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Abstract—Theoretical results due to V. Malyugin on linearization of arithmetical models of
logical functions are interpreted and refined from the viewpoint of modern techniques of logical
design of integral circuits and nearest neighbor technologies.

1. INTRODUCTION

Computer-aided design of integral circuits (CAD IC) consists in transforming the description
of a circuit at the algorithmic or behaviorial level to a description at the physical level satisfying
technological conditions. This process is subdivided into system, behavioral , logic and layout levels.
This paper is concerned with the logic level , in which the behavior of a circuit is described by
logical functions. The effectiveness of algorithms used in this level primarily depends on data
structures (AND/OR forms, cubes, vector representations, etc.). Problems of large dimension are
effectively solved with decision diagrams (DD) [1, 2]. Arithmetical logic is the extension of the
Boolean algebra through arithmetical operations permitting the representation of logical functions
by integer functions (Boolean-to-integer functions). In many cases, this is helpful in manipulating
and transforming data of CAD systems [3, 4].
Beginning from the pioneering works of Aiken on the application of arithmetical logic in de-

signing the computers MARK 3 and MARK 4 (1952) [5], many papers have developed word-level
structures, i.e., representation of data in the form of specially grouped words, to obtain compact
data representation and thereby increase the dimension of problems, for example, by the so-called
word-level DD . Another approach is developed in [6]. However, it is not clear which of the methods
of formation of words from Boolean functions is preferable. The properties of arithmetical logic
in this respect are rather attractive, for example, is it not possible to group data such that they
are described by a linear arithmetical polynomial (LAR). In certain well-know publications, this
problem is solved in a simplified formulation by partly linearizing the word-level model [1, 3, 4, 7].
Fundamental results due to Malyugin [8, 9] pave the way for solving this problem.
This paper is devoted to linearization of arithmetical word-level models—an integral part of

the Malyugin approach. Our aim is to interpret his approach to linearization of arithmetical
models (polynomials) and refine it from the standpoint of new requirements and capabilities of
modern CAD IC systems. In particular, we describe a classification for word-level models and
show the importance of the cortege technique for linearization of arithmetical models. Jointly with
linearization conditions and matrix transformation technique [10, 11], the arithmetical model of a
circuit (combination circuit or a circuit with memory on binary and multilevel gates) is shown to be
linearizable [12]. Then, the linear model is directly mapped into a linear DD (LDD) having certain
useful properties. For the first time we show that any circuit is representable by a system of LDD.
1 This work was supported in part by the NATO Collaborative Linkage Grant PST/CLG 979071.
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Finally, using the properties of linear models, we solve the problem of large weight coefficients
characteristic of arithmetical forms. It is a serious hurdle in practical application of arithmetical
logic. Experiments with industrial circuits have shown that our algorithm is effective for solving
large-dimensional problems (in experiments, coefficients took values up to 2100); none of the known
methods can solve such problems. Latest results in arithmetical logic, including linearization of
models, are reviewed in [13].
Arithmetic transformation methods are discussed in Sections 3–5. Linearization of arithmetic

polynomials is described in Section 6. Section 7 is concerned with the computational aspects
of linear transforms based on LAR. Section 8 is devoted to manipulations with large values of
coefficients of LAR. Experimental results are given in Section 9. The application of arithmetic
logic in prospective technologies is examined in Section 10.

2. PRELIMINARIES

2.1. Word-level Forms

A Boolean function of n variables is a mapping {0, 1}n → {0, 1}. The word-level form in
arithmetic logic is an integer function P with a mapping {0, 1}n → {0, 1, . . . , p− 1}, where p > 2.
In general, a system of r Boolean functions of n variables (r-output Boolean function) can be
represented by an integer function D with the mapping {0, 1}n → {0, 1, . . . , 2r − 1}. Word-level
representation of a system of Boolean functions is defined to be an ordering of integer functions Pj

such that the functions form a word

D = 2r−1Pr + . . .+ 21P2 + 20P1. (1)

The outputs f1, f2, . . . , fr of a Boolean function f are uniquely estimated from expression (1)
through transformation of Pj into fj. This form is the weighted sum of r arithmetic polynomials Pj ,
j = 1, . . . , r. A particular case of this expression is the linear arithmetic polynomial (LAR), which
contains not more than (n+1) nonzero coefficients. Transformation of an arithmetic polynomial (1)
to a LAR is the solution of the boundary-value problem of arithmetic logic. In this paper, we focus
our attention on methods of formation of LAR and their properties.
In the general case, a word-level model is described by a sequence of words. A word contains

information on a function and components of a system (circuit). The simplest word-level model
contains only Boolean constants. For example, the word 101 represents a binary word. In CAD IC,
we use different types of word-level models, for instance, sum of weighted Boolean expressions or
arithmetic polynomials (1). Word-level structures are manipulated and transformed by a special
technique based on decision diagrams, known as the WDD [2]. The initial word-level description
may contain arithmetical expressions or truth vectors of Boolean functions. Malyugin refers to
such data structures as corteges and has developed a technique for manipulating over them [8].

2.2. Linearization Problem

Arithmetic logic is an extension of Boolean algebra. An arithmetical expression is formed via
replacement of Boolean operations by arithmetical operations over integer data according to certain
rules. Algebra of corteges is an extension of arithmetical logic.2

2 An extension of a field K is obtained by including new elements r1, r2, . . . , rn such that F = K(r1, r2, . . . , rn),
where r1, r2, . . . , rn ∈ F . The resultant field F is called the extension of the field K if all group operations and
field properties are preserved.
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Definition 1. The LAR of a Boolean function f of n variables x1, . . . , xn is

D = d0 +
n∑

i=1

dixi = d0 + d1x1 + . . . + dnxn, (2)

where di (i = 1, 2, . . . , n) is the ith integer coefficient.

According to expression (2), an r-output Boolean function can be represented by a LAR if all
polynomials Pj in (1) are LARs (trivial case) or (b) the weighted sum of (1) contains LARs and
nonlinear polynomials Pj (the general case).
Linearization means transformation of a nonlinear arithmetic polynomial (1) into a linear arith-

metic polynomial (2) with not more than (n+1) nonzero coefficients. Probably, a similar lineariza-
tion problem was first solved in [16], though general interest in this topic had emerged as early as
1952. (see [17]). A solution in the spectral domain is given in [18, 19].

Example 1. The outputs f1 = x1 ⊕ x2 and f2 = x1x2 of a half-adder are nonlinear arithmetic
polynomials P1 = x1+x2 −2x1x2 and P2 = x1x2, respectively. This is the general case of design of
LARs (2). According to (1), D = 21P2 +20P1 = 21x1x2+20(x1+ x2 − 2x1x2) = x1+ x2 is a LAR.
Interchanging the numbers of P1 and P2, we obtain a nonlinear polynomial D = 2x1+2x2−3x1x2.

In this example, identical nonlinear terms 2x1x2 have been eliminated as a result of their unlike
signs by a suitable choice of order of numeration for the outputs of the Boolean function. Con-
sequently, linearization of expression (1) is sensitive to the order of numeration of outputs of the
Boolean function in the word-level representation. If this order is suitably chosen, then the LAR
uniquely represents a function, and this provides a method for estimating the initial function.
The linearization problem for data structures can also be formulated differently: find a linear

transformation L for the variables x1, x2, . . . , xn of a Boolean function f such that f = L{f̃}. If the
Boolean function f̃ is simpler to compute than the function f and the transformation L does not
require sophisticated computation resources, then this approach is useful in designing and analyzing
logical circuits [7, 20, 21].

2.3. Topic of Study

The state-of-the-art of our problem shows that there are two main hurdles in the way of practical
application of arithmetical logic to logical design and control, viz.:
(i) Absence of satisfactory methods for linearization of arithmetical models. Although the results

due to Malyugin give a “key” to many real problems, his linearization approach needs refinement
from the viewpoint of modern CAD IC technology.
(ii) Impossibility of utilization of the existing methods for solving large-dimensional problems.

Description of data structures by arithmetical polynomials and manipulations over them requires
huge weight coefficients even for small circuits. If this hurdle is surmounted, vistas open for the
utilization of the word-level technique, in particular, WDD technology.
Motivated by these facts, we shall focus our attention on linear models of arithmetical logic for

multilevel circuits and for transforming them to an LDD set :

Function (circuit) ⇐⇒ LAR ⇐⇒ LDD ⇐⇒ Realization.

Thus we can attain the main goal: application of Malyugin’s results in CAD IC, their interpreta-
tion in terms of modern word-level technology, and solution of certain related problems, such as
transmission of data via LDD networks and manipulations with large weight coefficients.
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Fig. 1. Four methods of transformation of a Boolean function to an arithmetical polynomial (left to right):
algebraic, matrix, Taylor expansion, via algebra of corteges (Malyugin’s method).

To determine the place and role of Malyugin’s linearization methods in modern word-level tech-
nology, we must classify methods of realization of arithmetical transformations, by which we mean
the relationship between Boolean functions and their representation by arithmetical polynomials.3

Direct arithmetical transformation is used for solving the following problem: given a Boolean
function (a many-output function in the general case), find its corresponding arithmetical polyno-
mial. Inverse arithmetical transformation is used for estimating the Boolean function from a given
polynomial. Consequently, arithmetical transformation is defined by a pair of relations for solving
direct and inverse problems.
In this paper, we use four methods for manipulations over arithmetical expressions: algebraic,

matrix, Taylor expansion, and algebra of corteges based on the Malyugin method (Fig. 1).4

Algebraic manipulations based on the linearity of arithmetical transformations. They feature
clarity and simplicity, and helpful in solving large-dimensional problems. For details, see Section 3.
Matrix manipulations are based on the transformations used in digital signal processing. They

are suitable for solving large-dimensional problems in combination with graphic structure of data,
such as DD. Details are presented in Section 4.
Taylor expansion is the analog of the Taylor series in mathematical analysis. Its merits are that

the coefficients of an arithmetical polynomial admit representation in a convenient form for analysis
by analogs of Boolean differences (as arithmetical derivatives).
Manipulations based on the algebra of corteges—the topic for discussion and investigation in this

paper—underlie the Malyugin approach, which significantly differs from the first three approaches.
Its merits are (i) algorithmically flexible manipulation over large-dimensional arithmetical expres-
sions, (ii) new possibilities for realization of direct and inverse transformations, (iii) simplicity of
design and analysis of LARs, and (vi) possibility of representation of any Boolean function by a
finite LAR set. The last property is not inherent in any of the well-known method. The Malyugin
method is described in Section 5.
These transformation methods differ in computational complexity and algorithmic realizability.

The choice of a method depends on the concrete problem.

3 In scientific literature, arithmetical transformation is often interpreted in terms of signal theory: a Boolean func-
tion is a representation of a signal in time domain and its corresponding arithmetical polynomial is a form of
representation of signals in the spectral domain [15, 22].

4 This classification does not include the well-known methods of approximate computation of coefficients of arith-
metical polynomials via probabilistic transformations [14, 15].
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3. TRANSFORMATION TO ALGEBRAIC FORM

Arithmetical transformation can be realized directly by representing every element in a logical
circuit by an appropriate polynomial [23]. This is one of merits of the algebraic form.

3.1. Direct Transformation

Manipulations over arithmetical expressions are based on the linearity of arithmetical trans-
formations. Let A{f} denote the arithmetical transform of a Boolean function f represented by
f = f1 ∨ f2 . . . ∨ fr. Then the arithmetical analog of the Boolean function A{f} is constructed via
transformation of subfunctions fi

A{f} = A{f1 ∨ f2 . . . ∨ fr} = A{f1}+A{f2} . . . +A{fr}.

Example 2. Using the linearity property, the trivial equalities x = 1−x, x1∨x2 = x1+x2−x1x2,
x1x2 = x1x2, and x1⊕x2 = x1+x2−2x1x2 can be generalized to functions. The Boolean functions
f1 = x1x2 ∨ x1x3, f2 = x1 ∨ (x2 ⊕ x3) and f3 = x1 ⊕ x2 are reduced to arithmetical form as

A{f1} = A{x1x2}+A{x1x3} − A{x1x2}A{x1x3} = x1x2 + x1x3 − x1x2x3,

A{f2} = x1 + x2 + x3 − x1x2 − x1x3 − 2x2x3 + 2x1x2x3,

A{f3} = x1 − 2x1x2 + x2.

Since arithmetical transforms are linear, the outputs of the Boolean function f can be grouped
as words (1), i.e., functions of every output can be represented by the weighted sum of transforms

A{f} = A{2r−1fr}+ . . .+A{21f2}+A{20f1} = 2r−1Pr + . . .+ 21P2 + 20P1 = D. (3)

Example 3. Applying property (3) to the Boolean function in Example 2, we obtain

D = 20f1 + 21f2 + 22f3 = 7x1 + 6x2 + 2x3 − 10x1x2 − 4x1x3 − 4x2x3 + 3x1x2x3.

In this example, three Boolean functions, each of which is represented by an arithmetical equiv-
alent, are described by one (nonlinear) polynomial, i.e, in word-level form. This polynomial is
obviously inferior in complexity to the initial Boolean functions. All methods of grouping of func-
tions (numeration of outputs of the function as in Example 1) do not yield the linear expression (2).
This is a motivation for developing new linearization methods.

3.2. Inverse Transformation

Since inverse transformation to algebraic form mostly requires an intuitive approach and hardly
yields to algorithmization, it is not of much interest even for small-dimensional problems.

4. TRANSFORMATION TO MATRIX FORM

Here we examine two matrix arithmetical transformations [11]. Let X and D be the truth vector
of a Boolean function f and the vector of coefficients of its arithmetical representation, respectively.
The relationship between X and P is defined by two transformations

D = A2nX (direct transformation), (4)

X = A−1
2n D (inverse transformation), (5)

whereA2n andA−1
2n are the matrices of direct and inverse arithmetical transformations, respectively.
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4.1. Direct Transformation

Direct transformation (4) is applied to represent a Boolean function in arithmetical form defined
by the coefficient vector D.5 The arithmetical transformation matrix A2n is formed by the rule

A2n =
n⊗

i=1

A1, A1 =

[
1 0

−1 1

]
,

where A1 is the base matrix of direct transformation and ⊗ denotes the Kronecker multiplication.

Example 4. The three-output Boolean function of Example 3 is transformed to an arithmetical
polynomial as follows. First we form its truth vector with integral elements

X = [X3|X2|X1]︸ ︷︷ ︸
Truth matrix

=



0 0 0
0 1 0
1 1 0
1 0 0
1 1 1
1 0 1
0 0 1
0 1 0


=



0
2
6
4
7
5
1
2


.

Then applying the direct transformation (4), we obtain the coefficient vector D of the unknown
arithmetical polynomial D

D = A23X =



1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
1 −1 −1 1 0 0 0 0

−1 0 0 0 1 0 0 0
1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0

−1 1 1 −1 1 −1 −1 1





0
2
6
4
7
5
1
2


=



0
2
6
4
7
5
1
2



x3

x2

x2x3

x1

x1x3

x1x2

x1x2x3

.

This example shows that matrix form is preferable to algebraic form in computations.

4.2. Inverse Transformation

Inverse transformation applied to the coefficient vector D (4) yields the truth vector X. The
matrix of inverse arithmetical transformation A−1(n) is formed according to the rule

A−1
2n =

n⊗
i=1

A−1
1 , A−1

1 =

[
1 0
1 1

]
,

where A−1
1 is the base matrix of inverse transformation.

Example 5. Find the Boolean function corresponding to LAR = 2 + 3x1 + 5x2. The inverse
transformation (5) generates the truth vector X

X = A−1
2n D =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1



2
5
3
0

 =


2
7
5
10

 =

0 0 1 0
0 1 1 1
0 1 0 1
1 0 1 0

 .
Consequently, LAR = 2 + 3x1 + 5x2 represents a Boolean function of four outputs f4 = x1x2,
f3 = x1 ⊕ x2, f2 = x1 ⊕ x1x2, and f1 = x1 ⊕ x2.

5 The coefficient vector is also called the arithmetical spectrum of the Boolean function.
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5. TRANSFORMATIONS IN CORTEGE ALGEBRA

A common drawback of these three methods of arithmetical transformations (Fig. 1) is the
restricted possibilities for manipulations over functions in word-level representation for linearization.
Widening these possibilities, Malyugin solved the following problem: given a many-output Boolean
function, find (a) an algebra for effective manipulation over word-level structured data and (b) a
method for linearization of arithmetical expressions in this algebra.

5.1. Initial Definitions

Without specifying the nature of an object (element), a cortege Corm is defined to be an ordered
sequence of m elements Ui, i = 1, 2, . . . ,m:

Um � Um−1 � · · · � U1 = Corm =
m⊙

i=1

Ui, (6)

where � denotes the separator between elements. Often we write ACorm to denote that the
cortege A contains m elements. In arithmetical logic, elements of a cortege may be constants 0
and 1, variables xi, functions fi (Boolean expressions), and (nonlinear) polynomials (in the general
case), denoted in the sequel by ARi.

Example 6. (i) Cor = 0� x3 � 1 is a cortege of constants, (ii) Cor = f3 � f2 � f1 is a cortege of
functions, (iii) Cor = AR3 � AR2 � AR1 is a cortege of polynomials, and (iv) Cor = (x2 ∨ x3) �
(x1 ⊕ x2)� 0 is a cortege of Boolean expressions and a constant.

The number of an element in a cortege is its address. The advantage of description by a cortege
is the possibility for grouping and manipulation over data in word-level format. For example,
LAR = x1+ x2 represents a Boolean function with two outputs x1x2 and x1 ⊕ x2, which is defined
by the cortege x1+x2 ⇐⇒ (x1x2)︸ ︷︷ ︸

Higher-order bit

� (x1 ⊕ x2).︸ ︷︷ ︸
Lower-order bit

The masking operator is designed to extract

the desired function from a cortege or LAR.

Definition 2. The masking operator

fr = Ξm
r {f} (7)

shows the position r of the function fr in the cortege Corm of m functions fi, i = 1, 2, . . . ,m.

Example 7. Functions in a cortege x1x2 � (x1 ⊕ x2) are “extracted” with a masking operator
x1x2 = Ξ2

2{x1 + x2} and x1 ⊕ x2 = Ξ1
2{x1 + x2}.

5.2. Cortege Algebra

The main requirements imposed on the algebra used in the description and transformation
of switching functions are functional completeness (distinguishable algebraic representation for a
function), flexibility (reasonable complexity of data manipulation algorithms), and realizability (sim-
plicity and obvious physical interpretation of the relationship with other data structures). Using
these requirements, Malyugin extended the classical Boolean algebra to operations over corteges.

5.3. Sum of Corteges

We can find the sum of a cortege A of elements ai and a cortege B of elements bi in analogy
with the design of a binary adder, whose primitive components are called half-adders.6 Let us
6 A binary half-adder computes the sum of two binary numbers: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10
(Fig. 2). The results of the first three operations are represented by only one bit. But if both operands are 1, the
sum is represented by two bits, which correspond to CARRY and SUM.
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Fig. 2. Truth tables of a binary half-adder (a) and cortege half-adder (b) (8).
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Fig. 3. Truth tables of a complete two-input cortege adder (9) (top table for Sum and bottom table for Carry).

design a half-adder for corteges. Since the elements of a cortege may be constants 0, 1, variables,
or Boolean expressions, let us express the initial data as ai, bi ∈ {0, 1, x, y}, where x and y are
Boolean variables. Addition of constants 0 and 1 differs from the functions of a binary half-adder
only in the form of expressions 0+0 = 0�0, 0+1 = 0�1, 1+0 = 0�1, and 1+1 = 1�0. For the
addition of constants and variables, there are four situations (a) 0 + x = 0� x, (b) 1 + x = x� x,
(c) y+0 = 0�y, and (d) y+1 = 1�y, since carry operation in the addition of (1+x) and (1+y) is
formed only for x = y = 1. Finally, x+ y = (x⊕ y)� xy, because SUM = x⊕ y and CARRY = xy
in the binary half-adder. From the truth tables for a half-adder of corteges and a binary half-adder
shown in Fig. 2 we arrive at

Assertion 1. Binary half-adders and cortege half-adders have identical formal descriptions

SUM = ai ⊕ bi, CARRY = aibi. (8)

Using half-adder (8), we can design a complete adder of corteges.7 Addition of constants is
implemented as in a binary adder, including the case 1 + 1 + 1 = 1� 1. The four cases considered
above for the addition of constants 0 and 1 and variables x and y are similar to those for a
cortege half-adder. The result of addition for other combinations of constants and variables is
(i) 1 + x + 1 = 1 � x, (ii) 1 + y + 1 = 1 � y, and (iii) x + 1 + y = 0 � (x ⊕ y) since x + 1 + y =
(x+1)+y = (x�x)+y = (x⊕xy)� (x⊕y) = (x∨y)� (x⊕y). Finally, the sum of three elements
of a cortege for x+ x+ y and x+ y + y is x+ x+ y = (x+ x) + y = (x� 0) + y = x� y. From the
truth tables of adders for the addition of binary numbers and corteges (Fig. 3), we arrive at

Assertion 2. Formal descriptions of binary adders and cortege adders are identical

SUM = ai ⊕ bi ⊕ CARRYi−1, CARRYi = aibi ∨ CARRYi−1(ai ⊕ bi). (9)

7 A two-bit adder has two inputs for terms x and y and an input for carrying from the preceding digit CARRYi−1.
The formal model is defined by two relations SUM = x ⊕ y ⊕ CARRYi−1 and CARRY = xy +CARRYi−1(x ⊕ y).
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Fig. 4. A sequential adder of four-element corteges.

Interpretation of addition of corteges by an adder (9) is useful in designing algorithms for
manipulations over corteges. For example, the analog of a parallel adder of corteges is the parallel
binary adder, and the algorithm for sequential addition of corteges is derived from the architecture
of the sequential binary adder (Fig. 4).

5.4. Product of Corteges

The product of two corteges is conveniently interpreted with a binary multiplier based on the
accumulation of partial products. The product of two corteges ACor2 = x�1 and BCor2 = 0�y is

× x � 1
0 � y

xy 1y
0 0
0 � xy � y

.

Here AND-terms are partial products. The result ACor2 × BCor2 = 0 � xy � y is formed by
accumulating partial products, carrying digits from right to left.

5.5. Properties of Cortege Algebra

Let three corteges ACorm, BCors, and CCork be given. To extend the Malyugin arithmetical
logic, let us define a few axioms of cortege algebra (0 and 1 elements, complementation, commuta-
tivity, associativity, and distributivity). Using them, we can implement any cortege transformation.

Example 8. A cortege Cork is given. A cortege with inverse order of occurrence of elements is
formed as follows. Since Cork +Cork = 2k − 1, we have Cork = 2k − 1−Cork. The inverse of the
cortege Cor2 = x1�x1x2 is the cortege Cor2 = 22−1−Cor2 = 3−x1�x1x2 = (1�1)−(x1�x1x2) =
1− x1 � 1− x1x2 = x1 � x1x2, where 3 = 1� 1, or in vector form

Cor2 = x1 � x1x2 =


0
0
1
1

�


0
0
0
1

 , Cor2 = x1 � x1x2 =


1
1
0
0

�


1
1
1
0

 .

5.6. Particular Cases

Particular cases of cortege operations are helpful in simplifying transformations and designing
algorithms.
Addition of a constant and a function. Let us express the relation x1 + x2 = x1x2 � (x1 ⊕ x2)

between a function f and a constant a ∈ {0, 1} as

a+ f = af � (a⊕ f). (10)
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Relation (10) cannot be used for manipulations over corteges since it holds only for single-bit
operations. For a = 0, we have 0 + f = 0f � (0 ⊕ f) = f . Similarly, for a = 1 we obtain
1+f = 1f � (1⊕f) = f �f . Let us find a+f for a > 1. Let a = 2. Since a = 2 and the function f
is represented as a cortege of 1� 0 and f = 0� f , we have

+ 2 = 1 � 0
f = 0 � f

2 + f = 1 � f

.

Multiplication of a constant by a function. In analogy with addition, for a = 3 = 1�1 we obtain
3 + f = f � f � f . Since 0f = f , 1f = f , and 2 = 1� 0, the product of 2 and f is∧ 2 = 1 � 0

f = f

2f = f � 0
.

Technique of manipulations over corteges. Example 9. The sum and product of a function f =
x1⊕x2 and a constant 5 are equal to 5+f = 1�(x1⊕x2)�(x1 ⊕ x2) and 5f = (x1⊕x2)�0�(x1⊕x2),
respectively, or in vector form

5 + f = 5 +


0
1
1
0

 =

1
1
1
1

�


0
1
1
0

�


1
0
0
1

 , 5f = 5


0
1
1
0

 =

0
1
1
0

�


0
0
0
0

�


0
1
1
0

 .
Since x1 ⊕ x2 = x1 + x2 − 2x1x2, the result in arithmetical polynomial form is 5 + f = 5 + x1 +
x2 − 2x1x2, 5f = 5(x1 + x2 − 2x1x2).
The next example illustrates the technique of manipulations involved in the addition of a cortege

Cor and a constant a, i.e., Cor + a.

Example 10. Given a cortege Cor = (x1 ∨ x2) � x2 and a constant a = 1, find a new cortege
Cor = {(x1 ∨ x2)� x2}+ 1. Let us apply the computation scheme

+ Cor = x1 ∨ x2 � x2

1 = 0 � 1

Cor + 1 = x2 � x1x2 � x2

.

For the lower-order digit, we have x2+1 = x2�x2. The next digit is (x1∨x2)+0+x2 = (x1∨x2)+x2.
Using the relation f1 + f2 = f1f2 � (f1 ⊕ f2), we obtain (x1 ∨ x2)x2 � (x1 ∨ x2)⊕ x2 = x2 � x1x2.
The same result is obtained by computation in vector form

1 + Cor = 1 +


0
1
1
1

�


0
1
0
1

 =

0
1
0
1

�


0
0
1
0

�


1
0
1
0

 = x2 � x1x2 � x2.

The result of Example 10 is interpreted in terms of arithmetical logic as follows: the initial
polynomial AR = 2(x1 ∨ x2) + x2 = 2x1 +3x2 − 2x1x2 is transformed to the polynomial AR+1 =
22x2 + 21x1x2 + 20x2 = 4x2 + 2x1x2 + x2.

5.7. Direct and Inverse Transformations

Direct arithmetical transformation is helpful in representing any Boolean function as an arith-
metical polynomial with the help of cortege algebra. The initial function can be defined by Boolean
expressions, a cortege, or a truth table.
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Given an arithmetical polynomial AR, find its corresponding cortege Cor of Boolean functions,
i.e., A−1(AR) = Cor. The solution algorithm consists of (a) representation of every term of the
polynomial AR by a cortege (in the general case, the polynomial may contain 2n terms, i.e., 2n

corteges), (b) specification of the general format m for all corteges, and (c) computation of the sum
of corteges. Formally, the solution is guaranteed by

Theorem 1 ([9]). A cortege of Boolean functions is uniquely estimated from a given arithmetical
polynomial AR by the rule

A−1(AR) = Corm =
2n−1∑
i=0

m⊙
j=1

τij, (11)

where τij is the jth element in the ith cortege (term of the polynomial).

The proof of Theorem 1 is given in [9].

Example 11 (continuation of Example 5). To find the cortege of Boolean functions from the
polynomial LAR = 2 + 3x1 + 5x2, let us express its terms, using (11), as corteges 2 = 1 � 0,

3x1 = x1 � x1, and 5x2 = x2 � 0� x2. Hence LAR = (
2︷ ︸︸ ︷

1� 0 ) + (
3x1︷ ︸︸ ︷

x1 � x1 ) + (
5x2︷ ︸︸ ︷

x2 � 0� x2 ) and

+ 2 = 1 � 0
3x1 = x1 � x1

+ x1 � x1 � x1

5x2 = x2 � 0 � x2

x1x2 � x1 ⊕ x2 � x1 ⊕ x1x2 � x1 ⊕ x2

.

Finally, LAR = 2 + 3x1 + 5x2 = (
f4︷ ︸︸ ︷
x1x2 )� (

f3︷ ︸︸ ︷
x1 ⊕ x2 )� (

f2︷ ︸︸ ︷
x1 ⊕ x1x2 )� (

f1︷ ︸︸ ︷
x1 ⊕ x2 ).

6. LINEARIZATION

As a result of linearization of word-level models, the number of nonzero elements is reduced to the
number of variables (2). The LAR is mapped into a linear graph, i.e., a decision diagram. In certain
well-known publications, the linear structure of data is determined using different properties of
Boolean functions (logical circuits), which must be preliminarily identified. In 1952, Komamiya [17]
used a LAR of the type A1+A2+ . . .+An = dm2m+dm−12m−1+ . . .+d12+d0 to describe adders,
where Ai, di ∈ {0, 1}. For example, for n = 2 this relation describes a half-adder, and for n = 3
a total adder. In this section, we describe the so-called naive or direct approach to linearization,
which dominated in investigations for a long time, and the Malyugin approach.

6.1. Linearization Condition

A Boolean function f of n variables with m outputs f0, f1, . . . , fm−1 is defined by a truth vector
[f0f1 . . . f2n−1] with integral elements f j.

Theorem 2 (linearization condition [10, 27]). An m-output Boolean function f of n variables
admits representation by LARs if and only if the truth vectors f j, j ∈ {0, 1, . . . , 2n − 1}, and f2i

,
i ∈ {0, 1, . . . , n− 1}, j �= {0, 20, 21, . . . , 2n−1}, satisfy the equality

f j =
n−1∑
i=0

jn−if
2i
+

(
1−

n∑
i=1

jif
0

)
. (12)
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The proof of Theorem 2 is given in [10, 27].
This theorem formulates necessary and sufficient conditions for linearization of arithmetical

word-level models of Boolean functions.

Example 12 (continuation of Example 1). The outputs of a half-adder are described by two
functions f1 = [f0

1 f
1
1 f

2
1f

3
1 ] = [0110] (sum) and f2 = [f0

2f
1
2 f

2
2 f

3
2 ] = [0001] (carry). Let us take

a fixed order for the outputs [f2 f1]. The linearization condition (12) is satisfied since the equality
2(f0

2 − f1
2 − f2

2 + f
3
2 ) = −f0

1 + f
1
1 + f

2
1 − f3

1 , i.e., 2(0 − 0 − 0 + 1) = −0 + 1 + 1 − 0 holds for
n = 2. By virtue of the truth vector [f2 f1] = [0 1 1 2]T , we can express the coefficient vector,
using, for example, the direct matrix transformation (4): D = [0 1 1 0] is the corresponding poly-
nomial LAR = x1 + x2. If the order of numeration for the outputs of the function is changed
to [f1 f2], condition (12) is not satisfied and the half-adder is described by the linear polynomial
2x1 + 2x2 − 3x1x2.

Let us state the constraints in the direct (naive) approach to AR linearization.

Theorem 3. A single-output Boolean function can be uniquely represented by a LAR, which
describes a new extended Boolean function with two outputs, one of which is the initial function.

The proof of Theorem 3 is given in the Appendix.
According to Theorem 3, the extended Boolean function contains a garbage function. For exam-

ple, applying Theorem 3 to the function f = x1∨x2 = x1+x2−x1x2, we obtain LAR = x1+x2+1
for the cortege (x1 ∨ x2)� (1⊕ x1 ⊕ x2), where 1⊕ x1 ⊕ x2 is a garbage function. The theorem on
the LAR representation of a Boolean function of three variables is proved along similar lines. But
serious difficulties are encountered in applying this method to functions of three or more variables.

6.2. LAR of Primitive Functions

Malyugin designed an elegant approach to linearization of arithmetical polynomials using cortege
algebra [9].

Theorem 4 (LAR of primitive functions [9]). AND, OR, and EXOR functions with n inputs ad-
mit representation by LAR

n-AND
n∧

i=1

xσi
i = Ξm

m

{
2j−1 − n+

n∑
i=1

(σi + (−1)σixi)

}
,

n-OR
n∨

i=1

xσi
i = Ξm

m

{
2j−1 − 1 +

n∑
i=1

(σi + (−1)σixi)

}
,

n-EXOR
n⊕

i=1

xσi
i = Ξ1

m

{
n∑

i=1

(σi + (−1)σixi)

}
,

where

j = �log2 n�+ 1, xσi
i =

{
xi, σi = 0
xi, σi = 1,

(13)

and �a� is the integral part of the number a.

The proof of Theorem 4 is given in [9].

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004



MALYUGIN’S THEOREM 905

Table 1. Corteges and LAR of primitive elements of the typical CAD IC library

Element Polynomial Cortege LAR Function

OR
x ∨ y x+ y − xy


0
1
1
1

�


1
0
0
1

 = (x ∨ y)� (x⊕ y) 1 + x+ y Ξ2
2{1 + x+ y}

NOR
x ∨ y 1− x− y + xy


1
0
0
0

�


0
1
1
0

 = (x ∨ y)� (x⊕ y) 2− x− y Ξ2
2{2− x− y}

AND
xy

xy


0
0
0
1

�


0
1
1
0

 = xy � (x⊕ y) x+ y Ξ2
2{x+ y}

NAND
xy

1− xy


1
1
1
0

�


1
0
0
1

 = xy � (x⊕ y) 3− x− y Ξ2
2{3− x− y}

EXOR
x⊕ y x+ y − 2xy


0
0
0
1

�


0
1
1
0

 = xy � (x⊕ y) x+ y Ξ1
2{x+ y}

Remark on Theorem 4. (i) AND (OR) and EXOR functions correspond to the higher-order
bit (m) and lower-order bit of number 1 in word-level format, which is determined by the masking
operators Ξm

m and Ξ1
m, respectively.

(ii) The term 1⊕xσi
i takes either the value 1⊕xi = xi (σi = 0) or the value xi⊕xi = 1 (σi = 1).

Table 1 illustrates the application of Theorem 4. In all cases, linearization requires one garbage
function to be added. Moreover, the negation operation NOT corresponds to LAR Ξ1

1{1 − x}.
Using Table 1, we can find LAR of other elements, for example,

x ∨ y = Ξ2
2{1 + (1− x) + y} = Ξ2

2{2− x+ y},
x⊕ y = Ξ1

2{(1− x) + y} = Ξ1
2{1− x+ y}.

LAR for 3-input elements are designed with Theorem 4 along similar lines:

LAROR = Ξ3
3{3 + x+ y + z}, LARNAND = Ξ3

3{6− x− y − z},
LARNOR = Ξ3

3{4− x− y − z}, LAREXOR = Ξ1
3{x+ y + z},

LARAND = Ξ3
3{1 + x+ y + z}, LAREXNOR = Ξ1

3{1 + x+ y + z}.

6.3. Linear Decision Diagrams

In this section, we apply the word-level DD technique to manipulate over arithmetical expres-
sions. The linear word-level DD for representing a many-out Boolean function is called the linear
decision diagram (LDD), i.e., a word-level decision diagram satisfying linearity conditions.

Definition 3. A linear decision diagram (LDD) is a graph (tree) for representing a linear arith-
metical polynomial, whose terminal nodes are put into correspondence with the coefficients of
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the linear arithmetical polynomial, and nodes correspond to variables and realize the arithmetical
analog of the Davio expansion pDA

8 (arithmetic positive Davio expansion) :

f = fxi=0 + xi(−fxi=0 + fxi=1) is node, (14)

where fxi=0 = f(x1, . . . , xi−1, 0, xi+1, . . . , xn) and fxi=1 = f(x1, . . . , xi−1, 1, xi+1, . . . , xn) are the
left and right branches, respectively.

Theorem 5. Every combination circuit9 with elements from the standard CAD IC library admits
representation by a set of linear decision diagrams.

The proof is implied by the possibility for structuring any logical circuit in the form of a finite
number of levels, each of which is described by LARs and direct mapping of a LAR into an LDD
(nodes define the operation pDA and hanging vertices represent the LAR coefficients). The order
of elements in a level must be fixed so that the finiteness property is preserved. In the general case,
LAR and LDD are semi-canonical representations of logical functions.
The complexity of arithmetical models in the form of LAR and LDD is estimated with

Theorem 6. An n-output element of the standard library is represented by an LDD with n nodes
and (n+ 1) hanging vertices.

The proof follows from the recurrent pDA expansion of a LAR of n variables. Consequently, the
complexity of representation of a multilevel circuit with G elements is O(G).

Example 13. The linear polynomial LAR = −3x1 − 12x2 +17x3 + 20 is represented by a three-
vertex LDD. Its variables can occur in any order. LARx1=0 and LARx1=1 are

LARx1=0 = −3× 0− 12x2 + 17x3 + 20 left branch,
LARx1=1 = −3× 1− 12x2 + 17x3 + 20.

According to (14), the term −fx=0 + fx=1 is equal to the constant −LARx1=0 + LARx1=1 = −3.
Therefore, the hanging vertex is assigned the value −3 (Fig. 5). Since LARx1=0 is not a constant
and LARx1=0 = −12x2 + 17x3 + 20, we use the expansion (left and right branches, respectively)

LARx1=0
x2=0

= 17x3 + 20 and LARx1=0
x2=1

= −12 + 17x3 + 20.

Hence the next hanging vertex for x1 = 0 and x2 = 0 takes the value −12. Decomposition at the
next level gives two hanging vertices with values 17 and 20, respectively.

7. COMPUTATION TECHNIQUE

7.1. Weighted Sum of LAR

The underlying principle of computation is the representation of a finite set of LARi by the
weighted sum 2j1LAR0 + 2j2LAR1 + . . . + 2jrLARr, j1 < j2 < . . . < jr. The number of bits to
represent a LAR is j = �log2(n)� + 1, where n is the number of bits in the representation of the
maximal value of the LAR.
8 A distinction is made between the Davio positive f = f0 ⊕ x1f2 and Davio negative f = x1f2 ⊕ f1 expansions
(Davio’s results on AND-EXOR logical expressions are very useful in designing digital devices [28]) and Shannon
expansion f = x1f0 ⊕ x1f1, where f0 = f(0, x2, . . . , xn), f1 = f(1, x2, . . . , xn), f2 = f0 ⊕ f1.

9 In the general case, every memory circuit can be represented by LAR and LDD.
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Fig. 5. Levels of a three-AND element circuit corresponding to LAR = −3x1 − 12x2 + 17x3 + 20 and LDD.
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Fig. 6. An AND/OR/EXOR circuit (left) and its LDD system (right).

Example 14. Let us consider the levels of a three-element circuit (Fig. 5). The first element
represents a LAR of weight 20 = 1 and j1 = �log2(2)�+1 = 2 bits are required for its representation.
The second and third LARs have weights 22 and 24 and require j2 = 2 and j1 + j2 = 4 bits,
respectively. Consequently, the circuit level in Fig. 5 is described by the LAR

LAR = 20(x1 + x2) + 22(x1 + x2) + 24(x2 + x3)

= 20(x1 + x2) + 22(1− x1 + x2) + 24(1− x2 + x3) = −3x1 − 12x2 + 17x3 + 20.

The resultant LAR is the linear model for the lth level INl of the circuit with n inputs and r
outputs. Representation of the ith LAR requires a memory Ji = j1 + . . . + ji−1 + ji = Ji−1 + ji,
where i ∈ {1, 2, . . . , r} and J0 = 0. Computation with this model is reduced to computing the
weighted sum LARi, i ∈ {1, . . . , r}:

LAR = INl =
r∑

i=1

(2JiLARi), (15)

where ji = �log2 n�+ 1 is the number of bits required to represent LARi.

7.2. Representation of Multilevel Circuits by a System of LDD

Using Theorem 5 and Example 13, let us describe a method for designing linear models of LAR
and LDD for any logical circuit consisting of element of the standard CAD IC library.
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Example 15. An AND/OR/EXOR circuit (Fig. 6) is given. Using the LAR model of elements
in Table 1, let us construct an LDD model. The LAR of the first circuit level is

LAR1 = 20(1 + x2 − x4) ⇒ element 1
+ 22(1 + x4 − x3) ⇒ element 2
+ 24(x1 + x4) ⇒ element 3
+ 26(2 + x1 − x2 + x3) ⇒ element 4
+ 29(3− x1 + x2 − x3) ⇒ element 5 .

Weights required for describing the second circuit level and the corresponding LARs are y1 =
Ξ2{LAR1}, y2 = Ξ4{LAR1}, y3 = Ξ6{LAR1}, and y4 = Ξ9{LAR1}, LAR2 = 20(1 + y1 + y2) +
22(1 + y3 + y4). Similarly, LAR of the third circuit level are z1 = Ξ2{LAR2}, z2 = Ξ4{LAR2},
z3 = Ξ12{LAR1} and LAR2 = z1 + z2 + z3. Finally, the circuit output is f = Ξ1{LAR3}. The
LDD model is shown in Fig. 6.

Even in this simple 8-element circuit, coefficients take values as high as 212. Industrial circuits
contain millions of elements. This is the motivation for developing new approaches to designing
linear models.

8. LARGE WEIGHT COEFFICIENTS

Arithmetical models cannot be used in CAD IC due to the large values of coefficients even in
circuits with 10–20 inputs. The well-known approaches based on modular arithmetic [30] only
partly solve this problem, which we now we solve using the properties of the coefficients of LARs.

8.1. Properties of Coefficients

Hypothesis. Since every logical circuit is designed from a bounded number of standard elements
with known LAR (Table 1), we may successfully apply the properties of linear models based on
simple linear models of primitive elements.

Theorem 7. The lth level INl of a logical circuit with n inputs and r elements admits represen-
tation by a LAR

INl =W0 +Wx1x1 + . . .+Wxnxn, (16)

where the weights of hanging vertices W0 and Wxi, i = 1, . . . , n, are

W0 = a0,12J1 + . . .+ a0,r2Jr , and Wxi = ai,12J1 + . . .+ ai,r2Jr , (17)

ai,t ∈ {0,+1,−1} and a0,t are positive integers, J1 = j0 = 0, Jt = j0+ . . .+ jt−1, jt = �log2 nt�+1,
and nt is the number of inputs of the function obtained by extending yt for deriving LAR(yt).

The proof of Theorem 7 is given in the Appendix.

Corollary 1. The parameters Ji, except for J0 = 0, are defined by the difference M = Ji − Ji−1

since the coefficients of hanging vertices are the sum of weights 2Ji, where Ji is the sum of jl (l < i).

Theorem 7 and Corollary 1 yield a coding algorithm based on the substitution of the values
of hanging vertices by the respective codes. Let us describe this algorithm with an example (for
details, see [12, 31]). Consider the LDD in Fig. 5. The first hanging vertex is assigned the value −3.
Since the weight of the LAR of the first element is 20 (J1 = 0) and x1 is contained without negation
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Fig. 7. Coding of the hanging vertex in LDD (Example 16).

(b1 = 1). The weight of LAR for the second element is 22 (J2 = 2) and x1 is contained with negation
(b1 = 1). Consequently,

Wx1 = b12
J1 + b22J2 = 120 − 122 = −3. (18)

Relation (18) shows that the number −3 is uniquely represented by four attributes b1, J1, b2,
and J2. Obviously, bi and Ji require far less memory than the weights of hanging vertices for
storage. Indeed, since bi can take only three values bi ∈ {0, 1,−1}, two bits are sufficient for its
code, for example, 0⇒ 00, 1⇒ 01, and −1⇒ 11.
According to Theorem 7 and Corollary 1, the coefficients of hanging vertices are not arbitrary

integers. Consequently, continuing the example, we find that it suffices to store only J1 = 0 and
J2−J1 = 2. Therefore, for the first hanging vertex, we must store the parameters b1 = 01, J1 = 000,
b2 = 11, and J2 − J1 = j2 = 010.
Now we consider the second hanging vertex. Its weight isWx2 = b12

J1+b22J2 = 1×22−1×24 =
−12, which can be represented by four parameters b1 = 01, J1 = 010, b2 = 11, and j2 = 010.
Similarly, the weight of the third hanging vertex is Wx3 = b12

J1 + b22J2 = 1 × 20 + 1 × 24 = 20.
But it is sufficient to store b1 = 01, J1 = 000, b2 = 01, and J2 − J1 = 100. The parameters of the
free hanging vertex are a1 = 01, J1 = 000, b2 = 01, and J2 − J1 = 010, which correspond to the
weight W0 = a12J1 + a22J2 = 1× 20 + 1× 22.

Example 16. The code of the value 0 + 23 − 26 − 29 − 212 + 0 + 0 + 221 + 224 of the hanging
vertex is shown in Fig. 7. The coefficient of the linear model attains the value 224 and is coded by
18 bits.

9. EXPERIMENTAL RESULTS

Results of experiments conducted with large-dimensional test circuits are reported in [12]. Every
circuit (including, circuits with multivalued gates) is shown to be representable by a finite set of LAR
and LDD. A fragment of experiments is listed in Table 2, where TEST, #IN, #OUT, and #G denote
the name, number of inputs, outputs, and gates of the circuit10, respectively. The columns EDIF,

Table 2. Memories for LDD, EDIF, ISCAS models

TEST #IN #OUT #G EDIF LDD ISCAS LDD

C1355 41 32 546 273 018 16 133 59 573 16 850
C1908 33 25 880 230 507 13 098 78 574 22 491
C2670 233 108 1193 400 707 32 395 110 025 36 305
C3540 50 24 1669 503 457 34 744 145 359 54 857
C5315 178 163 2307 903 899 88 965 220 596 107 392
C6288 32 32 2416 1 387 230 71 476 255 406 68 572
C7552 207 109 3512 1 236 066 146 057 311 939 271 970

10 Circuits of the LGSynth 93 base, http://zodiac.cbl.ncsu.edu/CBL Docs/lgs93.html, were used as test specimens in
experiments.
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ISCAS, and LDD show memory (in bytes) for the traditional representation of a circuit in EDIF,
ISCAS, and LDD formats. Clearly, LDD models require 9–25 times less memory than traditional
models. For example, the combination circuit C7552 with 207 inputs, 109 outputs, and 3512 gates
requires 1 236 066 and 162 222 bytes for storage in EDIF and ISCAS formats, respectively, i.e., 22 and
10 times less memory for storage than in LDD format. Verification of linear circuit models is still
an unresolved problem.

10. ARITHMETICAL LOGIC IN NANOTECHNOLOGY

The deterministic models described in this paper may not find direct utilization in future tech-
nologies due to the stochastic behavior of nanostructures [32]. This stimulates the study of prob-
abilistic and information models for computation. Arithmetical logic is the boundary case of the
so-called probabilistic logic. Merekin [33] was probably the first to prove that the reliability function
of the switching circuit is the generalization to arithmetical description of the circuit. Malyugin
used this property to study the reliability of switching circuits with arithmetical polynomials [34].

Example 17. Let signals x1 and x2 appear at the input of an OR gate independently with
probabilities p1 = p(x1) and p2 = p(x2), respectively. The output y of the OR gate is either x1

or x2. Let p1 = 0.8 and p2 = 0.9. Then the correct output must be expected with probability
p = 1− (1− p1)(1− p2) = p1 + p2 − p1p2 = 0.8 + 0.9− 0.8× 0.9 = 0.98.

Table 3. Deterministic and probabilistic models of typical gates

Gate Conjunctor Disjunctor Mod 2 adder

Deterministic model

Function y = x1x2 y = x1 ∨ x2 y = x1 ⊕ x2

Polynomial y = x1x2 y = x1 + x2 − x1x2 y = x1 + x2 − 2x1x2

LAR Ξ2
2{x1 + x2} Ξ2

2{1 + x1 + x2} Ξ1
2{x1 + x2}

Probabilistic model

Model p = p1p2 p = p1 + p2 − p1p2 p = p1 + p2 − 2p1p2

Taking p1 = p2 = 1, let us transform the probabilistic model into a deterministic model. Obvi-
ously, the output of the OR element is y = x1+ x2 − x1x2, which is the arithmetical description of
the OR element. Table 3 shows the probabilistic characteristics of AND, OR, and EXOR gates.

11. CONCLUSIONS

Malyugin’s theorems jointly with the latest results in arithmetical logic and modern CAD IC
tools are effective in linearizing arithmetical forms of representation of not only Boolean functions,
but also multivalued logical functions, as demonstrated in [12]. Possibly, these results may be useful
in future technologies and other problems, viz., in artificial intelligence systems.

ACKNOWLEDGMENTS

I express my indebtedness to S. Yanushkevich, G. Duek (Canada), P. Dziurzanski, T. Lub
(Poland), Sasao (Japan), M. Karkovsky (USA), B. Falkowski (Singapore), O. Fin’ko (Russia), and
R. Drechsler (Germany) for their valuable discussion and assistance at different stages of preparation
of the paper. I also express my thanks to the referees for their remarks.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004



MALYUGIN’S THEOREM 911

APPENDIX

Proof of Theorem 3. Each of 162 possible pairs of 16 Boolean functions of two variables
uniquely corresponds to an arithmetical expression also containing LAR (2). Indeed, two functions
are defined by four values f = (f0, f1, f2, f3) and f ′ = (f ′0, f

′
1, f

′
2, f

′
3) and represent 256 possible

two-output Boolean functions f and f ′ or an integer function with values (2f0+ f ′0, 2f1+ f
′
1, 2f2+

f ′2, 2f3 + f
′
3). These functions correspond to the arithmetical expression 2

1f + 20f ′ and satisfy
condition (2) if

2f3 + f ′3 = −(2f0 + f ′0) + (2f1 + f ′1) + (2f2 + f ′2). (19)

Expression (19) holds only for 44 two-outputs functions out of 256 functions. But each of 16
subfunctions occurs at least once at the first and second places. Consequently, any one-output
function of two variables can be represented by LAR via extension, i.e., addition of a function in
word level format such that the result is a LAR.

Proof of Theorem 7. Let the output of the first element belonging to the level be described
by the expression LAR(y1) = 21f2 + 20f1. Since AR(f1) = a0.1 + a1.1x2 + a2.1x1 + a3.1x1x2 and
AR(f2) = a0.2 + a1.2x2 + a2.2x1 + a3.2x1x2, we obtain

LAR(y1) = 21(a0.2 + a1.2x2 + a2.2x1 + a3.2x1x2) + 20(a0.1 + a1.1x2 + a2.1x1 + a3.1x1x2)

= (21a0.2 + 20a0.1) + (21a1.2 + 20a1.1)x2 + (21a2.2 + 20a2.1)x1 + (21a3.2 + 20a3.1)x1x2.

Discarding nonlinear terms (all components are linear), we obtain LAR(y1) = (21a0.2 + 20a0.1) +
(21a1.2 + 20a1.1)x2 + (21a2.2 + 20a2.1)x1. Let W0 = 21a0.2 + 20a0.1, Wx1 = 21a1.2 + 20a1.1, and
Wx2 = 2

1a2.2+20a2.1. Then LAR(y1) =W0+Wx1x1+Wx2x2 (weights are determined with lower-
order digits of the values of the function in LAR). Applying the same approach, we obtain LARs
of other elements.
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