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Abstract—It is well-known that the twiddle factor matrix of discrete
Fourier transform can be recursively factorized into the cascading of the
basic butterfly stage matrices. The paper will show that the matrix can be
further partitioned into three matrices practically specifying the input data,
twiddle factor, and output data sequences of the FFT. Moreover, the
equivalent relationship of these matrices is introduced. Thus, the
equivalent relationship for a variety of the FFT algorithms can be obtained
by equivalent matrix transformation. Furthermore, the paper shows that
the multidimensional (M-D) FFT can be represented by the same vector-
matrix form as the 1-D FFT. In addition, the addressing sequences of the
M-D FFT is the subset of the 1-D FFT. Therefore, the signal fiow graph of
the 1-D FFT can be used to describe that of the M-D FFT and the 1-D FFT
addressing sequences can be employed to implement the M-D FFT.
Finally, the tremendous results of the proposed FFT approach simulated by
the LH9124/LH9320 are given.

I. INTRODUCTION

In recent decades, the fast Fourier transform (FFT) algorithm has
been a driving force to the progress of digital signal processing. With
the advance of the VLSI technology, the FFT algorithm has been pushed
further in solving the multidimensional array signal processing in real-
time. However, there is no efficient addressing method for 1-D to M-D
FFTs. Therefore, the paper will conquer this problem and propose a
unified addressing for 1-D to M-D FFTs. All the M-D indexing can be
simplified and implemented by 1-D indexing. The proposed approach
has been implemented by many companies in their high-end systems
such as radar, medical image recovery, etc.

It is well-known that the computing cfficiency of the FFT comes
from the recursive factorization of the twiddle factor matrix of the
discrete Fourier transform (DFT) [1]. To derive the unified addressing
for the 1-D to M-D FFT algorithm, we will factorize and represent twid-
dle factor matrix into a novel matrix form. Then, all the matrices have
their physical meaning in the practical implementation. Each stage of
the FFT is represented by three cascaded matrices. The right permuta-
tion matrix specifies the input interconnection and define the input data
sequence. The left permutation matrix specifies the output interconnec-
tion and define the output data sequence. The middle diagonal block
matrix performs the butterfly operation and define the twiddle factor
sequence.

The equivalent relationship of these matrices are introduced in the
paper. It is seen that one kind of the FFT algorithms can be derived
from the other kind of the FFT algorithm through the equivalent
transformation of the matrices. For example, the in-place bit-reverse
inputs and linear outputs (BI/LO) FFT can be derived from the in-place
linear inputs and bit-reverse outputs (LYBO) FFT and vice versa. For
definiteness, the paper discusses the decimation-in-time (DIT) FFT only.
Essentially, all the results extend to the decimation-in-frequency (DIF)
FFT in a straightforward manner.

From the novel vector-matrix representation, we can also derive the
equivalent relationship between 1-D and M-D FFTs by employing the
equivalent transformation of the matrices. Therefore, it can be obtained
that the signal flow graph (SFG) structure of the 1-D FFT can be used to
represent that of the M-D FFT regardless of the dimension if the total
number of elements is the same. The paper only discusses the radix-2
FFT. Actually, the proposed approach can be extended to an arbitrary
mixed radix FFT [2,3]

The unified indexing for 1-D to M-D FFT algorithms has been
implemented in the array processor chip set LH9124/LH9320 developed
by Sharp Microelectronics Technology. It can be seen from the chip set
implementation that the computing time of the FFT is dependent on the
total number of data in the array and is independent of the dimension of
the FFT. Thus, both 256 by 256 2-D complex FFT and 64K 1-D com-
plex FFT can be finished within 6.56 milliseconds.
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1. 1-D BIT-REVERSE INPUT AND LINEAR OUTPUT FFT
The DFT of an N-point sequence {x(n)} is defined by

Nl
X(k)m Y x(n) Wt for 0Sk <N-1 and W me2W/ 1)
ned

and its parallel form can be represented by the vector-matrix equation as

X(0) W wa .. Wi x(0)
X wy wi WiN-h x(1)
S . . (2a)
X(N-1) WY W WD e v-1)
or
XmWy*x. (2b)

The structure of the FFT will be based upon how to factorize the twiddle
factor matrix Wy. For the BI/LO FFT, Wy is factorized from right first
by the bit-reverse matrix £, as

Wy =Wy * P, . (3a)
For the LI/BO FFT, Wy is factorized from left first as
Wy =Py, * Wy . (3b)

By further recursively decomposing the twiddle factor matrix Wy
[3,4], the vector-matrix form of the 1-D BI/LO FFT with the length N=2*
can be derived as follows

X = FG,(BI(s) * FG,.(BI(s=1)* --- * FG(BI(1)) * Py, * x

=i * s @

where X and »,, respectively, denote the N-point linear output vector and
N-point bit-reverse input vector. The matrix FG,(BI(k)) denotes the k-th
radix-2 butterfly stage of the B/LO FFT. The paper will further parti-
tion the butterfly stage matrix into three matrices as

FG,(BIK)) = Py * BI(K) * Py . ®

Some essential physical meaning in FFT algorithm implementation
can be found through the three-matrix representation of the butterfly
stage. The right permutation matrix P, and the left permutation matrix
P, can specify the input data sequence and the output data sequence of
the stage, respectively. The center block diagonal matrix B/(k) performs
the radix-2 butterfly operations of the k-th stage and specifies the twiddle
factor sequence. It is defined as

B@® 0 .. 0
0 b .. 0
Bl(ky=| . . . 6)
0 0 .. bNR-D

where "0" is a 2 by 2 zero matrix and the radix-2 butterfly module bi, ()
along the diagonal of BI (k) is defined as

W Wi
big(n) = W Wi
The function /nr(x) denotes the integer part of the real number x. P,

specifies the interconnection between inputs and butterfly modules and is
an N by N permutation matrix with its elements defined as

with § = 7"{_ * It 9
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where Mod(x), denotes the modulo operation on the number x with
modulo length y and is defined as

Mod(x), wx —Int(x/y) * y . (¢)]

Similarly, P, specifies the interconnection between outputs and buiterfly
modules with its elements defined as

L dorm = R Mod(n) e + It )

otherwise

(10)
Putnm)= |

The bit-reverse matrix is also an N by N permutation matrix with its ele-
ment defined as

1 for n = br(m),

Pb("’")'{o otherwise an

where br(m), denotes the bit-reverse operation on the index m with the
number of bits s as follows:

br(m), = br(m,_im,.; - mmg), = mom; - MM, . (12)
II 1-D LINEAR INPUT AND BIT-REVERSE OUTPUT FFT

The vector-matrix form of the 1-D LI/BO FFT with the length
N=2' can be obtained by further factorizing the twiddle factor matrix Wy
in (3b) as follows:

X = Py, * FG(BL(s)) * FGABL(s=1)) * - - -
Multiplying P, to both sides of (13), we have
X, =Pu *X=fft"*x. 14

As the BI/LO FFT case, the k-th butterfly stage of the LI/BO FFT
can be further decomposed into three cascaded matrices

* FG,BLAN*x. (13)

FG a1t BL(K)) = Prigyroty * BLK) * Prpaies) - (15)

BL(k) is the butterfly operation matrix of the k-th stage. Its input inter-
connection matrix is represented by P, and its output interconnection
matrix is Py .u«) The fundamental difference between the BI/LO and
LI/BO structures is the way of defining the butterfly operation matrix.
The matrix for the LI/BO FFT is defined as

b0 O 0
0 bh(l) . . 0
BL(j) = (16)
0 0o .. bl,(N'/?.-l)
The radix-2 butterfly module 5, (n) of BL(k) is defined as
Wy W
bhln) = [W; _;‘,v} with i = br (Mod (1) -1 an

IV. EQUIVALENCE OF FFT ALGORITHMS BY MATRIX TRANSFORMATION

The previous two sections have discussed that each stage of BI/LO
and LI/BO FFT algorithms can be represented by three cascaded
matrices. In software or hardware realization of the FFT, these matrices
can represent input, output, and twiddle factor addressing sequences. In
this section, we will show some equivalent relationship of these
matrices. Through these equivalent algorithms, it can be seen that one
kind of the FFT structure can be derived from the other kind of the FFT
structure. After transformation, the new three cascaded matrices also
denote the three addressing sequences for the stage of the FFT. Section
VI and VII employ these equivalent relationship to the M-D FFT. Some
salient results can be obtained such as the unified 1-D FFT addressing
sequences to implement the M-D FFT.

The following will list the theorems that describe the equivalent
relationship of the input data, output data, bit-reverse, and twiddle factor
matrices. The detailed proof can be found in [4].

Theorem 1: (Input Interconnection Operation)
P tmodiinj-n,y = Pri * Py for 1Si<s and 1<jSs

s
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where Mmod (x) is a modified modulo operation function defined as

Mmod(x), = x ~ lm(xT'l) ‘y. (19)
Theorem 2: (Output Interconnection Operation)
Prgtmodoj-ny=Pu * Py for 15iSs and 1<j<s. 20)
Theorem 3: (Input and Qutput Interconnection Equivalent)
Py = Pryszsy 80d Py =Poyray) . 21
Theorem 4: (Bit-Reverse Equivalent)
Py =Py * Py * P, and PymPy*Py* Py . (22)

Theorem 5: (Equivalence between BI/LO and LI/BO Butterfly Matrices)
BI(k) = P, * Py * BL(K}* Py, * P, (23a)
and
BL(k)=P,, * Py, * BI(k)* Py, * P, . (23b)

A variety of FFT algorithms can be obtained by changing the order
of the input and the output data sequences or by changing the order of
butterfly matrix computations. Two examples are given in the following.

A. Example of Deriving Constant Geometry FFT from In-Place FFT

The vector-matrix form of a 16-point in-place LI/BO FFT can be
obtained from (13) and (15) and expressed as

Py * X =Py * BL@)* P,y * Pu* BL(3)* P,

* P3* BL(2)* Pps* Piu* BLO)* Py * 1 4)
It can be derived from Theorems 1, 2, and 3 that
P * PymPy* PymPy* PymP, * Py=mP,, (25)
Thus, (24) becomes
Py * X =Py * BLA)* P,y* Py * BL(3)* P,y
* Py * BLQ)Y* Prg* Pn* BLOD* Pra* x (26)

(26) represents constant geometry 16-point LI/BO FFT. Similarly, con-
stant geometry BI/LO FFTs can be derived from in-place BI/L.O FFTs.

B. Example of Deriving In-Place LI/BO FFT from In-Place BIILO FFT

The vector-matrix form of a 16-point in-place BI/LO FFT can be
obtained from (4) and (5) and represented by

K =Pu* BI@)* Pu* Pis* BIGY* Py * Pra* BID)

*Pa* Py * BI(L)* Py * Py * x @7

Using BL(i) to replace BI(i) by (23a) and using (19)-(22) to reduce the
number of matrices, we can manipulate (27) into

X =Py * BL@)* P,y* BLO)* P,y * BLQ)* P,y % BL()* P,y * £ (28)
Multiplying P, to both sides of (28) and using the equivalent relation-

ship of (25), we can obtain the equation of the 16-point in-place LI/BO
FFT shown in (24). :

V. FORMULATION OF VECTOR MATRIX FORM OF 2-D DFT

For a 2-D array (N(.N,), the 2-D DFT by the row-column approach
over the region is defined as

N-t

¥ x(nin) Wyl

*

N2—I

Xtkhk)= 3,

0

w2 29

for 0SSk <N, and 0SSk, <N,
The parallel vector-matrix form of the 2-D DFT can be expressed as

Xeo 0 0

A ™, 0 .. 0| %
Xa 0 TW. .. 0 0 TW, .. 0 |l xf
- Pr 30)
Xew,on 0o 0 ..TW 0 0 .. TW |5



where TW, and TW, denote the twiddle factor matrices for the row DFT
and column DFT, respectively. x, is the i-th row of the input array and
X, is the j-th column of the output array. Set the row length Nm=2"!,
column length N=2"%, and total elements N=N,*N,. The transpose matrix
P; is employed to transform the 2-D array from row-major order to
column-major order and is also a permutation matrix expressed as

PrePryay and Pile P 31

VI. 2-D LINEAR INPUT AND BIT-REVERSE OUTPUT FFT

The vector-matrix form for the 2-D LI/BO FFT implementation of
(30) can be represented by

T

Xoco cfft 0 0 fft 0 .. 0 %o
X 0 cfft.. O 0 rfft.. 0 xfy
= . . Pr| . . (32)
Xoeh -1 0 0 ..cft 0 0 .. sfftlxfwon

where X, is the i-th column of the 2-D bit-reverse output array. rfft
and cfft can be represented by (13) with length N, and N,, respectively.
It can be derived that the N, rffts can be implemented by the first s,
stages of the N-point 1-D FFT and the N, cffrs by the first s, stages of
the N-point 1-D FFT. Thus, (32) yields

&b = FG(BL(52)) * FGABL(sy-1)) * -~ * FG,(BL(1)* Py

* FG(BL(s)) * FGoBL(sy-1)) * --- (33)

where X, is the N-point output vector and x7 is the N-point input vector
shown in (32). Combining the transpose matrix P, with the row FFTs
and using Theorems 1, 2, and 3, (33) can be transformed into a new
form of the 2-D FFT structure

Xbe = FG\(BL(s2)) * FGoBL(sx-1)) * -~

* FG, (BLQ) * &I

* FG, (BL(1)

* FG, u(BL(s)) * FG,BL(s=1) * - * FG,,, BLUN* & (34)

where . is an N-point vector in the linear column-major order of the
input array.

Comparing (34) with (13) and setting s=s,+5,, We can see that the
N, by N, 2-D FFT has the same interconnection structure as the N-point
1-D FFT. It implies they can have the same SFG structure. Fig. 1
shows the SFG structure of the traditional row-column 4 by 4 2-D
LI/BO FFT implementation. Fig. 2 shows the LI/BO SFG structure of
the 4 by 4 mapped 2-D FFT and 16-point 1-D FFT. The inputs, out-
puts, and twiddle factors are indicated upper for the 2-D case and lower
for the 1-D case. The index “i" shown in the figure denotes the twiddle
factor Wi;. It can be seen that the twiddle factor matrices are the same
for the k-th stage of the row FFT, column FFT, and 1-D FFT. The
twiddle factor addressing sequence can be obtained from (17). The input
and output interconnections are the same for the 1-D and 2-D FFTs with
the same number of points and the addressing sequences can be obtained
from (8) and (10).

VIL 2-D BIT-REVERSE INPUT AND LINEAR OUTPUT FFT

The vector-matrix form of the BI/LO 2-D FFT can be derived in
the similar way as that of the LI/BO 2-D FFT. If the TW sub r and TW
sub c of (30) are implemented by (4), then (30) can be transformed into
the following form

X = FG, (BI(s2)) * FG, (Bl (s-1) * -~ * FG,(BI(D) * Pr

* FG, (BI(s))* FG, (BI(s\-1) * - -+ * FG,(BI(1)) * z, 35

where X. is an N-point vector in the column-major order of the linear
output array and xf is an N-point vector in the row-major order of the
bit-reverse input array. Combining the transpose matrix P; with the
column FFTs and using Theorem 1, 2, and 3, (35) can become

X7 = FG, oo (BI(s2) * FGy sa Bl (s-1) * -+ * FG, w(BI(1)

* FG, (BI(s)) * FG, ,(BI(s;=1))* -~ * FG(BI(1) * 5, 36)
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where X7 is an N-point vector in the row-major order of the linear output
array. As the LI/BO case by comparing (36) with (4), the N, by N, 2-D
FFT has the same interconnection structure as the N-point 1-D FFT.
Moreover, the butterfly operation matrices are the same for the k-th stage
of the row FFT, column FFT, and 1-D FFT. Fig. 3 shows the SFG
structure of the traditional row-column 4 by 4 2-D BI/LO FFT imple-
mentation. Fig. 4 shows the LI/BO SFG structure of the 4 by 4 mapped
2-D FFT and 16-point 1-D FFT.

VII. ALGORITHMS SIMULATED BY LH9124/L.H9320

The proposed FFT algorithms with unified indexing have been
implemented in the SMT’s array processing chip set [2). The LH9124
[5] is an execution unit with radix-2, radix-4, and radix-16 butterflies
built in the highly pipelined data path. The radix-2, radix-4, and radix-
16 butterflies can be implemented within 2, 4, and 16 cycles, respec-
tively. The LH9320 [6] is a programmable address generator to provide
the address patterns required by the LH9124. The unified indexing
equations (7), (8), (10), (11), and (17) for the input/output data, twiddle
factor, and bit-reverse sequences are built in the instruction set of the
LH9320. The total number of machine cycles for an FFT implementa-
tion is calculated as

Cycles = 3, (N; + PO;)
iw]
where N; and PO, denote the data block size and the pipelined overhead
of the i-th instruction, respectively. s is the number of instructions or
butterfly stages.

TABLE 1 compares the performance of the 64K-point 1-D FFT
with that of the 256 by 256 2-D FFT. It can be seen that both have the
same performance because the data block size, the number of instruc-
tions, and the instruction overhead are all the same. It should be noted
by the radix-2 butterfly instruction for the 2-D FFT operations that only
16 instructions are required for the proposed new 2-D FFT implementa-
tion instead of 4096 instructions required by the traditional 2-D FFT
implementation. Therefore, the instruction pipelined overhead can be
greatly reduced. With 25 nanoseconds machine cycle time, the 256 by
256 2-D complex FFT can be finished within 6.56 milliseconds.
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IX. CONCLUSIONS

From the novel vector-matrix representation of the FFT algorithms,
the paper derives the unified addressing for the 1-D and 2-D FFTs.
Essentially, all the results extend to more general multidimensional FFTs
in a straightforward manner. Table 2 shows the addressing equations
implemented by FFT algorithms. (8) can be used as the input data
addressing for 1-D to M-D FFTs and for both BI/LO and LI/BO FFTs.
From the equivalent relationship of Theorem 3, the output data address-
ing can also be implemented by (8). It can be found in [7] that the M-D
bit-reverse addressing can be implemented by the 1-D bit-reverse
addressing described by (11). The twiddle factor sequences for the
BI/LO FFTs are addressed by (7) and those for the LI/BO FFTs are
addressed by (17). )

There are several advantages for the proposed M-D FFT
approaches. First, the program coding is simplified and the instruction
overhead is reduced as discussed in Section VIII. Second, no data
matrix transposition operations are required because the operations are
combined with the input and output data transfer of the butterfly stage.
Third, the chip architecture for the FFT addressing with arbitrary dimen-
sion is easy to define because the required addressing patterns are
reduced and only 1-D indexing is necessary. The fourth advantage is
especially for the block floating-point arithmetic. There is no scaling
problem by the proposed approach because the whole block data instead
of sub-block data are calculated in each butterfly stage [2].

The proposed unified indexing can also be applied to an arbitrary
mixed radix FFT algorithm [3,4]. The unified indexing concept for the
M-D FFT implementation automatically solves the scaling problem for
the block floating-point arithmetic. The concept can be extended to
derive the efficient general DSP algorithms for block floating-point arith-
metic such as IIR filtering, adaptive filtering, polyphase filter bank, and
multi-channel DSP [8].
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TABLE 1
Untep FET ALGORITEMS SIMULATED BY LH9124/LH9320
I 64K-Point 1-D FFT 256 by 256 2-D FFT
Butterfl S Cycles | msecs S&J C msecs
Radix-2 16 | 1043864 | 2622 || 16 | 1048864 | 2622
Radix4 [| 8 524432 | 13.11 8 524432 | 13.11
Radix-16 [| 4 262416 | 6.56 4 262416 | 6.56
TABLE I
SUMMARY OF ADDRESSING BQUATIONS OF THE FFT ALGORITHMS
1-D FFT 2-D FFT M-D FFT
Addressing ByLO | LyBO || BAO | LIBO [I BIAO | LIBO
Inputs [6)] 8 8 (8 ® ®
Outputs (10) (10) 10) (10) (10 (10
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