ALGORITHM OF DEFINING 1-D INDEXING FOR M-D
MIXED RADIX FFT IMPLEMENTATION

Chwen-Jye Ju, Ph.D.

Sharp Microelectronics Technology, Inc.
5700 NW Pacific Rim Blvd.
Camas, WA 98607, USA

ABSTRACT

Multi-dimensional (M-D) fast Fourier transform
(FFT) is an essential algorithm in array signal pro-
cessing. However, the calculation of M-D indexing
and transposition of data matrix required by the M-D
FFT are the algorithm’s performance killer. The
paper will propose a novel M-D to 1-D FFT signal
flow graph (SFG) mapping. Thus, the M-D FFT can
be efficiently implemented by the unified 1-D indexing
and the address generator design can be simplified.
In addition, the matrix transposition is no longer
necessary. Finally, practical chip design considera-
tion in implementing the algorithm is given.

1. INTRODUCTION

In recent decades, the fast Fourier transform algo-
rithm has been a driving force to the progress of digital
signal processing. With the advance of the VLSI tech-
nology, the FFT algorithm has been pushed further in
solving the multidimensional array signal processing in
real-time. However, there is no efficient addressing
method for 1-D to M-D FFTs. Therefore, the paper will
conquer this problem and propose a unified addressing
for 1-D to M-D FFTs. All the M-D indexing can be
simplified and implemented by 1-D indexing. The pro-
posed approach has been implemented by many com-
panies in their high-end systems such as radar, medical
image recovery, etc.

A novel vector-matrix representation of 1-D to M-
D radix-2 FFT algorithms has been discussed in [1,2]. It
is shown that the M-D FFT has the same matrix form as
the 1-D FFT if both have the same number of data. This
implies that the SFG structure of the M-D FFT can be
mapped to that of the 1-D FFT. Thus, the unified 1-D
indexing can be applied to the M-D FFT. This paper
will extend the radix-2 FFT results to the mixed radix
FFT case.

For definiteness, this paper only discusses the
decimation-in-time digit-reverse-input and normal-output
FFT algorithms. Section 2 introduces an easy way of
constructing an M-D FFT SFG structure. The required
M-D FFT addressing sequences including digit-reverse,
data, and twiddle factor are defined in Section 3, 4, and

IEEE Pac Rim '93

~484 ~

5. Section 6 investigates the practical design considera-
tion of the algorithm. The unified indexing for 1-D to
M-D FFT algorithms has been implemented in the array
processor chip set LH9124/1.LH9320 developed by Sharp
Microelectronics Technology [3,4]. It can be seen from
the chip set implementation that the proposed M-D FFT
approach has tremendous advantages over the traditional
M-D FFT approach in both cost and performance.

2. M-D FFT SIGNAL FLOW GRAPH

1t is well-known that the twiddle factor matrix of
the DFT can be recursively partitioned into the multipli-
cation of the butterfly stage (BS) matrices [5,6]. These
matrices can also be represented by cascading butterfly
stages of the FFT signal flow graph as shown in Fig. 1.
Thus, the SFG structure of the 1-D FFT can be
represented by

SFG =BS;)@ BS;, @ - - @BSls1 H

where s, denotes the number of FFT stages and "@" is a
cascading operator. BS;; can be an arbitrary radix-n,;
butterfly stage. Thus, Fig. 1 can be represented by
3@2@2@3.
2.1. 2-D FFT Signal Flow Graph

If the 2-D FFT is implemented by the 1-D FFT,
we can select either the row-column or column-row
approach. For definiteness in implementation, we will
define an array mapping. For a 2-D array with the row
length L, and column length L,, the 2-D array mapping
for the row-column approach will be (N Ny) = (L;.L,)
and the column-row approach will be (N ,N;) = (Ly,L).
Thus, the SFG structure of the 2-D FFT can be
represented by that of the 1-D FFT with the length
N=N*N,. If the SFG structure of the N,-point FFT is

SFG,=BS; @ BS,@ - @ BS,,, @
and that of the N,-point FFT is
SFG,=BS» @ BSp@ - @ BSy,. (3)

then the SFG structure of the 2-D FFT will be
SFG =SFG, @ SFG, . @)

0-7803-0971-5/93/$3.00 © 1993 IEEE

Fig. 1 shows the mapped SFG structure of a 6 by
6 2-D FFT. The N;-point FFT is implemented by one
radix-3 stage followed by one radix-2 stage. The N,-
point FFT is implemented by one radix-2 stage followed
by one radix-3 stage. Thus, the 2-D FFT can be imple-
mented as the 36-point 1-D FFT with SFG structure
3@2@2@3 if the input, output and twiddle factor
sequences are properly defined.
22. M-D FFT Signal Flow Graph

The 2-D to 1-D FFT SFG mapping can be directly
extended to the M-D case. Set an M-D amay
(LyLa, - - - Ly) with the length of the j-th tuple L;.
There are two approaches, row-column and column-row,
to implement the 2-D FFT. However, there are M!
approaches to implement the M-D FFI. For
definiteness, the order of the M-D FFT implementation
will lﬁmﬂpIﬁd to the M-D array (Nl,Nz, e ,NM). The
total number of points of the mapped 1-D FFT will be

N =N *Ny* -+ * Ny .)
The SEG structure of the M-D FFT is represented by
SFG =SFG, @ SFG,@ --- @ SFGy (6)
where SFG; can be further partitioned into
SFG; =BS;, @ BS,;@ -+ @ BS,, .)

3. DIGIT-REVERSE SEQUENCE

It is well-known for the in-place FFT algorithm
that if the input array is in normal order, then the output
array after FFT operations will be in digit-reverse order
and vice versa. This section will investigate how to
define addressing for the M-D normal and digit-reverse
arrays. Thus, those M-D arrays can be efficiently imple-
mented by 1-D addressing.

3.1. 2-D Digit-Reverse Sequence

Given a 2-D array [(n,,n;)], after its discrete
Fourier transform we may get another 2-D array [(k,,k,)]
in normal order as following mapping

2-D DFT
[(n1.n)] =m==m=> [(kyk))] . ®

Moreover, for the 2-D array after the 2-D FFT opera-
tions, we may get the 2-D array in digit-reverse order as
following mapping
C-R 2-D FFT
[(1.n2)] e — [(dr k) drk)l. 9

The following will show what the mapping will be
if only 1-D addressing is employed. The 1-D addressing
for the 2-D normal array can be defined in the last-
tuple-major order as

nr(nyny)mn, * Ny+ny=nn,

=Ry Ry Bl R - (10)

Then, the digit-reverse addressing of the normal 2-D
array can be derived as

dr(nr(ny.ny) =dr(nny) =dr(ny) * N, +dr(ny)

= nr (dr(ny.dr(ny) an
and that of the 2-D digit-reverse array can be derived as
dr(nr (dr (n)),dr(np)) = nr(nz.n,) . (12)

It can be seen from (10), (11) and (12) that if the
inputs of the 2-D FFT are defined in the normal (digit-
reverse) column-major order, then the outputs of the 2-D
FFT will be in the digit-reverse (normal) row-major
order. Similarly, if the inputs are in the normal (digit-
reverse) row-major order, then the outputs are in the
digit-reverse (normal) column-major order. Thus, the 2-
D FFT implemented by the unified 1-D addressing get
the mapping as follows

Unified
[(n1.n7)] m— [(dr (kp).dr (k)] . a3

The digit-reverse operation is reversible. Thus, we have
dr(dr(nr(nyny)) =nny=nr(nyn,y . (14)
3.2. M-D Digit-Reverse Sequence

The 2-D to 1-D indexing mapping can be extended
to the M-D case. The M-D element stored in the
memory can be defined in the last-tuple-major order as

nr(nbnz, e .ﬂM) RNy Myg_jfy . (15)

The digit-reverse addressing for the last-tuple-major
order of the M-D normal array can be derived as

dr(nr(nyn,, - - -) =dr(ng)dr(ng_y) - - - dr(ny)

= nr(dr(ny).dr(ny.y), - - - .dr(ny) (16)
and that of the M-D digit-reverse array can be
dr(nr(dr(ny), - - - dr(ny))) =nring, - - - .ny). (17)

Therefore, if the inputs of the M-D FFT are
defined in the normal (digit-reverse) last-tuple-major
order, then the outputs of the 2-D FFT will be in the
digit-reverse (normal) first-tuple-major order and vice
versa. Similarly, the digit-reverse operation is reversible
as

drdrnr(ny, - - - ny)) =nr(ny, - - ny). (18)
3.3. Parameter Definition

Wij =Nig1 * Nip * - * Ny * nia

* MGy * o *om, 19

~ 485 ~

Wij =Nis * Nigp * * Ny * n
Gy ¥ o ¥ n (20)
w;; =N * Ny * * N * ny
HECE I TR @h
Vi = Mgy ¥ Migan* 0 ¥ o * Ny
* oo XN * N * - * Ny (22)
Vij=m ¥ o * * G-y 23

4. DATA SEQUENCE

The data sequence for the mapped M-D FFT will
be the same as that for the 1-D FFT in each stage if the
total number of data is the same. As shown in Fig. 1,
the data sequences for the first and second stages of the
row FFT are the same as those for the first and second
stages of the 1-D FFT and the first and second stages of
the column FFT are the same as those of the third and
fourth stages of the 1-D FFT. The addressing algorithm
to generate the data sequence for the BS;;-stage of the
M-D FFT is listed in the following

for (k=0; k < w;;—1; k++)
for (1=0; 1< W;;=1; 1++)
{Output 1 * w;; +k}

5. TWIDDLE FACTOR SEQUENCE

In the mapped M-D FFT implementation, the M-D
FFT can employ exactly the same data and digit-reverse
addressing sequences as the 1-D FFT. However, The
twiddle factor sequences will be different except the first
dimension as shown in Figs. 1 and 2. The indices of
twiddle factors in the figures are indicated upper for the
2-D case and lower for the 1-D case. Nevertheless, with
different parameter setting both M-D and 1-D twiddle
factor sequences can be generated by the same operation.

The addressing algorithm to generate the twiddle
factor sequence for the BS,;-stage of the 1-D FFT is
listed as :

for (k=0; k < wy;—1; k++)
for (1=0; 1 < wy;=1; 1++)
for (m=0; m < ry;-1; m++)
{outputm *k * w; }
and that for the BS;;-stage of the M-D FFT is listed as
for (k=0; k < v;;~1; k++)
for (I=0; 1 < v;;—1; 14++4)
for (m=0; m < r;;~1; m++)
{outputm *k *v; }

Table I lists the parameters required to generate
the data and twiddle factor sequences of the 36-point 1-
D FFT and 6 by 6 2-D FFT with 3@2@2@3 and

2@3@3@2 SFG structures. Two parameters are
required for the data sequence and three parameters are
required for the twiddle factor sequence of the stage.
With the same number of array points, there is no
difference in setting parameters for the data sequences of
1-D and M-D FFTs. However, parameter setting for the
twiddle factor sequences of 1-D and M-D FFTs is
different.

Table 1. Parameter Setting for Data and Twiddle
Factor Sequences of 36-Point 1-D and 6 by 6 2-D FFTs

Parameter | 3@2@2@3 | 2@3@3@2
r 3 2
ris 2 3

riz. ra 2 3
T4, ' 22 3 2
Wi 12 18
Wio 6 6
Wi3 3 2
Wis 1 1
Wiy 36 36
W1 12 18
Wy 6 6
Wy 1 1
" 3 2
oy 6 6
" 12 18
Via 6 6
Va1 18 12
Voo 6 6
V“ 1 1
;12 3 2
Va 1 1
Vo 2 3

6. ALGORITHM REALIZED BY LH9124/LH9320

This section discusses hardware realization of the
proposed algorithm. It is impractical to build butterfly
modules for all the radixes in the data path of a chip.
Therefore, the execution unit (LH9124) of the SMT’s
array processor chip set selects radix-2, radix-4, and
radix-16 modules [3]. The radix-16 butterfly is too com-
plex to be directly implemented. Thus, the radix-16 is
actually implemented by two radix-4 stages and can be
finished every 16 cycles [7].

The proposed addressing algorithm is realized by a
programmable address generator called LH9320 [4]. It
provides the address pattern required by the LH9124.
Since the radix-16 butterfly is implemented by two
radix-4 stages, the algorithm for generating twiddle fac-
tor sequence of the quasi radix-16 stage has to be
modified as

~ 486 ~

for (k=0; k< WU-I s k)
for (1=0; 1< w;;/4-1; 1++)
for (n=0; n < 3; n++)
{outputn*k*w,-j }
for (n=0; n < 3; n++)
for (m=1; m < 3; m++)
{ output m * (0 * w;; +k) * w; /4 }
Table II compares the performance of the 1-D and
M-D FFTs. It can be seen with the same number of
array points that both 1-D and M-D FFTs have the same
performance. With 25 nanoseconds machine cycle time,
the 256 by 256 2-D complex FFT can be finished within
6.56 milliseconds.
There are several advantages for the proposed M-
D FFT implementation. First, the number of instructions
required is greatly reduced. Thus, the program memory
is not necessary and the performance can be improved
by reducing instruction pipelined overhead. For exam-
ple, the proposed approach requires only 3 instructions to
implement 16 by 16 by 16 3-D FFT, while the tradi-
tional approach requires 768 instructions. Second, no
data matrix transposition is required because the transpo-

Table 1. Performance of FFTs by LH9124/1L.H9320

M-D FFT Ins. No. | Cycles | usecs
1-D 256 points 2 648 16.2
2-D 16 by 16 2 648 16.2
1-D 4K points 3 12492 3123
3-D 16 by 16 by 16 3 12492 3123
1-D 64K points 4 262416 | 6560.4
2-D 256 by 256 4 262416 | 6560.4

sition is already covered in the M-D to 1-D SFG struc-
ture mapping. Thus, it is much easier for users to imple-
ment the M-D FFT without considering the time-
consuming complex matrix transposition. Third, the pro-
posed approach automatically solves the scaling prob-
lems occurred in the block floating-point arithmetic. The
traditional approach does require extra hardware or
software to solve the problem. Fourth, the simplified
and unified 1-D addressing not only speeds up the M-D
FFT algorithms but also makes the chip function
definition easier. Finally, the function instructions makes
users save efforts in program coding and debugging.

Column-FFT 2-D FFT Row-FFT

xQo Bs,, BS,, ; BS., BS > Xm0
we —3» X
¢4 .0 - 2,0
:(g?A‘;, o " xgm
(6> o C ’ . Kesd
e 8 BT IO -
%0:’: ° (g ‘:’:’:‘:’ §§§Yl
porg > O 0 ’.’ ;‘7?»
- S 3 > . SO 2
> — g SIS &
=y —aov <> 2 Xao
x‘o'::) i ; 3 o Vi :ﬁ?‘)
He —2» S e
= o T DRl e
=, # ‘\ S e\ g
1 S ; GRS FRGR\ zu2
o ° ! PHCLO 000 S RO Xeo
2o oy : 0% % F / /XX x>
= F me R
Ly QPTG o \a/ /1115 NN 8%
7 P 1G : i Q111111 NN 232
. ' 52
A S, >< o=
x(26) o ’ ‘
L ; <2 -\ o e
ﬁgm g [= : 0’0 33.:,:
BE = FOS0S00%: e
8y o> » "’ §<l.o;

. e <> X3
m G & v 53'25),
MY o o> 2> s
(23> o> > - xas
= i ; i 2 e

BS,, BS,,

1-D FFT

BS,, BS,.

Fig. 1 Signal Flow Graph of 3@2@2@3 1-D FFT and 3@2 by 2@3 2-D FFT

~ 487 ~

7. CONCLUSIONS

This paper defines the unified 1-D addressing for
the M-D FFT implementation. The addressing sequences
can be derived from the factorization of the twiddle fac-
tor matrix [6]. The discussion only includes the
decimation-in-time digit-reverse-input and normal-output
FFT algorithms. Essentially all the results extended to
other FFT algorithms in a straightforward manner.
Algorithms for defining mixed radix 1-D FFT indexing
can also be found in [8]

The unified indexing concept of the M-D FFT
implementation automatically solves the scaling problem
of the block floating-point arithmetic. The concept can
also be extended to derive the efficient general DSP
algorithms for block floating-point arithmetic such as IIR
filtering, adaptive filtering, polyphase filter bank, and
multichannel DSP [9].

ACKNOWLEDGMENT

. The author wishes to thank the System and Design
groups of Sharp Microelectronics Technology for practi-
cally implementing the unified FFT algorithms in the
array processing chip set.

(1

[2]

[3]
[4]
[5]

{6l
71
(81

9]

2-D FFT

REFERENCES
C. Ju and M. Fleming, "Design concept of real-time
array signal processors,” Proceeding of the International
Conference on Signal Processing Applications and Tech-
nology, Boston, pp.188-197, Nov. 1992.
C. Ju, "Equivalent relationship and unified indexing of
FFT algorithms," Proceeding of International Symposium
on Circuits and Systems, Chicago, May 1993.
LH9124 Digital Signal Processor User’s Guide, Sharp
Electronics Corporation.
LH9320 Address Generator User's Guide, Sharp Elec-
tronics Corporation.
J. W. Cooley and J. W. Tukey, "An algorithm for the
machine computation of complex Fourier series,” Math.
Comput., vol.19, pp.297-301, Apr. 1965.
C. Ju, "Derivation and realization of fast Fourier
transform,” unpublished.
C. Ju, LH9124/LH9320 Fast Fourier Transform Applica-
tion Note, Sharp Electronics Corporation.
G. L. DeMuth, "Algorithms for defining mixed radix
FFT flow graphs," IEEE Trans. on Acoustics, Speech,
and Signal Processing, pp.1349-1358, Sept. 1989.
C. Ju, "General DSP algorithms for block floating-point
arithmetic,” unpublished.

Column-FFT

21

B8S >

59

B 24 N

xes 2 —0) 2P

ey ER \

AR 2 o P RS

7 sy 2P X W

e b i 327 - N Y
e £ \ O —i 1
e 2 NS i)
o o) 3 QOO Xa3
92 o, ————— 2y ¥ YN QR
B 2 ¢ 5 OO e
xC2,4) —0 — (OO b1t
34 g Sab/ LI xae
oy 8 2 = OO =%
X : 2 KR XXXO0 BT
Te———— \ R -
i 2y -\ =/ e z82
T 1 4] JAR /) e
2B) e d T\ a2 ” .“"%““ x&1>
x¢28) : 3 OO0 >ca,3>
s T o ' \\ 3 ’0”"‘””"”

¢6, 1> 12 - | 4 QOG0

e 7 o) /111100

By ey — A e s

x(l;&) ° Q > [v3 .

xCD! o "4

(2,3 a

<185 w\ 8

|

\

|

opopopR

BS BS,>

1-D FFT

BS ,,

Fig. 2 Signal Flow Graph of 2@3@3@2 1-D FFT and 2@3 by 3@2 2-D FFT

A0
~ 488 ~

