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Complexity• The most common complexities are 
– O(1) - not proportional to any variable number, i.e. a 

fixed/constant amount of time
– O(N) - proportional to the size of N (this includes a loop to N 

and loops to constant multiples of N such as 0.5N, 2N, 2000N -
no matter what that is, if you double N you expect (on average) 
the program to take twice as long)

– O(N^2) - proportional to N squared (you double N, you expect 
it to take four times longer - usually two nested loops both 
dependent on N).

– O(log N) - this is tricker to show - usually the result of binary 
splitting. 

– O(N log N) this is usually caused by doing log N splits but also
doing N amount of work at each "layer" of splitting.



Theta

•f(n) = Θ(g(n))

f(n) = O(g(n)) and g(n) = O(f(n))

Same Order of Growth:



Log complexity

• If you half data at each stage then number of 
stages until you have a single item is given 
(roughly) by log2 N. => binary search takes log2
N time to find an item. 

• All logs grow a constant amount apart 
(homework) 
– So we normally just say log N not log2 N. 

• Log N grows very slowly 



Fourier Analysis

• Def.: mathematical 
techniques for breaking up 
a signal into its 
components (sinusoids)

• Jean Baptiste Joseph 
Fourier (1768-1830)

• can represent any 
continuous periodic signal 
as a sum of sinusoidal 
waves
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Applications

• Digital Signal Processing: analyzing and 
manipulating real-world signals using a computer
– Toys and consumer electronics
– Speech recognition 
– Audio/video compression
– Medical imaging
– Communications
– Radar



Fourier Transform• Fourier transform of a function h(t) is given by 
H(f) where f is the frequency

• Discrete Fourier Transform: if the function is 
sampled at discrete times



Discrete Fourier Transform

• All notion of time has disappeared
• Multiplication of sampled data by a matrix

• This matrix is called the Fourier Matrix
• As discussed earlier it is a structured matrix





Fourier Transform Algorithm

For k=0 to N/2 {
For i=0 to N-1 {

Real_X[k] += x[i] * cos(2π * k * i / N)
Imag_X[k] -= x[i] * sin(2π * k * i / N)

}
}



Fast Fourier Transform
• Presented by Cooley and Tukey in 1965, but invented 

several times, including by Gauss (1809) and Danielson 
& Lanczos (1948)

• Danielson Lanczos lemma



FFT

• So DFT of order N  can be expressed as 
sum of two DFTs of order N/2

• Does this improve the complexity?
• Yes (N/2)2+(N/2)2 =N2/2< N2

• But we are not done ….
• Can apply the lemma recursively

• Finally we have a set of one point 
transforms



Fast Fourier Transform 
Algorithm

• J.W. Cooley and J.W. Tukey, 1965
• Karl Friedrich Gauss (1777-1855)
• 1: Break N-point signal into N 1-point 

signals
• 2: Calculate N frequency spectra
• 3: Combine the spectra into one spectrum



Illustration

• Step 1: 16-point signal 16 1-point signals
[x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, 

x15]
[x0, x2, x4, x6, x8, x10, x12, x14][x1, x3, x5, x7, x9, x11, x13, 

x15]
[x0, x4, x8, x12][x2, x6, x10, x14][x1, x5, x9, x13][x3, x7, x11, 

x15]
[x0, x8][x4, x12][x2, x10][x6, x14][x1, x9][x5, x13][x3, x11][x7, 

x15]
[x0][x8][x4][x12][x2][x10][x6][x14][x1][x9][x5][x13][x3][x11][

x7][x15]
• Step 2: Spectrum of 1-point signal = signal
• Step 3: Combine spectra in bottom-up fashion



Comparison

• Discrete Fourier Transform
– 2 nested loops, N points each
– TDFT(N) = Θ(N2). Execution time = kDFTN2.

• Fast Fourier Transform
– Lg N stages, N/2 butterfly computations each
– TFFT(N) = Θ(N lg N). Execution time = kFFTN lg N.

• E.g. 1024-point FT on 100MHz Pentium
– DFT: kDFT=25 microseconds; E.T.=25 seconds.
– FFT: kFFT=10 microseconds; E.T.=70 milliseconds



FFT

• So DFT of order N  can be expressed as 
sum of two DFTs of order N/2

• Does this improve the complexity?
• Yes (N/2)2+(N/2)2 =N2/2< N2

• But we are not done ….
• Can apply the lemma recursively

• Finally we have a set of one point 
transforms



Complexity

• Each Fk is a sum of log2 N  transforms and 
(factors)

• There are N  Fk s
• So the algorithm is O(N log2 N)



FFT and bit-shifts

• Set o to 1 and e to 0
• Then the sequence ooeoeo… can be 

interpereted as a binary number
• Reversing the pattern of e’s and o’s gives 

the binary value of n



Conclusion

• FFT is a divide-and-conquer algorithm
– Divide: bit reversal sort
– Conquer: calculate frequency spectra
– Combine: recombine frequency spectra using 

butterfly computation
• N lg N time complexity
• Also implemented in hardware
• Makes many DSP applications practical



Outline
• Factorization – One of key parts of the FMM.

– Extensions of our trick for fast summation
• Fields (Potentials)

– Singular and Regular Fields
– Far Field and Near Field 

• Local Expansions (R-expansions)
– Local Expansions of Regular and Singular Potentials
– Power Series
– Taylor Series



Matrix-Vector Multiplication



Why Rd ?
• d = 1

– Scalar functions, interpolation, etc.
• d = 2,3

– Physical problems in 2 and 3 dimensional space
• d = 4

– 3D Space + time, 3D grayscale images
• d = 5

– Color 2D images, Motion of 3D grayscale images
• d = 6

– Color 3D images
• d = 7

– Motion of 3D color images
• d = arbitrary

– d-parametric spaces, statistics, database search procedures



Fields (Potentials)

Field (Potential) of a single
(ith) unit source

Field (Potential) of the set
of sources of intensities {ui} 

Fields are continuous! 
(Almost everywhere)



Examples of Fields
• There can be vector or scalar fields (we focus mostly on 

scalar fields)
• Fields can be regular or singular

(singular at y = xi)

(singular at y = xi)

(regular everywhere)

Scalar Fields:

Vector Field:

(singular at y = xi)



Straightforward Computational 
Complexity:

O(MN) Error: 0 (“machine” precision)

The Fast Multipole Methods look for computation of the same problem
with complexity o(MN) and error < prescribed error.

In the case when the error of the FMM does not exceed the machine 
precision error (for given number of bits) there is no difference 
between the “exact” and “approximate” solution.  



Factorization
“Middleman Method”



Global Factorization

Expansion coefficients

Basis functions

Expansion center Truncation number



Factorization Trick



Reduction of Complexity
Straightforward (nested loops):

Complexity: O(MN)

Factroized:

Complexity: O(pN+pM)If p << min(M,N) then complexity reduces! 



Middleman Scheme

Complexity: O(pN+pM)

N M N M

Straightforward Middleman

N M N M

Straightforward Middleman

Set of coefficients {cm}



Far Field and Near Field

Near Field

rc
xi

y

Far Field

Rc
xi

y

What are these rc and Rc ?
depends on the potential + some conventions for the terminology



Local (Regular) Expansion

r*
x*

y

Do not confuse with the Near Field!

We also call this R-expansion,
since basis functions Rm should be regular

Basis 
Functions

Expansion
Coefficients



Local Expansion of a Regular 
Potential

r*
x*

y

xi

r*
x*

y

xi

Can be like this:

…or like this:

|y - x*| < r* < |xi - x*| 

r* > |y - x*| > |xi - x*| 

r*
x*

y
xi

…or like this:

r* > |xi - x*| > |y - x*|



Local Expansion of a Regular 
Potential (Example)

Valid for any r* < ∞, and xi.



Local Expansion of a Singular 
Potential

r*
x*

y

xi

r*
x*

y

xi

Can be like this:

…or like this:

|y - x*| < r* ≤ |xi - x*| 

r* > |y - x*| > |xi - x*| 

r*
x*

y
xi

…or like this:

r* > |xi - x*| > |y - x*|

Like this only! Never ever!
Because xi is a singular point!



Local Expansion of a Singular 
Potential (Example)

Valid for any |xi.-x*| > |y-x*|


