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Abstract. In the optimization of canonical Reed-Muller (RM) circuits, RM polynomi- 
als with different polarities are usually derived directly from Boolean expressions. Time 
efficiency is thus not fully achieved because the information in finding RM expansion 
of one polarity is not utilized by others. We show in this paper that two fixed-polarity 
RM expansions that have the same number of variables and whose polarities are dual 
can be derived from each other without resorting to Boolean expressions. By repeated 
operations, RM expansions of all polarities can be derived. We consequently apply the 
result in conjunction with a hypercube traversal strategy to optimize RM expansions (i.e., 
to find the best polarity RM expansion). A recursive route is found among all possible 
polarities to derive RM expansion one by one. Simulation results are given to show that 
our optimization process, which is simpler, can perform exhaustive search as efficiently as 
other good exhaustive-search methods in the field. 
Key words: Reed-Muller circuits, dual-polarity, optimization. 

1. Introduction 

Logic functions may be expressed either in Boolean or in canonical Reed-Muller  

(RM) forms [2], [ 12]. The advantages of RM circuits (i.e., AND/EX-OR circuits) 
over traditional Boolean circuits (i.e., AND/OR circuits) in certain applications 
have been well reported [2], [12], [26], [28]. Generally, an RM expansion is 

derived from a given Boolean expression by applying a conversion method such as 
coefficient-map [ 14], [32], [331, [39], coefficient-matrix [ 13], 116], [191, or tabular 
techniques [3], [4]. However, for an n-variable logic function, 2 ~ fixed-polarity 
RM expansions are possible. The problem has been to find the best expansion 
in terms of  a certain predefined condition. Thus, recent research work in the 
field of  RM logic has been focused, to a greater extent, on the optimization 
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Figure 1. Paradigm 1--Conventional optimization approach. 

of RM functions, where the search space is among 2" possible polarities and 
the cost function is the number of EX-OR gates in most cases [20], [24]. In an 
attempt to find the global best polarity, all of the 2 n fixed-polarity RM expansions 
are first derived from a given Boolean expression using one of the conversion 
techniques mentioned previously. Then a brute-force, exhaustive-search method 
is applied to find the most optimum expansion. The optimization process has the 
general paradigm shown in Figure 1. Unfortunately, most conversion methods are 
inefficient and perform extremely poorly when n is large. Even with the more 
efficient tabular technique [4], the conversion from a Boolean function to any 
fixed-polarity RM expansion has a time complexity of 0(2';), and when n is 
large, the time taken is still rather substantial. Although Besslich [5] developed 
an efficient computer method based on coefficient maps by Wu et al. [39] to 
generate all 2 n sets of generalized RM coefficients of an n-variable Boolean 
function, its algorithm and efficiency for a general case (especially when n is 
large) are not clear. Miller and Thomson [24] have also presented an optimization 
technique to find out all b-vectors from a given "good polarity" b-vector, but a 
good polarity predictor is needed to achieve the potential efficiency of the method. 
The optimization methods mentioned above, and those in [11], [17], [21], [34]- 
[37], [40], belong to the exhaustive-search type, which can always guarailtee 
an optimum RM expression in terms of the number of EX-OR gates, but the 
searching time may become prohibitively large when the number of variables is 
greater than about 20. However, with the computing power of today's personal 
computers this has become less of a problem. In addition, there are many circuit 
realizations that do not require a large number of variables (say, n ~< 20) [2], [ 12], 

In recent years, graph-based algorithms [6] such as ordered binary decision 
diagram (OBDD) and ordered functional decision diagram (OFDD) methods have 
been proposed for the optimization of RM functions [9], [10], [25], [29], [30], 
[31 ]. Despite their efficient operations, there are some undesirable characteristics. 
One of the problems is variable ordering, which is a heuristic process. Initially, 
one must choose some ordering of the system inputs as arguments to all of the 
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functions to be represented in OBDDs or OFDDs. For some functions, the size 
of the graph representing the function is highly sensitive to this ordering. In 
addition, there are some functions that can be represented by Boolean expressions 
or logic circuits of reasonable size, but for all input ordering the representation 
as a function graph is too large to be practical. The problem of computing an 
ordering that minimizes the size of the graph is itself an NP-complete problem; 
thus the use of OBDDs and OFDDs to represent fixed-polarity RM forms remains 
an area for further research. There are also optimization techniques that are based 
on genetic algorithms [7], [23], [27], [30] and rule-based approaches [8], [27], 
[30]. These graph-based, rule-based, and genetic-algorithm methods belong to 
the nonexhaustive-search type, which generally has less searching time (even for 
a large number of variables), but because of their heuristic nature, the resulting 
RM expression may not be optimum. In certain cases, for example, in using a 
genetic algorithm, a wrong choice of an initial state may not lead to a definite 
answer at all [27]. 

In this paper, an exhaustive-search method for the optimization of RM poly- 
nomials is proposed. We prove that two fixed-polarity RM expansions whose 
polarities are dual can be derived from each other without resorting to Boolean 
expressions. This means that from a known fixed-polarity RM expansion, all other 
fixed-polarity RM expansions with the same number of variables can be derived. 
Using the property of a hypercube [22], this new conversion method leads to a 
recursive way of finding all the RM expansions efficiently. Two important features 
of our method are that the conversion from one RM expansion to another is carried 
out using one-bit checking and a good polarity predictor is not required. The 
method enables us to propose a new optimization paradigm, as shown in Figure 2. 
Some comparison results with known exhaustive-search algorithms [4], [24], [37], 
[40] are also presented to illustrate the performance of our method. The proposed 
method should not be compared with nonexhaustive-search methods, as the latter 
are likely to perform better in terms of speed because of the different searching 
space and technique. 

2. RM expansions 

2.1. Canonical form 

In a canonical RM expansion, each variable appears either in complemented or 
uncomplemented form, but not both. Thus, in logic circuit literature, a canonical 
RM expansion is an alternative name for a fixed-polarity RM expansion. We know 
that any n-variable Boolean function can be represented in a sum-of-product form 
as  

2" - [ 

.f(xn-I . . . . .  xo) = Z aimi, ( t )  

i = 0  
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Figure 2. Paradigm 2--Our optimization approach. 

where f ' {0, 1} ~ -+ {0, i}, m i are the minterms, and a i 6 {0, l}. It has been 
proved directly [ 1 ] or indirectly [2], [8] that (1) can also be expressed in canonical 
RM form as 

2 '~ - 1 
f(P)(An-1 . . . . .  20) = �9 ~ b}P)~ P~, (2) 

i=0 

where 
n - -  1 

= ( 3 )  

k=0 

where p (=  0 . . . . .  2" -- 1) refers to a given RM polarity, :~ = xk or s xk c 

{0, 1}, qS} p) are known as product terms for the particular p, and bl p) c {0, 1} 
determine whether a product term is present or not. In addition, i~ 6 {0, 1} is 
the power of k~, which indicate the presence or absence of a variable. We define 
0 ~ = 0. The symbol | represents the EX-OR operation, and multiplication is 
assumed to be the AND operation. 

2.2. Derivation 

Definition 1. Two polarities are defined to be dual polarity if they exhibit the 
following property: the n-bit binary strings of these two polarities have n - 1 bits 
in common, where n is the number of  variables (n >~ 1). 

Definition 2. The only different bit between dual polarities is called the permuting 
bit. 
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Examples of dual polarities can be found in polarities 0 and 1 (n = 1), polarities 
(0  0 ) a n d ( 0  1 ) ( n = 2 ) , a n d p o l a r i t i e s ( 0  0 0 ) a n d ( 0  0 1 ) ( n = 3 ) ,  
etc. In all these examples, the permuting bits are bit 1. For convenience, (p j, q j) 
is used to denote a polarity dual with permuting bit j .  

Coro l la ry  1. The fixed-polarity RM with polarity qj can be derived from the 
fixed-polarity RM with polarity p j, where (p j, q j) is dual polarity. 

Proof.  From (2) with p = p j, we have 

2 n - 1 

f(PP = |  Z blPi)4br pi), (4) 
i=0 

where 
n - I  

= [- [  (5) 
k=0 

Equation (5) can be written as 

~)r (Xk) ik (2j) ii ()Ok) ik . (6) 

\k=j+1 

Replacing (2j)ij with 1 G (~Cj) i j, and pj with q j, we obtain 

6~ qj) = (2k) ik (1 @ (~j)sj)  (2~) ~ . (7) 
\ k = j + l  

Equation (7) is not yet in product-term form. Because A(B �9 C) = AB | AC, it 
is easy to show that 

A(B �9 C)D = ABD | ACD (8) 

for some arbitrary binary variables A, B, C, and D. Applying (8), (7) becomes 

~{qJ)~--- (Xk)i~ H (2k)ik @ ('~k)ik (XJ)~J ('~k)ik ' 
k = j + l  \ k = j + l  

(9) 
which is now in the form of product terms. In (9), the variable 2j has been replaced 
by .~j. Thus, by substituting (9) in (4), we obtain the RM expansion f(qJ). [] 

In the derivation, we need to check the RM expansion at one particular bit only 
to derive the RM expansion of other polarity. Comparing (6) and (9), we notice 
that a new term is created when a product term in polarity pj is expressed in 

p o l a r i t y  qj. If  we write (9) as q$~qP = # | v, then i f  (.~j)ij = l ,  the new term 
is v; if (2j) i] is a variable, the new term is D~. The new term can be generated 
as follows. Convert the product term into a binary string by replacing a variable 
by 1 or 0 depending on whether the variable is present or not. Copy all bits of  
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this string except bit j ,  which is changed from ! to 0. Keep in mind that the 
final RM expansion with polarity qj is given by (2) with p = qj. The new term 
may be coincident with other terms and should be canceled according to the rule 
A @ A = 0. This leads to the following algorithm for deriving f(qi) from f(P.i) 

Step I. 

Step 2. 

Step 3. 
Step 4. 

2.3. Algorithm 

Convert product terms of f(PJ) into binary strings. A variable that is present 
in a product term is replaced by 1, and an absent variable is replaced by 0. 
Generate a new term if bit j of a binary string is I. Replace bit j with 0 and 
copy all other bits to generate the new term. 
Cancel pairs between original strings and newly generated strings. 
The uncanceled strings are the product terms of f(r 

2.4. Example 

Consider a three-variable Boolean logic function: 

f (A, B, C) = ~ ( 0 ,  2, 4, 7) = A B C + ABC + ABC + ABC. (tO) 

Its RM expansion in polarity 6 is given by 

fi6) = @  2 ( 1 , 2 ,  4,6) = C  @ B @ A @ A B .  ( ~ )  

Polarity 4 (100) and polarity 6 (110) are single-bit different at bit 2. Thus the RM 
expansion in polarity 4 can be derived directly from (l 1) instead of transforming 
it from the Boolean form in (10). Table 1 illustrates the process, and we obtain 

f(4) = _ @ Z ( 0 , 1 , 2 , 6 ) =  I | 1 7 4  

Table 1. Derivation of RM expansion 

Polarity ---- 6 New terms Polarity = 4 
A B C A B C 

0 0 1 0 0 0 
0 I 0 0 0 0 0 0 t 
1 0 0 0 1 0 
I 1 0 , I  0 0 1 1 0 
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For comparison, let us use the tabular technique to derive f(4) directly from the 
given Boolean function (i.e., (10)) as follows: 

Minterms New terms (C) New terms (B) New terms (A) 

O 0 0 0 0 1 0 1 O- -0 O 0 
0 l O 0 1 1 1 ! 0 -O 0 1 
1 0 0 1 0 1 0 1 1 0 1 0 

-1 1 I 1 1 1 

Remaining terms Polarity Resulting terms 

1 0 0 @ 1 0 0 = 0 0 0 
1 0 1 �9 1 0 0 = 0 0 1 
1 I 0 | 1 0 0 = 0 1 0 
0 1 0 | 1 0 0 = 1 1 0 

ClearLy, we have the same results. 

2.5. Comments 

It is easy to see the advantage of the algorithm in Section 2.3 over the tabular 
technique. It needs only one-bit operation. However, to derive an RM expansion 
directly from minterms using the tabular technique, one must compare each bit 
of  a Boolean function with the desired polarity; thus, n bits must be checked for 
an n-variable function. In addition, the remaining terms in the tabular technique 
must undergo an EX-OR operation with the desired polarity in order to obtain the 
corresponding RM expansion. In our method, no EX-OR operation is needed, and 
no good polarity predictor is required. Substantial time can be saved if we derive 
all the 2 " RM expansions this way. 

Notice from the example in Section 2.4 that, apart from p ---- 100, we can easily 
derive RM expansions for p = 111 and 010. Then from p = 111, we can go on 
to p = 110, 101, and011;  from p = 010, we can go on to p = 011,000,  
and 110, etc. Thus, by repeated application of the algorithm on newly generated 
RM expansions, we can derive RM expansions for all polarities. However, when 
n is large and without elaborate checking steps, this process generates many 
repetitions of  the same polarities and does not know when to stop. All of  this 
implies inefficiency. Because of  the single-bit difference in polarity, it motivates 
us to exploit a particular link among the 2 '~ polarities based on a hypercube 
structure. By formulating all polarities as nodes of a hypercube, we will show 
in the next section that there exists a recursive route that covers all the nodes and 
transverses each node only once. The result enables us to propose an efficient 
exhaustive-search optimization of  RM expansions. 
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Figure 3. Four-dimensionaL hypercube. 

3. Hypercube 

Although traversing single-bit-difference binary strings can be based on Gray 
code, we have chosen a hypercube data structure because of its regularity, its 
small diameter, its many interesting graph-theoretic properties, and its ability to 
handle many computations quickly and simply. Basically, a hypercube consists of 
2 n nodes interconnected into an n-dimensional Boolean cube that can be defined 
as follows. Let the binary representation of i be in tin-2 " " i o ,  where 0 ~ i ~< 
2 '~ - 1. Then node d i  is connected to node d j ,  where j = in- t in-2 " " " i k  �9 " " i o ,  for 
0 ~< k ~< n - 1. In other words, two nodes are connected if and only if their indices 
differ by only one bit position. Figure 3 shows a four-dimensional hypercube. 

Of interest to us is that the hypercube has a recursive structure [22]. We can 
extend a d-dimensional cube to a (d + l)-dimensional cube by connecting corre- 
sponding nodes of two d-dimensional cubes. One cube has the most significant 
address bit equal to 0; the other cube has the most significant address bit equal 
to 1. 

Corol lary  2. Let each node of an n-dimensional hypercube represent a polarity 
of an n-variable RM function. If there is a direct connection between node di and 
node d j ,  then di and dj are single-bit different. 

Proof. In constructing a hypercube, two nodes are connected if and only if their 
indices differ by only one-bit position. Therefore, from Definition 1, the connec- 
tion between node di and node dj means that di and dj are single-bit different. 
[] 

T h e o r e m .  There exists' a route in an n-dimensional hypercube that passes aH 
nodes only once. 

Proof'. The proof is by induction on n. For n -- 1, the l-dimensional bypereube 
has two nodes with indices of 0 and l, respectively. These two nodes are con- 
nected, so we have a route that passes all nodes only once. 

For n = k, assume that the theorem is true. This means that there is a route 
RST starting from node ds (S = Sk- ISk-2  "'" SO) and stopping at node dr (T = 
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T k -  1 T k - 2  �9 " " TO) and it passes all 2 k nodes only once. Note that the reverse route, 

RTS (from dT to ds), also passes all nodes only once. 
For n = k + 1, a (k + l)-dimensional  cube is constructed by connecting cor- 

responding nodes of  two k-dimensional cubes. One cube has the most significant 
address bit equal to 0; the other cube has the most significant address bit equal 
to 1. We can traverse the first k-dimensional cube taking route RsT, go to the 
second cube using the connection between node (OTk-i T~-2. . .  To) and node 
(1 T~-I Tk-2 " �9 To), and traverse the second k-dimensional cube taking route RTS. 
This route covers all 2 k+l nodes and passes each of them only one time. [] 

The proof  also gives a method to construct the route. 

Defini t ion 3. The route in a hypercube possessing the feature as described in the 

preceding Theorem is called a recursive route. 

3.1. Examples of recursive routes 

Let the route for a 1-dimensional hypercube be 0 -+ i. Then the route for a 2- 
dimensional hypercube is 00 -+ 01 -+ 11 -+ 10. The route for a 3-dimensional 
hypercube is 000 -+ 001 --+ 011 --+ 0 1 0 - +  110 -+ 111 --> 101 --+ 100, and 
the route for a 4-dimensional hypercube is 0000 --+ 0001 ---> 0011 -+  0010 --> 
0110 --+ 0111 ---> 0101 --> 0100 -~  1100 -+ 110t --+ 1111 -+ 1110 --> 
1010 -+ 1011 -+ 1001 ---> 1000, and so on. 

4. Optimization of RM circuits 

4.1. Exhaustive search based on recursive route 

Now we are in a position to perform optimization of RM expansions using the 
paradigm in Figure 2. First, a given Boolean function is transformed into a zero- 
polarity RM function using a known method, say the tabular technique [4]. From 
there on, our algorithm (given in Section 4.2) will take over to perform an exhaus- 
tive search over the 2 n polarities to determine the polarity (or polarities) which 
results (or result) in the minimum number of EX-OR gates in the RM expansion 
(expansions), assuming that EX-OR gates are the most expensive components. 
The bracketed quantities mean that there may be more than one RM expansion 
with different polarities but with the same minimum number of EX-OR gates, 
which constitutes the defined cost function. 

In Section 2, we presented the algorithm for deriving RM expansions with dual 
polarity. In Section 3, we defined the recursive route that covers all possible 2 '* po- 
larities. In the recursive route, two neighboring polarities are single-bit different, 
thus making it possible to derive all the RM expansions. Combining the algorithm 
in Section 2 and the recursive route in Section 3, an exhaustive-search technique 
is presented below for the optimization of RM circuits. 
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Table 2. Result of Example 4.3 

Polarity RM expansion No. of EX-OR gates Best polarity 

0 0 0 | ~(0,1,6) 2 
0 0 1 @ ~(1,6)  1 
0 1 1 @ ~_.~(1,6,4) 2 
0 ! 0 @ ~(0,1,6,4) 3 
I 1 0 | ~(1,2,4,6) 3 
i l l  | ~(0,1,2,4,6) 4 
1 0 l | ~ (1 ,2 ,6 )  2 
1 0 0 | ~ (0 ,1 ,2 ,6)  3 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

4.2. Optimisation algorithm 

Get the number of variables n, and get the minterms. 
Initialize the polarity, p '  = 0. 
Obtain the zero-polarity RM expansion (using the tabular technique). 
Calculate the total number of EX-OR gates, Neor. 
Set best-gates = Neor. Set best-polarity = O. 
Determine the next polarity, p ' ,  of the RM expansion according to the 
recursive route. 
Obtain the RM expansion of polarity p '  based on the algorithm in Sec- 
tion 2.3. 
Calculate the total number of EX-OR gates, Neor. 
If Neor < best-gates, set best-polarity = p' and best-gates = Neor. 
Stop if all polarities have been treated. Otherwise repeat Steps 3 and 4. 

4.3. Example 

Consider the same three-variable Boolean logic function in Section 2.4, ke., 

B, C) = ~ ( 0 ,  2, 4, 7) = A B C § A B C  + A B C  + A B C  f ( A ,  

The result of the exhaustive-search method taking the recursive route is shown in 
Table 2. 

5. Simulations and comparisons 

The actual timing of exhaustive search, taking the conventionai way (Figure l) 
or using the hypercube recursive route (Figure 2), will vary with the Boolean 
functions. In addition, the number of minterms in a Boolean function also affects 
the optimization time. Therefore, we are not able to give an exact formula to 
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Table 3. Some optimization examples 

Number Boolean function Best Reed-Muller form 
of variables polarity 

4 f = ~(I,4,5,13,14) 7, 8 f(7) = @ ~(2,7,9,13,14,15) 
f(8) = @ Y~.(5,6,9,11,12,15) 

4 f = ~(7,3,2,10,5,4,13,14,8) 9 f = | ~(9,10,15,1,4,6) 
5 f = ~(20,Ii,15,6,21,0,26,5,22,31, 30 f = | ~(31,25,22,20,18, 

30,2,1,28,14,24,9,23,29) 12,13,5,0) 
6 f = ~(24,45,23,62,8,35,13,28,34,61, 37 f = �9 ~(33,41,43,49,50, 

39,11,30,31,16,33,40,5,32,22, 62,59,0,13,12,10, 
14,7,19,36,26~3,1,29,48,10, 21,16,29,31,25,24) 
12,43,37,38,59,50,27,44) 

7 f = ~(114,72,t8,50,22,65,20,15,101, 19 
75,111,110,37,62,51,82,53,100, 
2,99,68,3,119,34,0,69,59,106, 
47,23,80,13,32,112,6,126,38, 
31,45,123,109,94,93,108,8,4, 
83,49,73,117,66,52,21,92,19, 
115,12,27,36,107,8,10,86,120, 
74,103,42,98,9 I, 11,39,46,29, 
25,5,127) 

f = @ ~(19,22,21,20,26,25, 
28,2,0,6,10,9,14,49, 
48,55,52,59,63,60, 
35,34,39,36,47,46, 
81,80,85,89,88,95, 
94,93,67,69,68,74, 
77,119,118,122, 
121,120,99,98, 
107,110,109) 

calculate the timing of our method in the general case. But by comparing the 
performance with other exhaustive-search methods [4], [24], [37], [40], we can 
still show the effectiveness of  our method experimentally based on randomly 
generated Boolean functions. All  methods were implemented on a Pentium II- 
300MHz PC with 64MB RAM using C++ programs. 

The first experiment was to verify the correctness of our method compared to 

the conventional method. The objective was to find the RM expansion with the 
least number of  EX-OR operations. Numerous randomly generated logic func- 
tions whose number of variables ranges from 3 to 10 were tested. Table 3 lists 
some of  the tested results. For each test function, both methods gave the same 
result, thus verifying the correctness of  our approach. In cases where more than 
one optimum RM expansion was found for a given Boolean function, extra cost 
functions [24], like AND-gate  = 2 cost units and NOT-gate = 1 cost unit, could 
be included to refine selections in actual circuit implementation. Notice that the 
first 4-variable Boolean function in Table 3 was optimized at polarities 7 and 8. 
Applying the mentioned cost function, f(7) and f(8) would incur 32 cost units 
and 22 cost units, respectively. Hence, the best choice was f(8). 

The second experiment was to compare the time taken to find the optimum RM 
expansion. The number of minterms in a Boolean function affects the optimiza- 
tion time, so we carried out the comparison in two cases. In the first case, the 
number of  minterms in a randomly generated Boolean function was set at 80% 
of all possible numbers of minterms. Table 4 lists the comparison results. In the 
second case, the number of minterms was set at 20% of all possible numbers of 
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Table 4. Comparison of algorithms: CPU time in sec. (80% minterms) 

l~ Tabular Algo. from Algo. f rom FRMT* 2nd algo. Proposed 
method [41 [241 [371 [40t from [40] method 

15 3870.63 1414.60 1368.98 1436.18 1292.16 1309.56 
16 19965.19 5 2 6 3 . 9 4  5 3 1 9 . 7 9  5 2 2 4 . 5 6  4 9 8 5 . 6 4  5089:60 
17 87593 .8 l  25210:64 19645.56 19877.61 18935.73 19060.92 
~8 384926.35 88732.05 72256.94 76133.58 72018.85 7230J.76 
19 1746064.86 394666.23 273264.61 283992.34 271326.22 27106.61 
20 5472792.91 1738318.24 1302215.01 1134070.11 112849.84 1129165.25 

(*FRMT = Fast Reed-Muller transform.) 

Table 5. Comparison of algorithms: CPU time in sec. (20% minterms) 

n Tabular Algo. from Algo. from FRMT* 2nd algo. Proposed 
method [4] [24] [37] [40] from [40] method 

15 2703.24 983.82 893.72 807.39 788.03 790.08 
16 9871.47 3908.21 3862.65 3874.53 3698,65 3716.97 
17 37712.03 13129.57 12152.98 12207.02 12070.29 12014.46 
18 124990.59 45506.29 43557.57 43672.24 42942.59 43644.62 
19 788671.99 155095.75 153028.63 152270.98 131882.80 131078.66 
20 2162801.76 505351.84 468345.46 472309.69 471615.12 472032.77 

minterms, with other aspects of the experiment being the same as the first case. 
The comparison results are given in Table 5. It can be observed from Tables 4 

and 5 that the method presented in this paper generally performs more efficiently 
than the algorithms in [4], [24], [37], and the fast Reed-Muller  transform (FRMT) 
described in [40]. However, the proposed method is not as time efficient as the 
second algorithm in [40] because the latter has extra steps for adjacent polm'ity 
mapping which may speed up execution. However, it should be noted that this 
speedup execution is achieved at the expense of a more complicated algorithm, 
and in addition, the second algorithm in [40] has a memory requirement of at least 
O (2"), whereas our algorithm requires storage of at most O (n2). 

6. Conclusions 

We have shown how to derive canonical RM expansions of  all polarities from 
a known fixed-polarity RM expansion. As a result, a simple algorithm has been 
developed to facilitate efficient derivation of RM expansions based on a single-bit 
difference in polarity. To avoid repetitions of polarities and to provide a proper 
stopping criterion for the algorithm, we have formulated all polarities as nodes of 
a hypercube and used a recursive route to traverse all nodes without repetitions. 
An exhaustive-search optimization method has thus been proposed, and test re- 
sults have shown that it generally works as efficiently as, if not better than, other 
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good exhaustive-search methods of Boolean-to-RM conversions. Because of the 
simplicity of the proposed algorithm, it can also be implemented more readily. 
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