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APPLICATION-SPECIFIC ARCHITECTURE
FOR FAST TRANSFORMS BASED ON THE

SUCCESSIVE DOUBLING METHOD,

PART I: A CONSTANT GEOMETRY
APPROACH

Abstract

The successive doubling method is an efficient procedure for the de-
sign of fast algorithms for orthogonal transforms of length N = r™, where
the radix r is a power of 2. It reduces the algorithmic complexity from
N? to N -log, N. In this work we present a partitioned systolic archi-
tecture for the two standard radix successive doubling algorithms: ascend
and descend communication patterns. The systolization and partitioning
procedure we have used is made up of three actions. First, we transform
the flow chart of the data for the successive doubling algorithm into a new
chart of constant geometry in all its stages (n). We obtain the constant
geometry by means of the perfect unshuffle (ascending algorithm) or shuf-
fle (descending algorithm) permutations of order log, 7. We then carry out
the decomposition of these permutations into elementary permutations,
which can be implemented electronically. Finally, we project the index
space of the data onto the index space associated with a column of pro-
cessors interconnected using a perfect unshuffle or shuffle interconnection
network. The result is a systolic rectangular array with 1 to n columns of
Q processors (QQ = r*, 0 < i < n). This architecture extracts the maxi-
mum spatial and temporal parallelism achieved by the successive doubling
algorithm and can be integrated in VLSI and WSI technologies.

Index Terms: Constant geometry architecture, successive doubling algo-
rithm, systolic design, partitioning, orthogonal transforms, VLSI and WSI
technologies.

I INTRODUCTION

The theory of orthogonal transforms has played a key role in the field of multi-
dimensional processing of signals and is still a topic of great interest both from
the theoretical and applied point of view. Since computers appeared and use
has been made of the possibilities offered by the advances in semiconductor tech-
nology, there has been a lot of effort dedicated to reducing the calculation time
and/or the memory needs of the transforms. Efforts which have been aimed both
at the design of faster and/or more efficient numerical algorithms for conventional
computers and at the exploitation of the possibilities offered by parallel machines
(extraction of the inherent concurrence) and the new advances in the design of
application specific integrated circuits (ASIC).



In 1965 Cooley and Tukey [19] developed an algorithm for accelerating the
calculation of the discrete Fourier transform (DFT) which in some ways revolu-
tionized the numerical computation of orthogonal transforms. This algorithm,
known as the Fast Fourier Transform (FFT) radix 2 and ascend communication
pattern, is based on the application of the method of successive doubling for
the elimination of the inherent redundances in the coefficient matrix of the DFT
transform. Since the discovery of the FFT algorithm there have been considerable
efforts dedicated to improving it and to extend its application range. A first step
was to transform the initial recursive algorithm into a more efficient one with a
new structure of nested loop indexing. Later, the radix was increased to reduce
the necessary arithmetic. Bergland [7] and Sande [69] developed algorithms for
the calculation of FFTs in real sequences (RFFT). Winograd applied the theory
of computational complexity to the calculation of the DFT [85] obtaining this
way a lower limit for the number of multiplications required for the computation
of a DFT of 2" elements and designed a constructive method for the generation
of these algorithms.

Burrus [16] extended the application of the DFT to sequences whose length
is the product of two relative prime factors (PFFT). More recently, algorithms
[21,74,82,88] known as split-radix FF'T (SRFFT), which have an optimum number
of multiplications and the minimum known number of additions have been [34]
developed. A unified set of algorithms which define the interconnection and the
rotation structure of the phase of the flowchart of arbitrary FFT's have been re-
cently developed by Demuth [20]. Finally, the large number of books and articles
that have been appearing are a required reference for analyzing and understand-
ing the evolution of the aforementioned algorithms [11,15,40,59,64-65|.

In general, system architecture has been greatly influenced by the advances in
the technological processes of microelectronics, constantly requiring new ideas for
the organization of processing [17,76]. The most important advantages currently
offered by VLSI (very large scale integration) and WSI (Wafer Scale Integra-
tion) technology are a reduced physical size, with a low power consumption at
a really low cost and the possibility of eliminating the need of processors which
are physically separated from the memory or from other processors. The most
important disadvantage they present, WSI in particular, is the need of introduc-
ing redundances [89-90,36] and /or fault tolerance [5,45,77] in the designs because
the circuits are integrated over semiconductor areas which are sufficiently large to
make the appearance of defects unavoidable. A solution for minimizing the redun-
dant silicon area [89] consists in designing architectures with a regular structure
and, where possible, with parallel logic for the following reasons: a) easy inter-
connection of active circuit blocks; and b) the global performance of the system
is better when the number of parallel operations is increased, as a consequence
of having a large number of identical devices in the wafer.

Not all the fast algorithms for the FFT transform we have mentioned per-
mit an immediate implementation using VLSI and WSI technologies. Some of
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them do not have the necessary regularity in the data flow to make them in-
tegrable. This is the case of the Split Radix SRFFT algorithm, which has a
different number of butterflies for each stage of the transform [66]. The PFFT
[18,31,80] algorithms present more regularity although they have a higher com-
plexity than the equivalent FFT. The idoneous candidate for integration is the
FFT algorithm, as we can achieve constant indexing throughout all the stages
of the transform [64], obtaining a regular structure and a simpler control. The
result is a constant geometry algorithm which permits the exploitation of the
spatial parallelism presented by the FFT algorithm [61].

Parallel to the development of fast algorithms for the discrete Fourier trans-
form, there has been a development of similar algorithms and architecture pro-
posals for other transforms, such as those of Walsh [30], Hartley [14,32], Haar
[67] and cosine [2]. Our objective in this work is to design an application specific
architecture which permits the exploitation of the parallelism present in the suc-
cessive doubling method and which is integrable in VLSI and WSI technologies.
In a companion paper [93] we describe the specific designs of the six fast trans-
forms we have considered: Walsh, complex valued Fourier, Hartley, real valued
Fourier, cosine and Haar. Only the first two present a data flow coinciding with
the flow chart of the successive doubling algorithm. The other four require some
type of additional transformation in order to have this flow chart. Moreover, each
transform will have a different processing section.

An adequate architecture for integration in VLSI and WSI technologies is the
systolic architecture, proposed by Kung and Leiserson [47]. The projection of an
algorithm onto a systolic architecture requires the performance of transformations
(regularization stage) which extract the spatial parallelism of the algorithm [24].
It is also necessary to approach the partitioning of the algorithm in order to facili-
tate integration. There are a lot of methods for the systolization and partitioning
of algorithms [24,55-57], but none of them is applicable to the algorithms based
on the successive doubling method. This is the reason why a large amount of
authors consider the FF'T algorithm as non systolizable and, consequently, they
have directed their research towards the design of systolic architectures for the
discrete transforms [4,9-10,12,25-27,53,71,81,87], or the design of application spe-
cific microprogrammable processors [3,29,37-38,51]. On the other hand, we must
point out that all the algorithms for the fast transforms are easily implementable
in those processors whose base is a multiplier/accumulator, being the most ef-
ficient those algorithms which minimize the number of multiplications and/or
additions. This is the case of the ones known as Digital Signal Processors (DSPs)
[1,22-23,48-50,79], which do not exploit the spatial parallelism of the algorithms.

We have structured the rest of this paper in the following way. The successive
doubling method is introduced in section II, defining the two standard algorithms
established by the direction we follow through the flow chart [64]: ascend com-
munication pattern (ACP algorithm) and descend communication pattern (DCP
algorithm). In sections III and IV we present in detail the application specific
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architecture of the DC algorithm, defined by the perfect unshuffle permutation.
More specifically, in section III we approach the design of the appropriate pro-
cessor for obtaining the constant geometry systolic architecture and in section IV
we present the application specific parallel architecture. In section V we briefly
describe the application specific architecture associated with the DCP algorithm,
whose constant geometry is determined by the perfect shuffle permutation.

II THE SUCCESSIVE DOUBLING METHOD

The discrete Fourier transform belongs to a class of important transforms which
can be expressed in terms of the general relation

N—1
X(k)= > T(k,m)-x(m) (1)
m=0
where X (k) is the transform of z(m), T'(k, m) is the kernel of the direct transform,
and k is a variable which takes values in the range 0,1,..., N — 1. In a similar

way, the inverse transform is defined by the relation

o(m) = 1;_ T (m, k) - X (k) 2)

where T71(m, k) is the inverse transform kernel and m is a variable which takes
values in the range 0,1,...,N — 1. Belonging to this class of transforms we
have the discrete transforms of Walsh [30], Hartley [14,32], Haar [67] and cosine
[2], among others. In general, the nature of a transform is determined by the
properties of its transformation kernel.

Fourier:
k
T(k,m) = exp <—j27rm—> (3)
N
Walsh:
n—1
T(k,m) = [] (=1)m*— (4)
i=0
Hartley:
T(k,m) = cos (2%%) + sin <2W%k> (5)
Cosine:



T(k,m) = e(k) - cos <WW) (6)

Haar:

2°/2 2P <m < (s+1/2)277
T(k,m) = —20/2 (s4+1/2)27P<m< (s+1)27P (7)
0 otherwise

where b; is the i-th bit of the binary representation of . For the discrete cosine
transform e(0) = 1/v/2 y e(k) = 1, 0 < k < N; and for the discrete Haar
transform k = 2P + s, being 0 < p <log, N and 0 < s < 2P.

These transforms can be calculated using a fast algorithm by applying the
successive doubling method, the objective of which is to minimize the redundant
operations. The idea of successive doubling, used by Cooley-Tukey for the design
of their fast Fourier algorithm [19], consists in dividing the original N element
sequence x(m) into two sequences of half the length. The discrete transforms of
these have to be combined to obtain the discrete transform X (k) of the original
sequence. The successive doubling method consists in performing successive bi-
sections of the data until the original sequence is decomposed into N/r sequences
of length r (N = r"), where 7 is the length of the minimum sequence to be trans-
formed (radix of the transform). Once the N/r discrete transforms (butterflies)
have been calculated, they must be combined to obtain the discrete transform of
the original sequence by means of log, N calculation stages.

The direct evaluation of equations (1) and (2) presents an algorithmic com-
plexity O(N?), which is reduced for orthogonal transforms to O(N -log, N) if we
apply the successive doubling method. Figure 1 shows the data flow for the radix
2 fast transform of a sequence of N = 16 elements, using the successive doubling
method. The sequence, of length 16, is decomposed into 8 (N/2) elementary
sequences of length 2 (r = 2), whose discrete transforms are combined in four
stages in order to obtain the transform of the original sequence. The data flow
of the figure can be seen from left to right (ascend communication pattern al-
gorithm, ACP) or from right to left (descend communication pattern algorithm,
DCP). As a result of the successive bisections of the initial data set it is nec-
essary to carry out a shuffle of the input sequence (ACP algorithm) or of the
transformed sequence (DCP algorithm) in order to obtain an output sequence
(X(k), 0 < k < N) in its natural order. The usual way for carrying out this
shuffle is by using the bit reversal permutation.

From the analysis of figure 1 we can extract three conclusions. The first one
is that the data flow between stages is not constant. However, by reordering the
butterflies from each stage we can produce a constant geometry fast transform
[64,33] such as the one in figure 2. The second one is the high inherent parallelism
in each stage of the transform (N/r butterflies in parallel), which we can exploit
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Figure 1: Data flow for Cooley Tukey’s algorithm (N = 16).

0 0 0 0 0 0-> 0
1 8 4 2 1 8 > 1
2 4 2 1 8 4 > 2
3 12 6 3 9 12 > 3
4 2 1 8 4 2 > 4
5 10 5 10 5 10 > 5
6 6 3 9 12 6> 6
7 14 7 11 13 14 - 7
8 1 8 4 2 1> 8
9 9 12 6 3 9> 9
10 5 10 5 10 5 >10
1" 13 14 7 11 13 > N
12 3 9 12 6 3212
13 1 13 14 7 1M1 2>13
14 7 11 13 14 7 714
15 15 15 15 15 15 215

Figure 2: Cooley-Tukey’s constant geometry algorithm (N = 16).

if we have a processor column (N/r in the optimum case). The third one is
the inherent sequentiality between stages of the transform, which will allow only
pipelined designs between stages.

It can be easily seen that the constant geometry of figure 2 is the result of
applying a permutation to the results of each stage of the transform. In general,
for the ACP algorithm, the appropriate permutation is a perfect unshuffle of order
log,  (r = 2 in figures 1 and 2), whereas for the DCP algorithm the permutation
must be a perfect shuffle of order log, . As both algorithms have the same
characteristics in sections III and IV we will describe in detail the application
specific architecture associated with the ACP algorithm and in section V we will
summarize the equivalent architecture for the DCP algorithm. We will assume
that the bit reversal permutation of the input sequence has already been carried
out for the input sequence of the ACP algorithm.

Two have been the most used approaches for mapping the inherent parallelism
in the data flow of figure 1 onto an architecture which can be implemented in
VLSI or WSI technology: pipeline and array. The design of pipelined processors



(PE) [8,54,64,70,72,86,76] is simple but their greatest limitation is their small I/O
bandwidth. This limitation can be avoided, in part, by increasing the radix of
the transform. With a column of PEs forming a constant geometry architecture
we can exploit the spatial parallelism existing in each stage. There are numer-
ous interconnection networks for the PE column which permit an efficient use of
this spatial parallelism in each stage: shuffle exchange [75,72,60,89,36], shift and
replace [68], hypercube [35,44,92], indirect binary n-cube [62], cube-connected
cycles [63], mesh [44,52], among others [6,13,28,39,46,73,78,84,42-43,58]. We can
combine both approaches by constructing a rectangular array made up of PE col-
umn pipelines [72]. Consequently, the appropriate architecture for the algorithms
based on the successive doubling method will be a rectangular array made up of
log, N columns of N/r processors, connected so as they implement the data flow
of figure 2.

The translation to an ASIC of the rectangular array requires a systolic type
data flow and, more important still, the problem of partitioning the algorithms
in order to design non restrictive systems has to be approached. In this line, Za-
pata et al. [92] have recently designed SIMD algorithms for the FFT transform
in hypercube computers with a limited number of PEs. However, the hypercube
topology is not the most appropriate for implementation in VLSI technology, as
it has a high number of links compared to some of the networks we have men-
tioned. You and Wong [91] have also proposed an architecture based on the r-fold
symmetry in the radix 7 constant geometry FF'T algorithm, which requires a mi-
croprogrammed data shuffler in each one of the processors and limits to » PEs
the maximum parallelism of each stage of the transform. The constant geometry
architecture we present in the following sections is based on the perfect unshuf-
fle interconnection network, which permits efficient mapping and partitioning of
the flow chart generated by the successive doubling method without having to
use microprogrammed control. This architecture can be considered semisystolic:
regular with systolic type data flow, but the connectivity between nodes is not
local.

IIT THE CONSTANT GEOMETRY ARCHITEC-
TURE

In order to express the design with constant geometry in a general way, we will
use the notation introduced by Parker [60] for the definition of a set of algebraic
operators which permit the description of processor networks in terms of their
interconnection rules. This operators are associated with the different bit per-
mutations which can be carried out on the binary representation of the numbers.
We will center on those permutations which allow us to implement successive
doubling algorithm in a constant geometry parallel architecture.



We consider that the size of the transform is N = r", where r is the radix
and we will use a two dimensional representation [z, z| of the index for each data
item (i =0,1,..., N — 1) in the input sequence

[z, 2] = [[# - - 21, [20 - - 2] (8)

where z; and z; are the digits of the binary representation of x and z, respectively.
The union of z and z into one number (z - 2¥ + z) will coincide with the binary
representation of the index i of the data sequence (u + v = log, N). Finally, we
will suppose that the data sequence flows from left to right. This implies that x
counts from right to left so that the first data item which enters from the left will
have an index x which is equal to 0 and z counts from top to bottom. Therefore,
the original one dimensional data sequence (one N column row) starts with a
data item with an index [0, 0] and ends with a data item with an index [N —1,0].

The operators are defined by their effect on the indexes of the data items.
The decimation operator (), introduced by Wold and Despain [86] converts a
row into many by reducing the number of columns

Oy, 2] = [[wu -~ 2], [20 - - 212 - - 2] 9)

Each row is broken into 2* rows, and the operator is well defined if k& < u. As
an example of the operation of d(), consider a row of data items with u = 3 and
v = 0. The data enter from the left and are given by

(a7 g A5 Q4 A3 A2 A1 a()) (10)

By applying the operator ¢(;) to the indexes this sequence is converted into a two
dimensional array of size 2 by 4

Je
Qg Q4 G2 Qg
— 11
(a7 Qg G5 G4 G3 G2 Q1 ao) ( a7 as a3 0y > ( )
Using this notation, we can define the operator concatenation ;) which re-
duces the number of rows of an array by increasing the number of columns

Bule, 2] = [lzk -+ 212w -], [z - - 2] (12)

A sequence made of 2V rows with 2* elements (columns) is transformed into
another with 2V~* rows of 2¢** columns and the operator is well defined if k& < v.
Let’s consider a sequence formed by two rows of data which flow from left to right
and which is similar to the one generated by the operator o1y (u =2, v =1).

By

g Q4 Q9 QG
(ai a;l aj a?) — (CL7 as a3 a1 Qg A4 A2 CL()) (13)



The application of the operator ;) generates a one dimensional sequence by
concatenating the two input rows.

Finally, we define the perfect unshuffle operator I') of a sequence, which
flows from left to right and is organized as a two dimensional array of 2V rows
and 2% columns

F(]c)[.’l:, Z] = [[Zk c 21Ty vt .xk+1]’ [xk RN AP 'Zk—I—l]] (14)

['() performs a rotation to the right of order & of the binary representation of
the index of each element of the sequence and is well defined if k£ < u + v.

We are interested in the efficient hardware implementation of the perfect
unshuffle permutation as it is the base for the design of a constant geometry
architecture for radix » ACP successive doubling algorithm. The output sequence
of the processor will have to undergo a perfect unshuffle permutation in order to
maintain the constant geometry in all stages of the transform. From this we
deduce that out of all the permutations we can implement with equation (9)
only the particular cases I'(,)[z,2] and Tz, []] will be of any interest, being
v = log,r. Also, this permutations can be obtained by the combination of the
operators d(,) and f3,), defined previously.

Lemma 1

Ly = Buwdw, v#0 (15)
Loz, []l = o@Balz,[ll, i#u (16)

Being the order for the application of the operators from left to right.

Proof Proof of (15):

Beydwllzu-21), (20 - 21]] = Swllze - 2120 - - 1], []]
= [tp- - 21Zu - Tosi), [0 - - - 21]] (17)

= Tl[zu- 2], [20 - 2]
Proof of (16):
6(i)ﬂ(i)[[$u ez []] = ﬂ(i)[[g;u v Zia], [ 1]

(%3 2120 - Tiga, []] (18)
= Pplley -, []

O
As an example, observe that the output generated in (13) coincides with the
perfect unshuffle permutation Iy of the original sequence (10) (particular case
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[z,[]] with u = 3). The output in (13) is the result of applying the decimation
(0a) generates the output sequence (11)) and concatenation (f(;) generates the
output sequence (13)) permutations to sequence (10). In a similar way, if we
perform the permutation §(;) on the output sequence expressed in (13)

o)
s a1 G4 Qg
1
(a7 as as a1 ag ag as ag) —> <a7a3a6a2> (19)
we obtain the perfect unshuffle permutation I';y of the original sequence which
acts as input in (13) (particular case [z, z|, with u = 2 and v = 1). Observe that
in (13) we have applied the concatenation permutation ().

A Design of the processor

The internal structure of the processor will consist of two clearly differentiated
sections: Processing (PS) and routing (RS). The PS section will carry out the set
of operations associated with a r-point butterfly (discrete transform of a sequence
with r-points). This operations will depend on which particular transform we are
implementing. As we are only interested in the regrouping of the data items and
not in the specific computations of each transform, we will consider the PS section
as a new operator, the butterfly operator B(,, which carries out an arbitrary
function with 2’-inputs and 2Y-outputs.

The equalities (15) and (16) guarantee the decomposition of the perfect un-
shuffle permutation into two elementary permutations which are easily imple-
mented in hardware. Specifically, the concatenation permutation () can be
implemented using a FIFO queue of length N with 2V inputs located in cells 0-,
2~ ..., and (2" — 1) - 2“-th, using a numbering scheme from left to right; the
queue must have an output in cell N — 1.

There are two ways of implementing the decimation permutation (). The
first can be achieved by means of a FIFO queue of length N cells (i = 0,1,..., N—
1, N = r") with outputs in the cells (N — 1)-, (N — 2)-, ... , and (N — 2Y)-
th considering the same numbering scheme as in the previous case; the queue
must have an input in cell zero. We can also implement the permutation ¢,
by means of a demultiplexor with an input associated with the sequence we
wish to decimate, 2” outputs and v control inputs used in a cyclic fashion each
clock period. Both solutions require the sequence to be decimated to advance 2¥
positions each cycle.

The hardware implementation of permutation I,y is immediate using permu-
tation ((,) and one of the two alternatives of permutation d(,). This possibility of
choosing produces two different designs for the processor, although the internal
parallelism is the same in both cases (2V data items are processed in parallel).
If we use the FIFO queue as the implementation for operator d, (Lemma 1,
equality (15)), the design of the processor for the calculation of a stage of ACP
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Figure 3: PE based on the operator string B, () d(,) (algorithm ACP).

successive doubling algorithm is the hardware translation of the following oper-
ator string

Bl) Bw)d(w) (20)

being v = log, r. Figure 3 shows the design of the radix 2 processor. We have in-
cluded a double FIFO queue in order to be able to implement the whole transform
by external recirculation of the data, using only one processor with the i-th out-
put connected to the i-th input (i =0,1,...,2Y —1). The n stages (n = log, N)
of the transform are identical, as we apply the operator sequence (20) n times.
Each stage, a queue acts as the output buffer (writing the data generated in the
current stage) whereas the other acts as input buffer (reading the data generated
in the previous stage) and this function will be exchanged in the next stage, this
operation is controlled by multiplexors MUX0 — MUX2. Observe that in the
design of figure 3 the FIFO queues have a length of N — 1 cells (W = N/r) and
the inputs associated with permutation () have been conveniently distributed.
In order to do this we have considered the PS section as a segment of the pipeline
made of sections PS and RS.

Figure 4 shows the second alternative for the design of the processor (Lemma
1, equality (16)), we have considered radix 2 again. This design is the hardware
translation of the following operator string

Ow) Bw) Bw) (21)

where v = log,r. For the same reasons as in the design of figure 3 we have
included two FIFO queues of lengths N — 1 with 2¥ inputs and only one output
in its left end (cell (V — 2)-th). In this case we can also implement all the stages
of ACP successive doubling algorithm using only one processor, with each output
bus feeding back its corresponding input bus.

The design of the processor according to the operator sequences (20) or (21)

11



Figure 4: PE based on the operator string d(,) B(y)3(v)-

permits the interpretation of the two dimensional representation of equation (8)
in the following way: the z coordinate gives the parallelism for each stage of
the transform (a butterfly with 2 data items is processed each cycle), whereas
the x coordinate establishes the sequentiality for each stage of the transform (2“
butterflies of length 2). Therefore, the calculation time for a stage will be 2“
clock cycles, being the length of the cycle the time used by the processor in
the computation of the butterflies associated with each input vector. With this
interpretation of equation (8), the binary representation of the data consists of
two fields [cycle, bus]. The data item [z, z] will input the processor through its
z-th input bus (bus = 0,1,...,2Y — 1), being a part of the z-th butterfly of the
stage (cycle =10,1,...,2* —1).

Both processor designs share many common properties: by means of the feed-
back of the output buss with the corresponding input buss, the processor eval-
uates the whole transform; they have the same processing speed (2¥ data items
each cycle); they need the same number of memory cells (2(N — 1)); the informa-
tion in the FIFO queues advances 2° cells each cycle; the PS section is identical.
Nevertheless, they present some important differences which are a consequence of
way of implementing permutation I'iy (operator strings (20) and (21)): The RS
section of the design in figure 4 is divided into two blocks (DEMUX and FIFO
queues) and, even more important, it only has one input bus and one output bus
for the flow of data, whereas the design of figure 3 requires 2¥ input buss and 2"
output buss.

From what has been said, we could deduce at first sight that the design of
figure 3 is a lot less efficient than that of figure 4, as it has the same processing
speed with a larger amount of input and output buss. Nevertheless, as we will
see in the next section, the design of figure 3 will permit a parallel organization
with multiple processors operating in array mode (spatial parallelism) whereas
the design of figure 4 is only useful in designs with only one processor or multiple
processors connected in pipeline mode.

12



FIFO queue 1 MUX?2
0 0
— 2
— |
2
Sl 3 MUX1
_ 0
1 2
24 —S+1 0 1
FIFO queue 2

Figure 5: RS section considering S segments in the PS section (radix 2).

Before ending this section we will comment some aspects related with the
duration of the processing cycle of the PE. The length of the minimum cycle
is given by the slowest route of the processor, which will be determined by the
processing time of the PS section or by the number of shifts to the right (r) of the
FIFO queues for each butterfly. Therefore, if we consider the PS section as the
slowest element of the PE, a systolic or pipelined design of this stage seems the
most appropriate solution from the viewpoint of integration in VLSI technology.

In general, the inclusion of an specific number of segments (S > 1) in the PS
section reduces the length of the operating cycle (1/S factor) and forces, at the
same time, if the architecture is not modified, the inclusion of S —1 waiting cycles
at the end of each stage of the transform. The modification of the architecture
of the PE will consist in reducing the length of the FIFO queues by (S —1) - 27
cells in order to consider the S segments of the PS section as their extensions,
achieving the desired overlap between the stages of the transform.

Figure 5 shows the new RS section, particular case of radix 2. The length of
the FIFO queues is now N —(S—1)-2—1 cells (2” segments of length 2% —S+1),
but we have had to introduce an additional queue of length (S — 1) - 2¥ cells
distributed in 2 segments. With this modification we solve the problem of cycle
loss. Its operating mode is simple. The main FIFO queue starts unloading in the
usual way at a speed of 2” words per cycle, the additional queue will store the
last S — 1 butterflies of each stage which have to be loaded at the normal speed.
Once the main queue has been unloaded, the reading of the additional queue will
be performed to complete the stage. This reading will be controlled by the new
extended multiplexors MU X1 and MUX?2. Observe that this additional queue
is only used for a short interval of time (S — 1 cycles), and it can be used by
both FIFO queues, this is the reason for only including one in the design of the
new RS section. Concluding, the pipeline design of the PS section reduces the
duration of the processing cycle and reduces the memory requirements in the RS
section by (S — 1) - 27 cells, although it increases its complexity.
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IV . PARALLEL ARCHITECTURE

Successive doubling algorithm can be implemented on a rectangular constant
geometry array of PEs. Two extremes of this array are the row of n PEs and
the column with ) = r? PEs, where n =log, N and 0 < ¢ < n — 1. The row of
PEs permits pipeline design, the biggest problems of which are the reduced 1/0O
bandwidth as a consequence of the necessary limitation in the number of input
and output buss of each PE and the limitation in the number of PEs (log, N).
Its most important advantage is that it permits the sequencing of the transforms
without losing cycles. In the other extreme, the column of PEs impedes the
execution of a new transform until the current one has finished, but it permits
the extension of the I/O bandwidth directly, as the limitation in the number of
PEs (N/r) is less restrictive than in the case of the row of PEs. Also, the longer
the column the shorter the FIFO queues.

A Processor column: Partitioning

We have just pointed out that the length of the PE columns does not necessarily
have to be equal to the number of butterflies of each stage (N/r). This leads to
the problem of partitioning successive doubling algorithm for parallel processing.
Thus, in what follows, we will consider one column of length @) where Q < N/r.
To change from a single PE system to a PE column will force us to modify the
notation introduced at the beginning of section III as we need a three dimensional
representation [z, y, z] of the index of each data item in the input sequence

[x,y,z] = [[mu o '-’rl]a [yw o 'yl]a [Zv o 'Zl]] (22)

Where z;, y; and z; have a similar meaning to the one in equation (8) and the
union of z, y, and z into a single number (z-2**"+y-2"+2) will coincide with the
binary representation of the index of the data sequence (i = 0,1,...,2%T¥v —1;
u+w+v=n).

If we consider v = log, r we can interpret the three dimensional representation
of equation (20) in the following way: the y and z coordinates determine the
parallelism of each stage of the transform, 2% butterflies (2¥ < N/r) of 2" data
items are computed in parallel in one column of 2¥ PEs with 2V inputs each,
and the = coordinate establishes the sequentiality in each stage of the transform
(2" vector of length 2**%). The calculation time for a stage will be 2* clock
cycles where the duration of the cycle is the time used by the processor in the
computation of a butterfly of 2¥ data items.

With this interpretation of equation (22) we are decomposing the binary rep-
resentation of the index of each data item into three fields [cycle, PE,bus|. In
each stage, cycle indicates the instant it is processed (cycle = 0,1,...,2% — 1),
PFE indicates the PE where it will be processed (PE = 0,1,...,2* — 1) and
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bus specifies the bus through which it will enter the PE (bus =0,1,...,2" —1).
Thus, for example, let N =64, Q@ =4 and 7 = 2 ((u, w,v) = (3,2,1)) In the first
stage of the transform, data item 35 (100011 binary), whose three dimensional
representation is [[100],[01],[1]], will input PE 1 through bus 1 in cycle 4 (35 will
be a part of the fifth block of butterflies).

The perfect unshuffle permutation of order k£ on the three dimensional repre-
sentation of the data indexes is defined as

Liylz,y, 21 = [[ze - 21@u - @pga], (@6 @1y -+ Y], (Y- Y120 -+« 2]
(23)
where £ < u+w+wv. We are again interested in the decomposition of permutation
I'(,) into elementary permutations. For this reason we are going to generalize I,
in order to be able to apply it to one, two or the three dimensions of equation
(22).

w2 =z 212 2ea], [ - vl (2 - 2120 - - 2 ] (24)

Llole,y, 2] = [[2u- - 21], w0l [z - 21020 - 2] (25)
where £k < v+ u and k < v, respectively. We define the rest of the permutations
of two and one variables F?,’cg and I'G), with a,b0 = z,y, 2 (a #b) and ¢ = z,y, 2
in a similar way. We will also extend the meaning of the operators d¢) and
Bk, which possess a two dimensional nature, in order to be able to apply them
to the new representation of equation (22). This is, 6‘”,;3‘ and ﬂé‘k)z perform the
decimation and concatenation permutations, equations 59) and (12) respectively,
on the dimensions z and y without modifying dimension z.

Lemma 2
Lwy =TT (26)

Where the application order for the operators is from left to right.

Proof
F&?F”’zuxu -[-[- 2], [ - 1), [zv]- t-zln . ]
— 1“ Zy 2Ty Tyt Yw YL, [Ty T
5 ma e To) [0 T vosih )]
= F(v)[[xu T 'xl]a [yw T 'y1]> [Zv Tt Zl]]
O

Lemmas 1 and 2 guarantee the decomposition of permutation I'¢,y of a two
or three dimensional representation of the index of each data item into more
elementary permutations, which is the base for the design of a constant geometry
architecture. Consequently, we can state the following theorem
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Theorem 1 ACP successive doubling radix r and constant geometry algorithm
of a sequence of N data items (N = r™) can be carried out in a column of Q@ PEs
(Q =1 0 < q<n-—1) which implements (hardware translation) each stage the
following operator string

cle bus c cle busTPE . bus

where v = log,r, the opemtors are applzed from left to right and we consider
the [cycle, PE, bus| interpretation of the three dimensional representation of the
index of each data item.

Proof

F(U) = F?’;F%’; (29)

Figure 6 shows the three elements [cycle, PE, bus] for each stage of the radix 2
transform of a sequence of 64 data items in a column with 8 PEs (N = 64, Q = 8,
r = 2). We have applied the operator string (26) to each data item each stage.
Remember that the sequence to be transformed has been shuffled in accordance
with the bit reversal permutation before starting the transform. As was to be
expected, the output stage presents the same order as the input sequence, due to
the fact that we have carried out six (n = 6) permutations I'().

The hardware implementation of the perfect unshuffle permutation expressed
in (23) is immediate from the operator strings in (26) and (28). ﬁfg)de busécyde bus
performs the perfect unshuffle permutation of the 2% butterflies of 2¥ data 1tems
processed sequentially by each PE. Consequently, we can use the same solution
as in the single processor case (see (20) and figure 3), with the only difference
that in this case the length of the FIFO queues will be 2% — 2¥ cells, considering
the PS section as the only stage of the internal pipeline of the PE. Ff]f bus Her-
forms the perfect unshuffle permutation of the outputs of the PEs. Its hardware
implementation will be using an external interconnection network determined
by operator Fgf’b“s applied on the dimensions [y, z]: The z-th output bus of
the y-th PE will be connected to the z*-th input bus of the y*-th PE, where
[z, y*, 2] = Fy’)[:r y, z]. Figure 7 shows the connections of the PEs for the exam-
ple of figure 6. The number of input and output buss of each PE is only a function
of the radix of the transform and not of the number of PEs in the column.

Summarizing, we have introduced the partition of ACP successive doubling
algorithm in a natural way by means of the decomposition of permutation I'(,) in
a perfect unshuffle which is internal ([cycle, bus]) and another which is external
([PE,bus]) to the PEs. In the particular case of one column with a single PE the
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whole unshuffle will be internal, we obtain the solution of the previous section
(sequence (20)), and the FIFO queues will have a length of N — 2? cells. In the
extreme case of a column with 7"~ PEs the whole unshuffle will be external and,
consequently, the FIFO queues will not be necessary.

The [cycle, PE, bus| interpretation we have performed for the three dimen-
sional representation [z,y, z] of the index of each data item is not unique. Thus,
for example, [PE, cycle, bus] is another possible interpretation with similar char-
acteristics, but with the order for carrying out the internal and external permu-
tations changed. Consequently, we can establish the following result.

Theorem 2 ACP successive doubling radix r and constant geometry algorithm
of a sequence of N data items (N = r") can be carried out in a column of Q PEs
(Q =19 0<q <n—1) which implements (hardware translation) in each stage
the following operator string

PE)b le,b le,b
B(v)r(v) u.Sﬁ(cg)c e usa(cg)c e,bus (30)

Where v = log,r, the operators are applied from left to right, we consider the
[PE, cycle, bus] interpretation of the three dimensional representation of the index
of each data item.

Its proof is similar to that of theorem 1.

The change in the order of operators I', 3 and ¢ in expressions (28) and (30)
implies a different location for the PS and RS sections of the PE. Both designs
share the same external interconnections (see figure 7, for example) and are iden-
tical when we have a column with a single PE. However, the initial distribution
of the data (first stage) is different for each interpretation; with [cycle, PE, bus|
consecutive butterflies ({0,1}, {2,3}, ...) are processed in different PEs (see fig-
ure 6), whereas using [PE, cycle, bus] they are processed in the same PE (a block
of N/@Q consecutive data items are processed in each PE).

V.  DCP SUCCESSIVE DOUBLING ALGORITHM

The constant geometry architecture of the DCP algorithm is obtained by per-
forming a perfect shuffle of the data generated in each stage of the transform.
Considering the three dimensional representation of the data indexes introduced
in section IV (equation (21)) we define the order k£ perfect shuffle operator as

O (k) (2,9, 2] = [[Tu—k = T1Yw " Yw—bt1)s [Yw—k Y120 Zo—kti], [Ro—k = Y1Tu - Tu—kt1]]
(31)

where k£ < u + w +v. We can easily generalize o) in a similar way to equations

(35) and (36). We are interested in the decomposition of permutation o, v =
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log, 7, into elementary permutations we can implement electronically. In order
to achieve this we define two new operators: inverse decimation (6%) and inverse

a,

concatenation (ﬂ(k)) where a,b = z,y,z (a # b)

Syl y 2l = w2z 2] [yl (20 2] (32)
Bisle, vzl = wu—r - 21), oyl [20 2180 Tupaa]]  (33)

The electronic implementation of these two new operators is immediate. 5 (k) can
be realized by means of a multiplexor with 2% inputs. ﬁ can be implemented
by means of a FIFO queue of length N (N = r™) with an 1nput and 2F outputs.

Lemma 3 The following decompositions of the perfect shuffle permutation occur:

oty e = SA Y, 2] (34)
O(U)[x’yvz] = y’z zz[$ Y,z ] (35)

The proof is similar to those of lemmas 1 and 2 stated in previous sections.

Equations (35) and (36) guarantee the decomposition of the perfect shuffle
permutation of the three dimensional representation of each data item’s index.
Consequently, we can establish the following result

Theorem 3 DCP successive doubling radiz v and constant geometry algorithm
of a sequence of N data items (N = r") can be carried out in a column of Q
PEs (Q =19, 0 < q < n) which implement (hardware translation) each stage the
following operator string

o_g}f? busdcycle busﬂ( cycle, busB (36)
Where v = log,r, the operators are applied from left to right and we consider
the [cycle, PE, bus| interpretation of the three dimensional representation of the
index of each data item.

Its proof is similar to that of theorem 1. Figure 8 shows the internal structure
of the PE, where we have included two FIFO queues to facilitate the overlapping
execution of different transform stages. This queues implement the operator
string (5Cyde busﬁcyde U5 whereas the partial perfect shuffle operator 0(121)9,1)% deter-
mines the mterconnection network of the PE column. Finally, we can establish
in an immediate way the theorems for the DCP successive doubling algorithm
which are equivalent to theorem 2 of section IV.
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VI CONCLUSIONS

We can classify the hardware solutions for digital signal processing [17] into three
groups: 1) conventional microprocessors; 2) specific domain microprocessors; and
3) application specific multiprocessors. The design based on conventional micro-
processors is simple, but its greatest drawback is associated with their lack of
specificity. The specific domain processors, among which we find the DSPs [1,48-
50], are an attempt to optimize the design by limiting the application spectrum.
They are specialized in algorithms whose fundamental operation is the summa-
tion of products. They are microprogrammed devices whose power is conditioned
by the design of the databus. Moreover, hardware address generation is impera-
tive to DSP performance since sample-by-sample data structure maintenance in
software represents a substantial overhead [1]. An optimization of this second so-
lution are the application specific DSPs , such as the FF'T PDSP16510 processor
from Plessey Semiconductor [3,37-38], among others [29,51].

Parallelism has long been considered an important solution to DSP applica-
tions requiring higher computational power than a single processor could offer.
A first approach consists in designing DSPs with multiple arithmetic units and
sophisticated addressing modes for accessing the data located in multiple mem-
ory banks [1,37-38]. However, the solution is in the design of multiprocessor
architectures which permit the exploitation of the inherent parallelism of DSP
algorithms. In order to do this we must consider two important problems this
new alternative presents: To carry out the partitioning of the algorithm and to
choose the type of synchronization between PEs, which must also be solved in an
effective way. Partitioning is very important to the DSP system design process
[1]. Current reality is that multiple DSP chip architectures are limited to two
or three devices with considerable restrictions on interprocessor communication
and consequently on problem partitioning. In this work we have shown that it is
possible to design an application specific DSP multiprocessor architecture which
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can be integrated in VLSI or WSI technology.

The successive doubling method is an efficient procedure for the design of fast
algorithms for orthogonal transforms. Algorithms which present a high spatial
parallelism in the calculation stages and an inherent sequentiality between them.
Consequently, the appropriate architecture will be a rectangular array made up
of a pipeline of PE columns. The application specific multiprocessor we have
proposed in this work efficiently solves the problems mentioned before. The
result is a constant geometry systolic architecture. The geometry is determined
by the perfect unshuffle (or perfect shuffle) permutation of the data generated in
each stage of the ACP (or DCP) algorithm.

The constant character of the geometry permits the implementation of the
data flow of the successive doubling algorithm by means of hardwired control.
That is, the PEs do not need address arithmetic units to locate the data. Ad-
dressing is inherent to the evolution of the data in the FIFO queues of the RS
section and the external interconnection network. Moreover, the partitioning of
the algorithm appears in a natural way when this permutation (perfect unshuffle
or shuffle) is decomposed into a string of elementary permutations which can be
implemented electronically: decimation, concatenation and partial perfect un-
shuffle (ACP) or shuffle (DCP). Finally, we have chosen the systolic operating
mode, which is an effective synchronization method.

The design of the application specific architecture for each one of the trans-
forms is completed with the design of the PS section. In the companion paper [93]
we will give a unified presentation of the PS section for the different transforms
we consider. More specifically, we will use a CORDIC arithmetic unit, as it has
a better throughput per unit area than VLSI multipliers.
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