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ABSTRACT 
Multi-dimensional @I-D) fast Fourier transform 
(FFT) is an essential algorithm in array signal pro- 
cessing. However, the calculation of M-D indexing 
and transposition of data matrix required by the M-D 
FFT are the algorithm's performance killer. The 
paper will propose a novel M-D to l-D FFT signal 
flow graph (SFG) mapping. Thus, the M-D FlV can 
be efficiently implemented by the unified l-D indexing 
and the address generator design can be simplified. 
In addition, the matrix transposition is no longer 
necessary. Finally, practical chip design considera- 
tion in implementing the algorithm is given. 

1. INTRODUCTION 
In recent decades, the fast Fourier transform algo- 

rithm has been a driving force to the progress of digital 
signal processing. With the advance of the W I  tech- 
nology, the FlT algorithm has been pushed further in 
solving the multidimensional array signal processing in 
real-time. However, there is no efficient addressing 
method for l-D to M-D ITTs. Therefore, the paper will 
conquer this problem and propose a unified addressing 
for l-D to M-D FFTs. All the M-D indexing can be 
simplified and implemented by l-D indexing. The pro- 
posed approach has been implemented by many com- 
panies in their high-end systems such as radar, medical 
image recovery, etc. 

A novel vector-matrix representation of l-D to M- 
D radix-2 ITT algorithms has been discussed in [1.21. It 
is shown that the M-D FlT has the same matrix form as 
the l-D FlT if both have the same number of data. This 
implies that the SFG structure of the M-D FFT can be 
mapped to that of the l-D FFT. Thus, the unified l-D 
indexing can be applied to the M-D FE;T. This paper 
will extend the radix-2 FFT results to the mixed radix 
FET case. 

For definiteness, this paper only discusses the 
decimation-in-time digit-reverse-input and normal-output 
ITT algorithms. Section 2 introduces an easy way of 
constructing an M-D FFT SFG structure. The required 
M-D FJT addressing sequences including digit-reverse, 
data, and twiddle factor are defined in Section 3, 4, and 

5. Section 6 investigates the practical design considera- 
tion of the algorithm. The uniiied indexing for l-D to 
M-D FFT algorithms has been implemented in the array 
processor chip set LH9124LH9320 developed by Sharp 
Microelectronics Technology 13.41. It can be seen from 
the chip set implementation that the proposed M-D FFT 
approach has tremendous advantages over the traditional 
M-D FFT approach in both cost and performance. 

2. M-D FFT SIGNAL FLOW GRAPH 
It is well-known that the twiddle factor matrix of 

the DIT can be recursively partitioned into the multipli- 
cation of the butterfly stage (BS) matrices 1561. These 
matrices can also be represented by cascading butterfly 
stages of the FFT signal flow graph as shown in Fig. 1. 
Thus, the SFG structure of the l-D FlT can be 
represented by 

SFG =BS11@ BS12@ ' ' .  @ B S I s I  (1) 

where s 1  denotes the number of FFT stages and "@" is a 
cascadmg operator. BS1,  can be an arbitrary radix-nl, 
butterfly stage. Thus, Fig. 1 can be represented by 
W"3. 
2.1.2-D Fm Signal Flow Graph 

If the 2-D FFT is implemented by the l-D FFT, 
we can select either the rowcolumn or column-row 
approach. For definiteness in implementation, we will 
define an array mapping. For a 2-D array with the row 
length L1 and column length L2.  the 2-D array mapping 
for the rowcolumn approach will be ( N l f l z )  = (LlL3 
and the column-row approach will be (N l f 1 2 )  = (LZL l). 
Thus, the SFG structure of the 2-D lTT can be 
represented by that of the l-D FFr with the length 
N=N,*N,. If the SFG structure of the Nl-point FFT is 

SFGl  =BSI1  @ BS12@ ' ' ' @ B S I J 1  (2) 

and that of the Nz-point FJT is 
SFGz = B S z 1 @  B S n  @ ' ' . @ B S a 2 ,  (3) 

SFG S F G l @  SFGz . (4) 

then the SFG structure of the 2-D FFT will be 
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Fig. 1 shows the mapped SFG structure of a 6 by 

radix-3 stage followed by aoe radix-2 stage. The N2- 
point FET is implemented by OEE radix-2 stage followed 
by one radix-3 stage. Thus. the 2-D m can be imple- 

3@2@2@3 if the input, autplt and twiddle factor 

6 2-D F+T. The Nl-point F+T is implemented by a ~ e  

mented as the 36-point 1-D FET with SFG ~ W t U r e  

=W===praperlYdefined. 
2.2. M-D FFX' S i  HOW Graph 

The 2-D to 1-D F+T SFG mapping ~811 be M y  
extended to the M-D case. Set an M-D array 
(Ll .L2, .  . * .LM) with the length of the j-th tuple Lj .  
'Ihere are two approaches, r o w d u m n  and column-row, 
to imp- the 2-D RT. Haweve, there are M! 
approeche~ to @ W t  the M-D FET. For 
d e f h i k ~ ~ ~ ,  the OrQr of the M-D FTT implementation 

tdal rmmber of points afthe mapped 1-D F+T will be 
will be mapped to the M-D array (NI,"~, . . * JVM). The 

N = N I  * N2* . . *  * N M .  (5 )  

SFG =SFGl@ SFG2@ . . . @ SFGM (6) 
'Ibe SFG S ~ I U C ~  of the M-D FIT is represented by 

where SFG, can be further p a r t i t i d  into 

SFGi = BSi1 Q BS,2 @ . . * @ &Sisi . 

3. DIGIT-REVERSE SEQUENCE 

(7) 

It is well-known for the in-place FTT algorithm 
tbat if the input array is in normal order. then the output 
array after FFT operations will be in digit-reverse order 
and vice versa. This sectim will investigate how to 
define addresing for the M-D normal and digit-reverse 
arrays. Thus, those M-D arrays can be efficiently imple- 
mented by 1-D ad-. 
3.1.2-D Digit-Reverse !kquence 

Given a 2-D array C(nl.nJ1. after its discrete 
Fourier transform we may get another 2-D array [(klPJI 
in n d  order as following mapping 

[(nlPz)l - [(k,.kJI. (8) 
2-DDJT 

Maceover, for the 2-D array after the 2-D FJT opera- 
tions, we may get the 2-D array in digit-revere & as 
fcdlowing mapping 

C-R 2-0 FJT 
[(nl*nz)l - C(dr(k1)JmJ)l f (9) 

The following will &ow what the mapping will be 
if only 1-D addressing is employed. The 1-D addressing 
fm the 2-D narmal array can be defined in the last- 
tuple-majar order as 

nr(n& i n, * N 2  + n2 = n1n2 

= nr (dr (n J& (n 1))  (11) 

dr(N(dr(nl)dr(nz)))  = N(n2Pl)  . (12) 

It can be seen fran (10). (11) and (12) that if the 
dew in the m a l  (digit- 

reverse) columnmajar order, then the outputs of the 2-D 
F+T will be in the digit-reveme (normal) row-major 
order. Similarly, if the inputs are in the normal (digit- 
reverse) row-major order, then the outputs are in the 
digit-reverse ("al) column-major ader. Thus, the 2- 
D FFT im- by the d e d  1-D addresing get 
the mapping as follows 

[<nl.nz)l -> W ( k J d r ( k 4 1  . (13) 

The digit-mverse operatim is reversible. Thus. we have 

and that of the 2-D digit-reverse array can be derived as 

inplts of the 2-D FTT 

Um f ied 

1-D FFT 

d r ( d r ( ~ ( n 1 3 z ) ) )  = nln2 =nr(nl.nz) . (14) 

33. M-D Digit-Reverse !kquence 
Tlae 2-D to 1-D indexing mapping can be extended 

to the M-D case. The M-D element stored in the 
memory can be de6114 in the last-tuple-major order as 

(15) 

The digit-Feverse addxessing for the last-tuple-major 
order of the M-D normal array can be derived 85 

dr(nr(n1p2.  . . . J Z M )  = dr(nMWr(nM-1) * . . dr(nJ 

nr(n1,n2. . . . .nM) - n1n2 . . . nM-1nM . 

= nr(dr(nM).dr(nM-l). . . . .dr(n,)) (16) 

and that of the M-D digit-reverse array can be 
dr(nr(dr(n1). . . * ,dr(nM))) = W(Q.  . . . ~ 1 ) .  (17) 

Therefore, if the inputs of the M-D FFT a~ 
dew in the namal (digit-reverse) last-tuple-major 
order, tben the outputs of the 2-D FFT will be in the 
digit-reverse (normal) first-tuple-major order and vice 
versa. Similarly. the digit-reverse operation is reversible 
as 

d r ( d r ( ~ ( n 1 ,  . . . 8 M ) ) )  nr(n1, . . . P M )  . (18) 

33. Parameter Definition 

wij = Ni+l * Ni+2 * . . . * N M  * niti+l) 

nui * nio.+*) * . . . * (19) 
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Gij = Ni+l  * Ni+2 * . . . * NM * nij  

nisi (20) * niti+l) * . . . * 

- wij = N, * N2 * . . . * N i - l  * ni l  

- 
v,, = n l l  * n12 * . . . * nI 6-1) (23) 

4. DATA SEQUENCE 
The data sequence for the mapped M-D FIT will 

be the same as that for the 1-D FFT in each stage if the 
total number of data is the same. As shown in Fig. 1, 
the data sequences for the first and second stages of the 
row FIT are the same as those for the first and second 
stages of the 1-D FFT and the Grst and second stages of 
the column FFT are the same as those of the third and 
fourth stages of the 1-D FFT. The addressing algorithm 
to generate the data sequence for the BSI,-stage of the 
M-D F 3 T  is listed in the following 

for &=O; k 5 GI,-l; k+t) 
for (1=0; 1 5  GIJ-l; I++) 

{Output 1 * GI, + k} 

5. TWIDDLE FACTOR SEQUENCE 
’ In the mapped M-D implementation, the M-D 

E’FT can employ exactly the same data and digit-reverse 
addressing sequences as the 1-D FTT. However, The 
twiddle factor sequences will be different except the first 
dimension as shown in Figs. 1 and 2. The indices of 
twiddle factors in the figures are indicated upper for the 
2-D case and lower for the 1-D case. Nevertheless, with 
different parameter setting both M-D and 1-D twiddle 
factor sequences can be generated by the same operation. 

The addressing algorithm to generate the twiddle 
factor sequence for the BS1,-stage of the 1-D FFr is 
listed as 

for &=O; k 5 FIJ-l; k t t )  
for (1=0 1 5 wlJ-l;  l t t )  

for (m=O; m e r 1, -1; m++) 
{ output m * k * wl, } 

and that for the BS,, -stage of the M-D 

for (1=0 1 5  v,,-l; I++) 

is listed as 
for (k4; k S TI, -1; k t t )  

for ( m a ,  m < r,,-l; mi+) 
{ output m * k * v,, } 

Table I lists the parameters required to generate 
the data and twiddle factor sequences of the 36point 1- 
D FIT and 6 by 6 2-D FIT with 3@2@2@3 and 

2@3@3@2 SFG structures. Two parameters are 
required for the data sequence and three parameters are 
required for the twiddle factor sequence of the stage. 
With the same number of array points, there is no 
difference in setting parameters for the data sequences of 
1-D and M-D FFTs. However, parameter setting for the 
twiddle factor sequences of 1-D and M-D FFTs is 
different. 

Factor Wuences of 36-Point 1-D and 6 by 6 2-D FFTs 
Table I. Parameter Setting for Data and Twiddle 

m m m 3  
3 
2 
2 
3 
12 
6 
3 
1 

36 
12 
6 
3 
1 
3 
6 
12 
12 
6 
18 
6 
1 
3 
1 
2 

2@383@2 
2 
3 
3 
2 
18 
6 
2 
1 

36 
18 
6 
2 
1 
2 
6 
18 
18 
6 
12 
6 
1 
2 
1 
3 

6. ALGORITHM REALIZED BY LH9124/LH9320 
This section discusses hardware realization of the 

proposed algorithm. It is impractical to build butterfly 
modules for all the radixes in the data path of a chip. 
Therefore, the execution unit (LH9124) of the SMT’s 
array processor chip set selects radix-2, radix-4, and 
radix-16 modules [3]. The radix-16 butterfly is too com- 
plex to be directly implemented. Thus, the radix-16 is 
actually implemented by two radix4 stages and can be 
finished every 16 cycles [71. 

The proposed addressing algorithm is realized by a 
programmable address generator called LH9320 [4]. It 
provides the address pattern required by the LH.9124. 
Since the radix-16 butterfly is implemented by two 
radix-4 stages, the algorithm for generating twiddle fac- 
tor sequence of the quasi radix-16 stage has to be 
modified as 
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for ( M, k < FI,-l ; k-i+) 
for ( 1=0; 1 5 w1, /4-k l - ~ )  

for ( n e  n < 3; n*) 

for ( n e ,  n < 3; ni+) 
{ m t p u t n * k * w ,  } 

for ( m=l; m < 3; m-H) 
{ output m * (n * Gl, + k) * w1,/4 1 

Table II compares the performance of the 1-D and 
M-D FFTs. It can be seen with the same number of 
array points that both 1-D and M-D FZTs have the same 
performance. With 25 n a n h  machine cycle time. 
the 256 by 256 2-D c ~ m p l e ~  FFT cu be hished within 
6.56 "n ds. 

The= a~ several advantages for the proposed M- 
D FFT implementation. First, the number of instructions 
r e q d  is greatly reduced. Thus, the program memory 
is not necessary and the performance can be improved 
by reducing instruction pipelined overhead. For exam- 
ple, the proposed approach requires only 3 instructions to 
implement 16 by 16 by 16 3-D FFT. while the tradi- 
t i d  approach requires 768 instructicms. second. no 
datamatrix transpositicm isrequiredbecause the transyo- 

1-D 64K points 
2-D 256 by 256 

Table II. Performance of FFh by LH9124LH9320 

4 262416 6560.4 
4 262416 6560.4 

3-D 16 hv 16 hv 16 3 

Fig. 1 S i d  F~OW Graph oF3@2@2@3 1-D FFT and 3@2 by 2@3 2-D FIT 
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7. CONCLUSIONS 
This paper defines the unified 1-D addressing for 

the M-D FFT implementation. The addressing seqwnces 
can be derived from the factorization of the twiddle fac- 
tor matrix [6]. The discussion only includes the 
decimation-in-the digit-reverse-input and normal-output 
FFT algorithms. Essentially all the results extended to 
other algorithms in a straightforward manner. 
Algorithms for defining mixed radix 1-D FFT indexing 
can also be found in 181 

implementation automatically solves the scaling problem 
of the block floating-point arithmetic. The concept can 
also be extended to derive the efficient general DSP 
algorithms for block floating-point arithmetic such as IIR 
filtering, adaptive filtering, polyphase filter bank, and 
multichannel DSP 191. 

The unified indexing -apt of the M-D FFT 
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