FMM CMSC 878R/AMSC 698R

Lecture 2



e The most common %%'HF&W@QJ%

— O(1) - not proportional to any variable number, i.e. a
fixed/constant amount of time

— O(N) - proportional to the size of N (this includes a loop to N
and loops to constant multiples of N such as 0.5N, 2N, 2000N -
no matter what that is, if you double N you expect (on average)
the program to take twice as long)

— O(N”2) - proportional to N squared (you double N, you expect
It to take four times longer - usually two nested loops both
dependent on N).

— O(log N) - this is tricker to show - usually the result of binary
splitting.

— O(N log N) this i1s usually caused by doing log N splits but also
doing N amount of work at each "layer" of splitting.



Theta
Same Order of Growth:

*f(n) = ©(g(n))

f(n) = O(g(n)) and g(n) = O(t(n))



Log complexity

 |f you half data at each stage then number of
stages until you have a single item Is given

(roughly) by log, N. => binary search takes log,
N time to find an item.

 All logs grow a constant amount apart
(homework)

— So we normally just say log N not log, N.
* Log N grows very slowly



Fourier Analysis

e Def.: mathematical |
techniques for breaking uj.

a signal into its 8 \/

components (sinusoids) - ) : /
 Jean Baptiste Joseph 4y

Fourier (1768-1830) /\
e can represent any * TV T

continuous periodic signal

as a sum of sinusoidal

WaVES /\ /\




Applications

 Digital Signal Processing: analyzing and
manipulating real-world signals using a computer
— Toys and consumer electronics
— Speech recognition
— Audio/video compression
— Medical imaging
— Communications
— Radar



* Fourier trarEBqu i(ﬁ‘ra-”r%ﬁgx ﬂftsnis given by

H(f) where fis the frequency

H(f) = /x h(t)e*™ tdt

o0

h(f) _/DC H(f)e—z?ﬂffdf

e Discrete Fourier Transform: if the function iIs
Sampled at dlscrete hi = h(t), ty = kA, k=0,1,2,....N -1

OO
H(f-n.) — / h(t)f’;".me”tdt o Z hy. e2Tifnt A — A Z h E;.,IQTT'ik‘.'n./f\T
J —0C

k=0 k=0




Discrete Fourier Transform

All notion of time has disappeared
Multiplicatior ~¥ comnlad data by a matrix

N-—-1
Hn = § hk eQ’;’rzkn/N
k=()

This matrix is called the Fourier Matrix
As discussed earlier 1t 1s a structured matrix



A Fourier matrix of order n is defined as the following

1 1 1 SR | |
1 W W2 ool
1 W2 W4 L WQ(n—l) ,
1 wr1 w2n-1) ... wn-1)(n-1)
where
2mi
W —=en :

IS an nth root of unity.



Fourier Transform Algorithm

For k=0 to N/2 {
For 1=0 to N-1 {
Real X[k] +=X[i] * cos(2r * k * 1/ N)
Imag_X[K] -= X[1] *sin(2r * kK * 1/ N)
h
¥



Fast Fourier Transform
* Presented by Cooley and Tukey in 1965, but invented
several times, including by Gauss (1809) and Danielson
& Lanczos (1948)

 Danielson Lanczos lemma

N—1
Fl = E :HQWUA/J\ fj
=0
N/2—1 N/2—1
§ 2mwik(29) /N E 2mwik(29+1)/N
— e wik(27)/1 fQj + e wik(25+1)/1 f2j+l
j=0 =0
N/2—-1 N/2—-1
_ 6227Tz,kj/(1\/2) f2j + VVA GEQWZAJ/(J\ /Q)fQj—l—l
=0 =0

=L +WF Fp



FET

So DFT of order N can be expressed as
sum of two DFTs of order N/2

Does this improve the complexity?

Yes (N/2)2+(N/2)? =N?/2< N?
= F¢ 4+ WFFE©, FP = F+ WrE

F€
BlJILkVV\., UL 11IVL UUVIILU ..

Can apply the lemma recursively

F€O€€O€O' ro€ee __ f
k — Jn

~»

Finally we have a set of one point
transforms



Fast Fourier Transform
Algorithm

J.W. Cooley and J.W. Tukey, 1965
Karl Friedrich Gauss (1777-1855)

1: Break N-point signal into N 1-point
signals

2. Calculate N frequency spectra
3. Combine the spectra Into one spectrum



[Hlustration

o Step 1: 16-point signal =» 16 1-point signals

[Xg: X1, X5, X3, X4y X5, Xy X7, Xgy Xgy X101 X11, X125 X3, X4
X15]

[Xg: Xay X4, Xg» Xg» X109y X120 X14][X1, Xz1 X555 X71 Xgy X115 Xy3s
X1s]

Xo» X4:1|1 Xgy X12][X0, Xg, Xq0s X1l [X11 X0 Xg, X13][X3, X7, Xq1,
X15

Xo, Xﬁ] [X40 X121 [X0s X10][X6, X141[X1s Xol[Xss X13][X3, X111[X7,
X1s5

[Xo][Xel [XaI[X12] IXal [X10 Xl [X1a] X1 ] IXal [X5 ] X1 2] [Xa][X 14 ]

X7][Xys]
e Step 2: Spectrum of 1-point signal = signal

e Sten ' C.nmhina enartra in hnttnme-iin fachinn




Comparison

 Discrete Fourier Transform

— 2 nested loops, N points each

— Tper(N) = ©(N?). Execution time = kN2
e Fast Fourier Transform

— Lg N stages, N/2 butterfly computations each

— Teer(N) = O(N Ig N). Execution time = kN Ig N.
e E.g. 1024-point FT on 100MHz Pentium

— DFT: kper=25 microseconds; E.T.=25 seconds.
— FFT: keer=10 microseconds; E.T.=70 milliseconds



FET

So DFT of order N can be expressed as
sum of two DFTs of order N/2

Does this improve the complexity?

Yes (N/2)2+(N/2)? =N?/2< N?
= F¢ 4+ WFFE©, FP = F+ WrE

F€
BlJILkVV\., UL 11IVL UUVIILU ..

Can apply the lemma recursively

F€O€€O€O' ro€ee __ f
k — Jn

~»

Finally we have a set of one point
transforms



Complexity

» Each F, I1sasum of log, N transforms and
(factors)

 Thereare N F, s
 So the algorithm is O(N log, N)



FFT and bit-shifts

e SetotolandetoO
e Then the sequence 00eo0eo0... can be

Interpereted as a binary number

000

+ Reversing the pattern [, /
the binary value of n | >{010

011 011 011

100 100 100

101

/ \}‘r 101 101
110 110 110

111 » 111 111




Conclusion

FFT i1s a divide-and-conguer algorithm
— Divide: bit reversal sort
— Conquer: calculate frequency spectra

— Combine: recombine frequency spectra using
butterfly computation

N Ig N time complexity
Also implemented in hardware
Makes many DSP applications practical



Outline

 Factorization — One of key parts of the FMM.
— Extensions of our trick for fast summation

 Fields (Potentials)
— Singular and Regular Fields
— Far Field and Near Field

 Local Expansions (R-expansions)
— Local Expansions of Regular and Singular Potentials

— Power Series
— Taylor Series



Matrix-Vector Multiplication

Compute matrix vector product

v = Pu
or
N
VJ = Z(Dﬁu;-, _} = ]..,.,.E"/f:,
i1
where
(I)ji = (I)(YJ&.&XE').': JT = laaﬁ’/fa I= 1.‘:"'54?\;;
or
Dy Dy D1y D(y,x1) D(yy,X2) D(y 1, Xw)
o Dy Dy Doy D(y,,x1) P(y,.xz) DOy, X )
Dun Dup D pav Oy ,pX1) Py,px2) ... P¥HXw)
Generally we have two sets of points in d-dimensions:
Sources: X ={xi,....Xxyr, X; €R% i=1..N,
Receivers: Y ={y,....¥,}, ¥; € R?, j=1,....M,

The receivers also can be called “targets™ or “evaluation points™.



Why R47?

d=1
— Scalar functions, interpolation, etc.
d=2,3

— Physical problems in 2 and 3 dimensional space
d=4

— 3D Space + time, 3D grayscale images
d=5

— Color 2D images, Motion of 3D grayscale images
d=6

— Color 3D images

d=7
— Motion of 3D color images
d = arbitrary

— d-parametric spaces, statistics, database search procedures



Fields (Potentials)

Field (Potential) of a single
(ith) unit source

N s

= ) . )
;(3’} Zlu;ﬂﬁ'{r,x;}, y <R,

vy =viy;), J=1..M

Field (Potential) of the set
of sources of intensities {u;}

Fields are continuous!
(Almost everywhere)



Examples of Fields

e There can be vector or scalar fields (we focus mostly on

scalar fields)

 Fields can be regular or singular

Scalar Fields:

[ Grawity _
(singular aty = x;)

u Monochromatic Warre (% 15 the wavenumber)
(singular aty = Xx;)

PO~
exp {1kly — X,
Ox) = T '}‘

2
O(y,x:) = expi=ly - x,[2io} |

a 1 ;.8 1

u (Faussian
(regular everywhere)
Vector Field:
3} 2D Velocity field:
®(y.x) = Vy—— =i

|Y - Iz’l a-}rl |F - Iz’l

3 a
D2 ly-x| D y-x

(singular at y = x;)

¥y =(r.r2.y3) € R




Straightforward Computational
Complexity:

O(MN) Error: 0 (“machine” precision)

The Fast Multipole Methods look for computation of the same problem
with complexity o(MN) and error < prescribed error.

In the case when the error of the FMM does not exceed the machine
precision error (for given number of bits) there is no difference
between the “exact” and “approximate” solution.



Factorization
“Middleman Method”



Global Factorization

Expansion center  Truncation number

)

oo -1
fII(}}xI-) = 2 (o (X; — X 4 }fm(}y — x*) = 2 o (X; — x*)fm(}v - X, ) + Error(p,%;, ;)
=[] m=l

|

Expansion coefficients

XLy, € QT RY:

Basis functions



Factorization Trick

N

v = 2 0(yx

i=1

_Z[ng(x X. )fm(v X, )+E;mr(px v):|u

i=1 m=l]

N

_me(v Z — X, U +ZE;ro;(px y;)

i=1
- Z Confom (yj — X ) + Error(N,p),
=0

where

Y
= Z o (X; — X U
i=1



Reduction of Complexity

Straightforward (nested loops):

Complexity: O(MN)

If p << min(M,N) then complexity reduces!

Factroized:
form=20,...,p—1
¢, = 0:
fori=1,..., N
Cin = Cimp T Uy (X; — X U
end:
end:
forj=1,..., M
Vv, =
form=0,...,p—-1
Vi =V + c%fm(yJ x*)
end;

Complexity: O(pN+pM)



Middleman Scheme

Straightforward Middleman

®
O

Complexity: O(pN+pM) Set of coefficients {c,}



Far Field and Near Field

u Mear Field of the ith source:

|3f— I!.l < P

u Far Field of the ith source:

¥ — x| = o

Near Field Far Field

What are these r,and R, ?
depends on the potential + some conventions for the terminology



Local (Regular) Expansion

Do not confuse with the Near Field!
Let

Basis
x <R | Fyunctions

We call expansion /

= v

Ty, x;) = 2 B (X, X0 M (¥ — X))

m={]
local (regular) mside a sphere

¥ x| = 7. | Expansion
if the zeries converoes for Wy, |v — x| < 7. Coefficients

We also call this R-expansion,
since basis functions R, should be regular



Local Expansion of a Regular
Potential

_ _ ...or like this:
Can be like this:

oXi

...or like this:

e > X - X > |Y - X4
YV = X < T <X - X

r* > |y = X*| > |X|' X*|



Local Expansion of a Regular
Potential (Example)

Valid for any r. < oo, and x;

Looking for factorization:

We have

Choose

X,V E ]]E1.|
1

Dy, x;) =277

Dy, x;) = Eam{xi— Xa ) Bm (=24 ‘
m={l

P T R e N ) e e T el oty

_ o0 _,:_:,sz(x — % }mff )"

2™

AmlX; — Xy) = g s ok n—[}: a0, m=01,.,

Rmly—x,) =g 0% jr[}? 07 m=101,




Local Expansion of a Singular
Potential

Can be like this:

. 0 NS [Xi = Xa| > [y - X4
|y'X*| < r*S|X'X*|

i'X

Never ever!

Like this only!
Because Xx; Is a singular point!



Local Expansion of a Singular

Potential (Example)

Valid for any |X; -X.| > |y-X.|

_ 1

(I)(:y,x!':l - };_x!.' ‘

Looking for factorization:
Dy, x;) = Za‘m(:ﬁr,—— T )R (=24

=il

We hawe
1 _ 1 1 [ y—x ]1
YTH Yo m (o x) (mex)[l-55y] 0 Gemxgl RTA

(Teotnetric progression:

(l-e)? = l+a+a?+. . =Zaf’”, |ae| = 1.

[1 _—J;f }_1 Z( )}m’ = a| < fxs — %

el

Choose

1

(xz. _ X:,:ImH :

Em(—xa)=(y—x,0", m=01,._

Al Xy — Xy) = — me=01 .,




