Fourier Transform
Decomposition of signals in terms of sinusoids
AT = Acos(wz) + iAsin(wz)
Using complex exponential as an input
glz] = e™Txh[z] = YR h[k]eiw(@—k) = ciwe DI e h[k]eiwk

glz] = T H(w)

Given complex exponential as input, output is again complex
exponential scaled by H(®)

H(w) is the frequency response of linear-time
Invariant systems
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Fourier Series
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Fourier Series and Transform

Decomposition of signals in terms of sinusoids -
Fourier series

fla] = % YT ncheoslka + ¢y
ap =52 fli) cos[kj)
flz]l = % S —_ ag cos[kx] + by sin[kx] =532 flilsinlkj]
Fourier series and transform 2 fibj
fl) =550 cae™  and =352 o flile
Alternative form

flel =L 30_  Flwle®® and Flu] =5 flkle @k

Central theme - approximate a function with given a family
of basis functions
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Fourier Transform
P = PR + FlW]?
Flw] =532 flk]em*
< Flw]| = tan~}(Fi(w)/Fr(w))
Connecting back to LTI
Frequency response of a linear time invariant system is
the Fourier transform of the unit-impulse response
i.e. LTI are uniquely characterized by their impulse
response and equivalently by their frequency response
Relationship between frequency and space domains

glz] = flz] = hla] Glw] = Flw]H[w]
10 1 12 . lT
F = Mf M= :—u, ('2. ;—44 :—2T4
,,7‘0, (Ti o—2Ti T2
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Fourier transform as representation

The spatial information is lost - spectral information
is gained

Can we achieve simultaneous localization in space
(time) and frequency ? -> only within some bounds

Windowed Fourier Transform - balance between the
two
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Filtering - Fourier Transform

Examples FT phase and frequency information

gla] = fla] x hlz] Glw] = Flw]H|[w]

Low pass filtering

High pass filtering
+ Band pass filtering

Differentiation
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Fourier transform and filtering

http://astronomy.swin.edu.au/~pbourke/analysis/imagefilter/

Fourier transform and denoising

http://astronomy.swin.edu.au/~pbourke/analysis/imagefilter/
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Fourier transform of the image
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Low Pass filtering

High pass filtering
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Band-pass filtering
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FFT by example
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original

low pass




FFT Example

bandpass

highpass
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Importance of phase

original power phase
constant power + original phase original power + zero phase
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Scale Space Representations

+ Gaussiah Pyramids

enable to extract different structures in the image - since
different structures are more apparent at different scales
(useful for search over scale - detection, spatial search, feature

e

tracking)
I(@.y,0) = Io(w.y) * Gz, y. )

(Witkin'83, Koenderink, van Doorn'86)

i
Family of functions - solutions fo diffusion eg. .m
By =
.lﬁi E
Courtesy T. Lindenberg, KTH
* Causality (features at coarse level - have cause at fine level )

+ Homogeneity and Isotropy (blurring is space-invariant)
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Anisotropic Diffusion

Problem with traditional scale space models
Gaussian is symmetric - smoothes over edges
Does not preserve localization of edges
Idea - edge preserving smoothing
a1 _ a1 | oI 5
=== I(xz,y,0
2o = a2t 72 v (z,9,0)
With spatially varying term (Perona & Malik '90)
0.

55 = V-(clwy, )V = c(z,y, )V2I+(Ve(x, y,0)).(VI)

If we knew where are the edges - we can
Create a mask c(x,y) (assuming thatc(z,y, o)) is independent of ¢
We get noise free image and smooth where there are no edges
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Anisotropic Diffusion - Example

Images courtesy P. Kovesi (www.csee.unwa.au/~pk)
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