order of the transform matrix;

.

1) Logical Hadamard Operator:The logical Hadamard op-
erator is nothing but the Walsh Hadamard transform (WHT) re-
ferred to in the literature [22]. Walsh functions and transforms
[23] are important analytical tools for signal processing and
have wide applications in digital communications, digital image
processing, statistical analysis as well as in digital logic de-
sign. Because Walsh transforms are binary related, their genera-
tion and implementation is fairly simple. Global Walsh function
generators have been built that produce three different ordered
outputs, that is, natural (known as Hadamard), strict sequency
(known as Walsh or Walsh–Karczmarz), and dyadic (known as
Paley). These three Walsh transforms are symmetric, i.e., the
inverse transform for each of these is the same as the forward
transform with the accuracy to a constant coefficient. Besides
these three symmetric Walsh transform there exists a nonsym-
metric one, known as Radamacher–Walsh transform. In order

to characterize Walsh functions, sequency is used which can be
defined as sign changes per unit interval

for even

for odd
(2)

where stands for thenumber of zero crossings. Sequency
can be thought of as a generalization of frequency as it can
be applied to functions whose zero-crossings may occur at ir-
regular intervals and which may be aperiodic. The definition
of sequency can be modified to include the discrete functions.
Specifically, if the number of sign changes of a discrete function
is defined as when is even and when is odd.

The choice of ordering depends on the particular applica-
tion. However, only the Hadamard–Walsh matrix [24] has the
recursive Kronecker product structure, and for this reason it is
preferred over other possible variants of the Walsh transforms,
like Walsh–Karczmarz, Radamacher–Walsh, and Walsh–Paley
transforms. The WHT is based on a complete orthonormal set
of rectangular functions known as Walsh functions. Its order-8
matrix is given by

Sequency

(3)

2) Arithmetic Operator: In many of the applications of the
arithmetic operator , the values of only some spectral coef-
ficients are needed. An efficient way [25] has been developed for
calculating the transform, which has the ability to evaluate only
some chosen spectral coefficients. Its order-8 matrix is given by

(4)

3) Adding Operator: Just like Arithmetic operator, Adding
operator can also be expanded to higher order matrix
using Kronecker expansion. Its order-8 matrix is given by

(5)
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Fig. 2. Examples of generated operators (a) Hadamard, (b) adding, (c) arithmetic, (d) equivalence, (e) conjunction, and (f) disjunction.

4) Equivalence Operator “ ”: The equivalence operator
[20] is true if and have identical values as shown in Fig. 3.

5) Conjunction Operator “ ”: The conjunction of and ,
, is true if and are both true and is false otherwise. The

conjunction operation is the same as the “AND” operation. It is
a Boolean function of two arguments

where (6)

Conjunction operator [20], although not orthogonal, has been
included because of its unique characteristic of retaining the
original coefficients. If there is any information in the original
image that can be used undistorted or before being transformed,
then it can be exploited through this operator.

6) Disjunction Operator “ ”: The disjunction of and ,
, is false if and are both false and is true otherwise. The

disjunction operation is the same as the “OR.” Disjunction [20]
is a Boolean function of two arguments:

where (7)

7) Negation Operator “”: The negation [20] of , is
false if is true, and true if is false. Negation operation per-
forms the function of a “NOT.” The equivalence, conjunction,
disjunction and negation operators are summarized in Fig. 3.

Fig. 3. Equivalence, conjunction, disjunction, and negation operations.

III. T EXTURE ANALYSIS AND CLASSIFICAION WITH LOGICAL

OPERATORS

The operators described in Section II can be exploited for
their characteristic to relate texture elements or primitives in a
logical context. Their ability to extract texture features and the
algorithm for texture classification are presented below.

A. Texture Analysis

The operator masks are first convolved with texture regions

(8)

where is the image function and is one of the set of logical
operators. The response of the texture images to the six opera-
tors given in (8) is used to compute a standard deviation matrix
using a sliding window

(9)

where is the size of the scanning window which is
and it slides pixel by pixel. is the mean value of

the window. The center pixel is assigned the standard deviation
value. In order to avoid loosing boundary information the im-
ages are padded with zeros on all sides. Twelve images from
the Brodatz album [26] with typical texture characteristics are



1696 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 10, OCTOBER 2000

Fig. 4. Texture samples (a) coarseness, (b) contrast, (c) randomness, and (d)
texture element size.

used (see Fig. 4). The operators in Fig. 2 are convolved with the
texture samples of size , as per (8) which constitutes a
filtering operation. The standard deviation matrix for each op-
erator response is computed as in (9), which can be seen as a
smoothing operation. Defineto be:

(10)

for any matrix , (10) is a scaling of the vector norm

(11)

From the scaled norm values the properties of the operators
can be examined. It is known that the Hadamard operators have
good energy compaction properties. It can also be verified that
they yield maximum discrimination for coarse and fine textures
as can be seen from the values of (11) [see Fig. 5(a)] for the four
Hadamard operators (H1–H4) for textures d28 and d29 [shown
on left and right of Fig. 4(a)]. The values have been normalized,
1 represents maximum coarseness. The adding and arithmetic
operators (AD1–AD5 and AR1–AR9) extract contrast proper-
ties from the textures with a value close to 1 for high contrast
textures. High and low contrast textures d21 and d38 are shown
in the left and right of Fig. 4(b), respectively. The corresponding
values are plotted in Fig. 5(b) which shows that highest separa-
tion is obtained with operators AD1 and AR5. The conjunction
and disjunction operators (CN1–CN2 and DN1–DN2) extract
randomness information from the texture and have higher values
close to 1 for irregular or random textures [d4 and d9 shown in
right top and bottom of Fig. 4(c)], and lesser values for regular
and periodic textures [d6 and d34 shown in left top and bottom
of Fig. 4(c)]. As seen from the plot in Fig. 5(c), CN1 and DN1
operators yield maximum separability. The equivalence opera-
tors (EQ1–EQ3) perform an averaging operation over the tex-
tured image, and give a cue of the size of the texture element
yielding higher values for smaller elements [textures d105 and

Fig. 5. Operator response plots.

Fig. 6. Selected operators for texture classification.

d16 shown in left top and bottom of Fig. 4(d)] and lesser values
for larger texture structures [textures d103 and d74 shown in
right top and bottom of Fig. 4(d)]. The graph in Fig. 5(d) shows
maximum discrimination with the equivalence operator EQ3.
None of the operators considered here capture directionality.
From this analysis, one operator from each class of logical op-
erator that gives the maximum separability among textures is
chosen as the most powerful among the rest. The final set of six
operators (H2, AD1, AR5, EQ3, CN1, and DN1) is shown in
Fig. 6.
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Fig. 7. (a) French canvas texture sample and (b)SD matrix.

B. Algorithm for Texture Classification

1) Feature Extraction Process:The texture samples are con-
volved with the operators as in (8). The standard deviation ma-
trix for each response is computed as in (9). All the operators are
of size , which is adequate in generating an efficient fea-
ture space. Features are extracted by zonal-filtering using zonal
masks [15], [27] which are applied to the standard deviation ma-
trix, , where and and

are the number of rows and columns in the matrix [Note:
represents the transformed domain and not the fre-

quency domain]. A sample texture and its matrix for the
adding operator response are shown in Fig. 7(a) and (b), re-
spectively. The zonal mask, also called zonal filter, is a simple
slit/mask or an aperture (see Fig. 8). A combination of an an-
gular slit with a bandlimited low-pass, band-pass or high-pass
filter can be used for yielding good discriminating features for
periodic or quasiperiodic textures. Masks are sets of integers
that are used to extract features from the standard deviation ma-
trix.

Horizontal slit feature

(12)

where the horizontal slit mask integer

Vertical slit feature:

(13)

where the vertical slit mask integer
If and are defined as

, where

and

Then, and are in polar coordinates and are de-
fined as and

Ring feature:

(14)

where the ring mask integer

Circular feature:

(15)

where circular mask integer

Sector feature:

(16)

where integer These
features can be computed with different sizes of masks and they
form a feature vector for samples from each texture class.

2) Normalization of Features:Normalization of feature
values is necessary to give equal weight to different features,
especially when distance classifiers are used. Normalization
also reduces the number of computations at the classification
stage. Let the length of the feature vectorbe , is the
normalized resulting vector, is the index for , such that

then different types of normalization strategies are as
summarized in Table I.

3) Feature Selection:A combination of two criteria, the dis-
tance between the means of each feature and the measure of
standard deviation are used to quantify the separation between
classes. If is the mean and is the standard deviation of the
features in the training matrix, the sum of the distances of each
feature from and is computed as

(17)

where
feature index;
number of features;
class index;
total number of texture classes.

The standard deviation value for each feature is computed as

(18)

Values computed from (17)–(18) are sorted in ascending order
and the features corresponding to the first half of the sequence
are selected as the best overall set of features as shown in Fig. 9.
These measures are referred to as measures of separability
which implies the ease with which patterns can be correctly
associated with their classes by means of statistical pattern
classification.

4) Classification: Both the parametric and nonparametric
classifiers are used in the experiments. The Bayes classifier,
Euclidean, and Mahalanobis distance measures are used.
K-Nearest Neighbor (k-NN), and “leave-one-out” classification
methods have been used [28]. The different classifier measures
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Fig. 8. Zonal masks (a) horizontal mask, (b) vertical mask, (c) ring mask, and (d) sector mask.

TABLE I
NORMALIZATION

are summarized in Table II. is the covariance matrix for
the feature set of texture. The Bayes classifier is the optimal
case, where the features are assumed to have a Gaussian
density function. The maximum likelihood rule is obtained
from the Bayes classifier [29] when no useful information is
provided for which is the probability of occurrence of
class . When all class covariances are equal, the term ln

in the maximum likelihood estimate is not discriminating
and hence ignored. This results in the Mahalanobis distance
classifier [29]. As this is advantageous and faster over the
maximum likelihood classifier, it is used here. In cases where
the covariance estimate is not accurate, a classifier that depends
only on the mean positions of the texture classes can be used.
This is the case of the minimum Euclidean distance classifier
where the training data is used only to determine the class
means; classification is performed by placing the unknown
feature vector in the class of the nearest mean. In the k-NN case
the unknown sample is classified by assigning it the label most
frequently represented among the k nearest samples. Generally,

a training data set is used to train or design a classifier and
another testing data set is used to test the classifier. There are
more options if this process can be repeated several times. In
leave-one-out classification, one sample is excluded and the
classifier is designed on the remaining samples each
time, and the excluded sample is tested by the classifier. This
classifier involves heavy computational costs.

IV. EXPERIMENTAL RESULTS

This section presents experiments that test the recognition
capability of the algorithm and compares its performance with
other methods. The effect of important parameters such as type
of normalization of features and type of classifier are also dis-
cussed.

A. Classification Using Brodatz Textures

The complete algorithm for texture discrimination is shown
in Fig. 9. It is used to classify textures from the Brodatz album.
Thirty–three different textures are used in this experiment. Each
image is of size pixels scanned at 300 dpi resolution
with 256 gray levels. The experimental setup is described below.

• Training Phase

1) One–hundred twenty-eight training samples each of
size are extracted using overlapping blocks
from each texture image. This size is chosen based
on texture structure.

2) One sample is convolved with the logical Hadamard
operator.

3) The standard deviation matrix is computed on the
convolution response.
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Fig. 9. Algorithm for texture classification.

TABLE II
CLASSIFIER MEASURES

4) Zonal filtering masks are applied to the standard
deviation matrices and features are computed.

5) Steps 2–4 are repeated for the adding, arithmetic,
equivalence, conjunction and disjunction operators.

6) Steps 2–5 are repeated for the fixed number of
training samples (128 in this case).

7) Steps 1–6 are repeated for the 33 classes of textures.
• Classification Phase

8) A texture sample from the first textured image
which is to be classified is selected.

9) Test feature vector is computed as in steps 2–5.
10) The feature vector is normalized.
11) Feature space reduction algorithm is applied.
12) A classifier is used to identify the unknown sample.
13) Steps 8–12 are repeated for 128 distinct testing

samples taken from a set of 33 testing images dif-
ferent from the training images.

The above steps of the experiment has been repeated by ap-
plying each of the four types of normalizations, and classifica-
tion has been done with five different classifiers. The number of
features selected on an average is nine. The best normalization
type and the best classifier along with the average percentage

TABLE III
BEST CLASSIFICATION RESULTS FORINDIVIDUAL TEXTURES

of correct classification (PCC) for each texture are tabulated in
Table III. One–hundred twenty-eight training samples and 128
testing samples are used; 100% PCC is obtained with all training
samples. The results in Table III show PCC for the testing sam-
ples.



1700 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 10, OCTOBER 2000

B. Comparison with Other Methods

In order to significantly establish the superiority of the
logical operator method, its performance is compared with
the most popular techniques in texture classification from the
wide spectrum of methods available. The spatial gray level de-
pendence method (SGLDM) or co-occurrence matrix method,
Fourier power spectrum method, tree-structured wavelet trans-
form method, Laws texture features and Gabor method are
used. The SGLDM estimates the second-order joint conditional
probability density functions, , 90 ,
135 , written in matrix form and are called co-occurrence
matrices. Haralick proposed [3] 14 statistical features that can
be computed from these matrices. Although SGLDM has been
proven to perform well for texture classification, the selection
of the appropriate distance between pixels and angle for the
co-occurrence matrix computation poses a problem and it is
also computationally intensive. The Fourier spectrum method
has not performed well even in earlier comparisons [1], [2]. The
statistical Fourier features of average magnitude, maximum
magnitude, energy and features using the zonal masks used in
[1], [2] are computed. In the tree-structured wavelet transform
(TWT) method, the texture samples are decomposed into a
multiresolution hierarchy only at nodes where the energy of
the decomposed subimage is not significantly smaller than the
other subimages at that level. The energy map of the channels
is used as a feature vector for classification [9]. Energy features
up to four levels of decompositions are considered. This
method has the drawback of becoming noisy at higher levels
of decompositions. Four of the most powerful Laws masks are
used to compute the texture energy measure [30]. As the masks
are ideal, when the textures are complex they perform poorly.
The Gaussian window function is used to compute the Gabor
transform and the Gabor coefficients are approximated using an
optimization criteria [31]. Average energy and residual features
are computed with this method. As the Gabor coefficients are
not accurate, they do not sufficiently discriminate the textures.
The feature selection process is applied with all methods in
order to obtain the best feature set for each algorithm. The
Euclidean distance classifier is used in all the experiments for
the comparisons. Six different experiments with six texture
classes in each case are conducted. The resulting PCCs are
given in Table IV. As can be seen, the logical operator method
outperforms the others with an average PCC of 93%.

C. Effect of Different Classifiers and Normalization
Techniques

Different classifiers are used with the logical operator
method, to choose the best classification technique with this
algorithm. Nine experiments with six textures each were
conducted with each type of classifier mentioned in Table II.
The PCCs for this experiment are shown in Table V. All the
classifiers perform close to each other. An original set of 24
features using the masks in Fig. 8 is computed. After feature
reduction, the average number of features selected is seven. The
best features are found to be those obtained from the slit masks
in Fig. 8(a) and (b) and sector mask in Fig. 8(d). The Euclidean
distance measure is found to be the most suitable one for this

TABLE IV
COMPARISON WITHSGLDM, FPS,TWT, LAWS,AND GABOR METHODS

TABLE V
COMPARISON OFDIFFERENTCLASSIFIERS

algorithm due to the nature of features used, the classifier
simplicity and speed. This classifier gives the best performance
which is also evident from the results in Table I. Also, as seen
from this table, the best type of feature normalization is found
to be Type 4. Type 0 refers to no normalization.

V. APPLICATIONS

Different segmentation problems are presented in this Sec-
tion, to emulate real world situations and evaluate the perfor-
mance of the algorithm in these applications. The segmenting of
remote sensing images, images subjected to compression tech-
niques and industrial images such as textiles are considered.

A. Segmentation of Remote Sensing Images

The first image is an original SIR-C/X-SAR image of
Manaus, Brazil, shown in Fig. 10(a). The segmentation using
the logical operator algorithm into three distinct regions of
flooded forests/shrubs, unflooded fields/forests and open water
is shown in Fig. 10(b). The second image is an aerial photo-
graph of a coastal region in Puerto Rico shown in Fig. 11(a),
which has three distinct regions of sea, land and highway. Both
images are of size . The algorithm procedure is
the same described in Section III-B. The number of features
selected for both images are 4. The window size used in this
application is in order to capture the texture charac-
teristics of small regions and obtain an exact segmentation.
The classification is done using this moving window with an
overlap of seven pixels in order to avoid blocking effect. The
segmentation has been compared with that of the co-occurrence
method to estimate the performance and computational speed
of the algorithm. Fig. 11(b) and (c) shows the segmentation
results using the logical operator and the co-occurrence matrix
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Fig. 10. (a) SIR-C/X-SAR image of Manaus, Brazil, and (b) segmented image using logical operator algorithm.

Fig. 11. (a) Original coastline image, (b) segmented image using logical operator algorithm, and (c) segmented image using co-occurrence method.

TABLE VI
TIMING RESULTS

methods, respectively. Out of the total 65 536 pixels, 5898
pixels are mismatched using the logical operator algorithm
giving a 9% error rate and 11 201 pixels are mismatched
using the co-occurrence method, which gives an error rate of
17%. This result and a careful visual examination shows the
superiority of the logical operator algorithm. Also, the logical
operator method is much faster compared to the co-occurrence
method. Table VI gives the timing results for performing the
segmentation of the images in Figs. 10(a) and 11(a) on a Sun
Ultra 2 workstation using the SGLDM and logical operator
methods. The logical operator is on an average 13 times faster
than the SGLDM algorithm in these experiments.

B. Segmentation of Compressed Images

The image shown in Fig. 11(a) has been compressed using
the Hadamard transform, the JPEG quantization and coding
schemes. The compression ratio (CR) obtained is 21 : 1 and
the peak signal-to-noise ratio (PSNR) is 23. The reconstructed
image is shown in Fig. 12(a). The segmented image using the

logical operator algorithm is shown in Fig. 12(b). The number
of features selected are 5. Because of the excessive blocking
effect, the texture regions in Fig. 12(a) are corrupted. However,
on comparing with the segmentation in Fig. 11(b), the logical
operator algorithm has correctly assigned most of the texture
regions of the reconstructed image to the correct class.

C. Segmentation of Textile Images

The original mosaic of six textile textures (basket, naugahyde
leather, a fabric texture, corduroy, cotton, and tanned leather) is
shown in Fig. 13(a). Each texture is of size and the
mosaic is of size . The algorithm is applied to segment
this image using a moving window of size with an overlap
of seven pixels. The segmentation result is shown in Fig. 13(b)
which shows excellent classification with minimal errors in the
boundary proving the suitability of the algorithm for industrial
applications.

D. Discussions

The individual results for the classification of 33 Brodatz tex-
tures are summarized in Table VII; 100% correct classification
has been obtained for 22 textures and the PCC for the remaining
textures are above 84. In general, the PCC increases while in-
creasing the number of training samples up to 96 and remains
constant for further increase [32]. The sample window size de-
pends on the texture structure. In the experiments with Brodatz
textures (Section III-A and IV), texture samples of size
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Fig. 12. (a) Reconstructed image after compression and (b) segmented image

Fig. 13. (a) Original textile composite image and (b) segmented image

is optimal due to the wide range of textures involved with small
to large structures. In general, the sample size should be large
enough to yield reliable features and small enough to produce
accurate boundaries in segmentation problems. Hence,
window size has been used in segmentation of remote sensing
images shown in Figs. 9(a) and 10(a), where texture structure
to be characterized are small. To avoid the curse of dimension-

TABLE VII
OVERALL PCC RANGE FOR ALL TEXTURES

ality, a feature selection process has been applied to select the
optimal set of features.

VI. CONCLUSIONS

An efficient algorithm based on logical operators has been de-
veloped and proved to give excellent results with different types
of texture images. Based on the ability to differentiate texture
characteristics, six operators are chosen as the best in yielding
discriminating features. Operator size of is sufficient in
transforming the textures in to an effective feature space. Higher
order operators do not improve classifications and are also com-
putationally more expensive. The features are computed from
simple zonal filtering. The experiments and comparisons pre-
sented prove the robustness and versatility of the algorithm.

This method has an edge over other methods in that it can be
implemented using fast algorithms that have already been de-
veloped for logical operators. The algorithm involves convolu-
tions with 1, 1, and 0, which can be implemented efficiently
and the feature extraction and classification stages involve only
additions and comparisons. Any suitable hardware or logical
structure such as DSP processors or FPGA can be utilized. The
algorithm permits development of many ways of parallelization
and hence it can be implemented in parallel computers or in dis-
tributed systems.

Different applications were presented, one of which is the
segmentation of a compressed image. This is a particular at-
tempt in expanding the scope of any texture classification tech-
nique. The logical operator algorithm clearly has greater poten-
tial than any other method in the aspect of efficiency, implemen-
tation and application areas. As a future direction, the capability
of the algorithm for classifying binary images can be investi-
gated, in line with the binary field transform (BFT), which has
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been used for image compression [33]. The algorithm should be
employed for classifying other types of images such as medical
images and for object recognition.
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