
FMM CMSC 878R/AMSC 698R

Lecture 2

Complexity• The most common complexities are
– O(1) - not proportional to any variable number, i.e. a

fixed/constant amount of time
– O(N) - proportional to the size of N (this includes a loop to N

and loops to constant multiples of N such as 0.5N, 2N, 2000N -
no matter what that is, if you double N you expect (on average)
the program to take twice as long)

– O(N^2) - proportional to N squared (you double N, you expect
it to take four times longer - usually two nested loops both
dependent on N).

– O(log N) - this is tricker to show - usually the result of binary
splitting.

– O(N log N) this is usually caused by doing log N splits but also
doing N amount of work at each "layer" of splitting.

Theta

•f(n) = Θ(g(n))

f(n) = O(g(n)) and g(n) = O(f(n))

Same Order of Growth:

Log complexity

• If you half data at each stage then number of
stages until you have a single item is given
(roughly) by log2 N. => binary search takes log2
N time to find an item.

• All logs grow a constant amount apart
(homework)
– So we normally just say log N not log2 N.

• Log N grows very slowly

Fourier Analysis

• Def.: mathematical
techniques for breaking up
a signal into its
components (sinusoids)

• Jean Baptiste Joseph
Fourier (1768-1830)

• can represent any
continuous periodic signal
as a sum of sinusoidal
waves

=

+

+

Applications

• Digital Signal Processing: analyzing and
manipulating real-world signals using a computer
– Toys and consumer electronics
– Speech recognition
– Audio/video compression
– Medical imaging
– Communications
– Radar

Fourier Transform• Fourier transform of a function h(t) is given by
H(f) where f is the frequency

• Discrete Fourier Transform: if the function is
sampled at discrete times

Discrete Fourier Transform

• All notion of time has disappeared
• Multiplication of sampled data by a matrix

• This matrix is called the Fourier Matrix
• As discussed earlier it is a structured matrix

Fourier Transform Algorithm

For k=0 to N/2 {
For i=0 to N-1 {

Real_X[k] += x[i] * cos(2π * k * i / N)
Imag_X[k] -= x[i] * sin(2π * k * i / N)

}
}

Fast Fourier Transform
• Presented by Cooley and Tukey in 1965, but invented

several times, including by Gauss (1809) and Danielson
& Lanczos (1948)

• Danielson Lanczos lemma

FFT

• So DFT of order N can be expressed as
sum of two DFTs of order N/2

• Does this improve the complexity?
• Yes (N/2)2+(N/2)2 =N2/2< N2

• But we are not done ….
• Can apply the lemma recursively

• Finally we have a set of one point
transforms

Fast Fourier Transform
Algorithm

• J.W. Cooley and J.W. Tukey, 1965
• Karl Friedrich Gauss (1777-1855)
• 1: Break N-point signal into N 1-point

signals
• 2: Calculate N frequency spectra
• 3: Combine the spectra into one spectrum

Illustration

• Step 1: 16-point signal 16 1-point signals
[x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14,

x15]
[x0, x2, x4, x6, x8, x10, x12, x14][x1, x3, x5, x7, x9, x11, x13,

x15]
[x0, x4, x8, x12][x2, x6, x10, x14][x1, x5, x9, x13][x3, x7, x11,

x15]
[x0, x8][x4, x12][x2, x10][x6, x14][x1, x9][x5, x13][x3, x11][x7,

x15]
[x0][x8][x4][x12][x2][x10][x6][x14][x1][x9][x5][x13][x3][x11][

x7][x15]
• Step 2: Spectrum of 1-point signal = signal
• Step 3: Combine spectra in bottom-up fashion

Comparison

• Discrete Fourier Transform
– 2 nested loops, N points each
– TDFT(N) = Θ(N2). Execution time = kDFTN2.

• Fast Fourier Transform
– Lg N stages, N/2 butterfly computations each
– TFFT(N) = Θ(N lg N). Execution time = kFFTN lg N.

• E.g. 1024-point FT on 100MHz Pentium
– DFT: kDFT=25 microseconds; E.T.=25 seconds.
– FFT: kFFT=10 microseconds; E.T.=70 milliseconds

FFT

• So DFT of order N can be expressed as
sum of two DFTs of order N/2

• Does this improve the complexity?
• Yes (N/2)2+(N/2)2 =N2/2< N2

• But we are not done ….
• Can apply the lemma recursively

• Finally we have a set of one point
transforms

Complexity

• Each Fk is a sum of log2 N transforms and
(factors)

• There are N Fk s
• So the algorithm is O(N log2 N)

FFT and bit-shifts

• Set o to 1 and e to 0
• Then the sequence ooeoeo… can be

interpereted as a binary number
• Reversing the pattern of e’s and o’s gives

the binary value of n

Conclusion

• FFT is a divide-and-conquer algorithm
– Divide: bit reversal sort
– Conquer: calculate frequency spectra
– Combine: recombine frequency spectra using

butterfly computation
• N lg N time complexity
• Also implemented in hardware
• Makes many DSP applications practical

Outline
• Factorization – One of key parts of the FMM.

– Extensions of our trick for fast summation
• Fields (Potentials)

– Singular and Regular Fields
– Far Field and Near Field

• Local Expansions (R-expansions)
– Local Expansions of Regular and Singular Potentials
– Power Series
– Taylor Series

Matrix-Vector Multiplication

Why Rd ?
• d = 1

– Scalar functions, interpolation, etc.
• d = 2,3

– Physical problems in 2 and 3 dimensional space
• d = 4

– 3D Space + time, 3D grayscale images
• d = 5

– Color 2D images, Motion of 3D grayscale images
• d = 6

– Color 3D images
• d = 7

– Motion of 3D color images
• d = arbitrary

– d-parametric spaces, statistics, database search procedures

Fields (Potentials)

Field (Potential) of a single
(ith) unit source

Field (Potential) of the set
of sources of intensities {ui}

Fields are continuous!
(Almost everywhere)

Examples of Fields
• There can be vector or scalar fields (we focus mostly on

scalar fields)
• Fields can be regular or singular

(singular at y = xi)

(singular at y = xi)

(regular everywhere)

Scalar Fields:

Vector Field:

(singular at y = xi)

Straightforward Computational
Complexity:

O(MN) Error: 0 (“machine” precision)

The Fast Multipole Methods look for computation of the same problem
with complexity o(MN) and error < prescribed error.

In the case when the error of the FMM does not exceed the machine
precision error (for given number of bits) there is no difference
between the “exact” and “approximate” solution.

Factorization
“Middleman Method”

Global Factorization

Expansion coefficients

Basis functions

Expansion center Truncation number

Factorization Trick

Reduction of Complexity
Straightforward (nested loops):

Complexity: O(MN)

Factroized:

Complexity: O(pN+pM)If p << min(M,N) then complexity reduces!

Middleman Scheme

Complexity: O(pN+pM)

N M N M

Straightforward Middleman

N M N M

Straightforward Middleman

Set of coefficients {cm}

Far Field and Near Field

Near Field

rc
xi

y

Far Field

Rc
xi

y

What are these rc and Rc ?
depends on the potential + some conventions for the terminology

Local (Regular) Expansion

r*
x*

y

Do not confuse with the Near Field!

We also call this R-expansion,
since basis functions Rm should be regular

Basis
Functions

Expansion
Coefficients

Local Expansion of a Regular
Potential

r*
x*

y

xi

r*
x*

y

xi

Can be like this:

…or like this:

|y - x*| < r* < |xi - x*|

r* > |y - x*| > |xi - x*|

r*
x*

y
xi

…or like this:

r* > |xi - x*| > |y - x*|

Local Expansion of a Regular
Potential (Example)

Valid for any r* < ∞, and xi.

Local Expansion of a Singular
Potential

r*
x*

y

xi

r*
x*

y

xi

Can be like this:

…or like this:

|y - x*| < r* ≤ |xi - x*|

r* > |y - x*| > |xi - x*|

r*
x*

y
xi

…or like this:

r* > |xi - x*| > |y - x*|

Like this only! Never ever!
Because xi is a singular point!

Local Expansion of a Singular
Potential (Example)

Valid for any |xi.-x*| > |y-x*|

