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Fourier Transform

Given complex exponential as input, output is again complex
exponential scaled by H(ω)

H(ω) is the frequency response of linear-time
Invariant systems

Decomposition of signals in terms of sinusoids

Using complex exponential as an input
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Fourier Series
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Fourier Series and Transform

Central theme – approximate a function with given a family 
of basis functions

and

and

Decomposition of signals in terms of sinusoids –
Fourier series

Fourier series and transform

Alternative form
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Fourier Transform

• Connecting back to LTI 
• Frequency response of a linear time invariant system is 

the Fourier transform of the unit-impulse response
• i.e. LTI are uniquely characterized by their impulse 

response and equivalently by their frequency response
• Relationship between frequency and space domains
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Fourier transform as representation

• The spatial information is lost – spectral information 
is gained

• Can we achieve simultaneous localization in space 
(time)  and frequency ?  -> only within some bounds

• Windowed Fourier Transform – balance between the 
two
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Filtering - Fourier Transform

• Examples FT phase and frequency information

• Low pass filtering
• High pass filtering
• Band pass filtering
• Differentiation

filter
f g
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Fourier transform and filtering

• http://astronomy.swin.edu.au/~pbourke/analysis/imagefilter/
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Fourier transform and denoising

• http://astronomy.swin.edu.au/~pbourke/analysis/imagefilter/

Fourier transform of the image
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Low Pass filtering
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High pass filtering
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Band-pass filtering
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FFT by example

original

low pass
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FFT Example

bandpass

highpass
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Importance of phase

original power phase

constant power + original phase original power + zero phase
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Scale Space Representations

• Gaussian Pyramids
enable to extract different structures in the image – since 
different structures are more apparent at different scales

(useful for search over scale - detection, spatial search, feature 
tracking)

• Causality (features at coarse level – have cause at fine level )
• Homogeneity and Isotropy (blurring is space-invariant)

Courtesy T. Lindenberg, KTH

(Witkin’83, Koenderink, van Doorn’86)

Family of functions – solutions to diffusion eg.
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Anisotropic Diffusion

With spatially varying term (Perona & Malik ’90) 

If we knew where are the edges – we can 
Create a mask             (assuming that              ) is independent of σ

We get noise free image and smooth where there are no edges 

Problem with traditional scale space models
Gaussian is symmetric – smoothes over edges
Does not preserve localization of edges
Idea – edge preserving smoothing
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Anisotropic Diffusion - Example

Images courtesy P. Kovesi (www.csee.unwa.au/~pk)


