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Arithmetic Expressions Optimisation Using 
Dual Polarity Property  

Dragan Janković1, Radomir S. Stanković2, Claudio Moraga3 

Abstract. A method for optimisation of fixed polarity arithmetic expressions 
(FPAEs) based on dual polarity is proposed. The method exploits a simple rela-
tionship between two FPAEs for dual polarities. It starts from the zero polarity 
FPAE of the given function and calculates all FPAEs using the dual polarity 
route. Using one-bit check carries out conversion from one FPAE to another. 
Each term in an FPAE is processed by the proposed processing rule. Terms, 
which differ in a single position, can be substituted by a high order term (cube). 
Experimental results show efficiency of proposed method.  

Keywords: Optimisation, Arithmetic expressions, Fixed polarity, Dual polarity. 

1 Introduction 
Arithmetic expressions are an alternative approach to description of logic circuits 

sharing useful properties of Reed-Muller expressions and permitting at the same time 
simplified representations of multi-output functions [8]. In many applications where 
Boolean functions need to be analyzed, arithmetic expressions provide a better insight 
into related problems and offer efficient solutions [9]. Examples are satisfiability, tautol-
ogy, equivalence checking, etc. [1, 3 - 6, 10 - 13, 16 - 17]. Applications of arithmetic ex-
pressions in logic design dates back to early fifties [14], and a renewed interest in this 
subject is due to ever increasing challenges of probabilistic verification of logic circuits 
and requests for compact decision diagram and related representations, where other 
methods do not provide acceptable solutions or cannot be used for large space and time 
requirements [1, 15]. 

Arithmetic expressions are closely related to Reed-Muller expressions since are de-
fined in terms of the same basis, however, with variables and function values interpreted 
as integers 0 and 1 instead of logic values. In this way, arithmetic expressions can be 
considered as integer counterparts of Reed-Muller expressions. Due to this interpreta-
tion, many efficient algorithms for Reed-Muller expressions as well as optimisation 
methods [13] can be extended to arithmetic expressions. In particular, as for Reed-Mul-
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ler expressions, the optimisation of arithmetic expressions in the number of non-zero co-
efficients count can be performed by choosing literals of different polarity for integer 
counterparts of switching variables in terms of which arithmetic expressions are defined.  

In this paper, we propose a method for optimisation of fixed polarity arithmetic ex-
pressions (FPAEs) based on the dual polarity. We derive relationships between two 
FPAEs for Boolean functions for dual polarities. Based on these relationships, a new 
method for FPAEs optimisation is proposed. The algorithm starts from the zero polarity 
FPAE of the given functions and calculates all FPAEs using a route in which each two 
neighbour polarities are dual. This route is called the dual polarity route for the genera-
tion of which a corresponding procedure is defined.  

The algorithm proposed is an exhaustive-search algorithm, but conversion from one 
FPAE to another is carried out by using one–bit checking. Due to that, and the simplicity 
of the related processing this algorithm appears to be efficient as confirmed by 
experimental results. If terms, differ in only one position, appear in FPAE than they can 
be substituted by high order term i.e. cube. Proposed processing rule is adapted and for 
cube processing. Using the cubes can further improve efficiency of proposed method. It 
is important to notice that the algorithm proposed shows high possibilities for paralleli-
zation. 

2   Basic Definition 
Definition 1. Any n-variable switching function f given by the truth-vector 
[ ]Tnff

120 ,,
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= KF  can be represented by the positive polarity arithmetic expression 
(PPAE) defined as 
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⊗  denotes the Kronecker product, and addition and multiplication are arithmetic 
operations. )(nA  represents the arithmetic transform matrix of order n.  

If each variable can appear as complemented or uncomplemented, but not both, the 
related expressions are fixed-polarity arithmetic expressions (FPAEs) given as 

FAX )()(),,( 1 nnxxf HHn =K  
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Therefore, FPAEs are uniquely characterized by the polarity vectors  

 [ ] { }1,0  ,,,1 ∈= i
T

n hhh KH ,  

where 1=ih  shows that the i-th variable is complemented and written as ix .  

An FPAE can be given by the FPAE spectrum H
fA  calculated as 

 FAA )(nH
H
f = . 

Example 1. The FPAE of a two-variable Boolean function f, given by the truth-
vector [ ]T1,1,1,0=F , for a polarity vector )1,0(=H  is given by 

 212211221 110111),( xxxxxxxxxf +−=⋅+⋅+⋅−⋅= . 

The corresponding FPAE spectrum is given by 

 ]1,0,1,1[ −=H
fR . 

Therefore, this function f can be represented by the set of terms 

  { })1(~11 ),1(~01 ),1(~00 − ,  

where the first two digits express the binary coded position of the spectral coefficient, 
and the digit in parenthesis, its value. 
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3   Dual Polarity 
Its polarity vector characterizes each FPAE. Two polarity vectors are dual if they 

differ in only one bit.  

Definition 2: )',,',',',,'(' 111 niii hhhhh KK +−=H  is dual polarity of polarity 

),,,,,,( 111 niii hhhhh KK +−=H  if ijhh jj ≠=   ,'  and ii hh ≠' . 

Example 2: Dual polarities for polarity )0,1(=H  are the polarities (0,0), and 
(1,1). 

The number of polarity vectors, which characterize all possible arithmetic expres-
sions for an n-variable Boolean function is n2 . It is possible to order all n2 polarities in 
such a way that each two successive polarities are dual polarities. This order is denoted 
as the “dual polarity route”. Traversing the two-valued n-dimensional hypercube can 
generate one of several possible dual polarity routes. It becomes apparent that a polarity 
route generates a Gray code. 

Example 3: A dual polarity route generated by traversing a two-valued 3-dimen-
sional hypercube is given by (000)—(001)—(011)—(010)—(110)—(111)—(101)—
(100). 

A dual polarity route can be constructed by using the recursive procedure route 
(level, direction) given in Fig. 1, called as route (0,0). 

void route (int level, int direction) 
{ 
if (level == no_variable) 
{ 
-- out new polarity vector h; 
return; 
} 
 if (direction == 0) 
 { 
  h[level] = 0; 
  route (level + 1, 0); 
  h[level] = 1; 
  route (level + 1, 1); 
 } 
 else 
 { 
  h[level] = 1; 
  route (level + 1, 0); 
  h[level] = 0; 
  route (level + 1, 1); 
 } 
} 

Fig. 1 - Procedure route. 
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4   Method for Calculation of Arithmetic Expression 
Let n

ii
i mmmm 1

1
1 +
−=  be the compact representation of a term in the arithmetic ex-

pression for a given function f for the polarity )( 111 niii hhhhhh LL +−= . Term m 
produces new terms in the arithmetic expression of the function f for the dual polarity 

)'''''(' 111 niii hhhhhh LL +−=  depending on the value im . Term m generates a new 

term m’ if im = 1.  A new m’ term at the i-th position has the value 0 and contribution 
for this term is the same as for the term m. Also contribution of term m changes the sign.  

If in an expression two terms differ in a single position i, with the same 
contributions then these terms can be replaced by one high order term, i.e., by a cube of 
the first order which has the symbol dash at position i. That means, if −=im , then m 

term (cube) covers two terms n
i

i mmm 1
1

1 00 +
−=  and n

i
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−= . In this case the 

term m produces two new terms in the arithmetic expression for the function f: the term 
n
i

i mm 1
1

1 0 +
−  whose contribution is two times contribution of m i.e. )(2 mv⋅  and the 

term n
i

i mm 1
1

1 1 +
−  whose contribution is the same as the contribution of m but the sign is 

the opposite. Note that we can use cubes of higher order, i.e., each r-ordered cube covers 
r2  terms. 

Table 1 shows the used processing rule, whose simplicity ensures efficiency of the 
method. After processing all terms, by using this rule, a procedure for deleting terms 
whose contribution is equal to 0 starts. 

Example 4: For a three-variable Boolean function f given by the truth vector  

 T]1,1,1,0,0,1,1,0[=F ,  

the (010)-polarity arithmetic expression is given by  

 321313223 21 xxxxxxxxxf −++−−=  

i.e., the arithmetic spectrum for f is  

 [1, -1, -1,2,0,1,0, -1]T.  

The dual polarities and the corresponding dual polarity arithmetic expressions are 
given in Table 2. 

Procedures for calculation of these dual polarity arithmetic expressions are shown 
in Tables 3, 4, and 5. Note that cancelled terms are underlined while exchanged terms 
are double underlined. 



D. Janković, R. S. Stanković, C. Moraga 

 76

Table 1 - Processing rule. 
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Table 2 - Spectrum of F for dual polarities of (010). 

Polarity Spectrum 
011 
000 
110 

[0,1,1,-2,1,-1,-1,1] 
[0,1,1,-2,0,0,0,1] 
[1,0,-1,1,0,-1,0,1] 

5   Optimisation Algorithm 
Example 4 shows that it is possible to calculate all possible arithmetic expressions 

using the proposed method for transforming fixed polarity arithmetic expressions into 
dual polarity arithmetic expression along the route without repetitive calculations. There-
fore, we can perform the optimisation of arithmetic expressions by using the exhaustive-
search algorithm shown in Fig.2. 

1. For an n-variable Boolean function f, calculate the positive polarity arithmetic 
expression (for example by using the algorithms in [2] and [7]). 

2. List all the terms for a positive polarity arithmetic expression. Set minC = the 
number of non-zero coefficients in positive polarity arithmetic expression. 

3. Determine the next polarity h’, of the arithmetic expansion according to the 
recursive route. 

4. Obtain the arithmetic expansion of polarity h’ based on the proposed rule. 
Calculate the total number of non-zero coefficients min'C . 

If minmin' CC <  then minmin 'CC = . 

5. Stop if all polarities have been treated. Otherwise go to the step 3. 

Fig. 2 - Optimisation algorithm. 
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6   Experimental Results 
In this section, we present some experimental results estimating features and effi-

ciency of the proposed algorithm for minimization of arithmetic expressions. We devel-
oped a program in C for determination of optimal arithmetic expression for arbitrary 
Boolean functions represented by minterms. The experiments were carried out on a 600 
MHz Celeron PC with 128 Mbytes of main memory and all runtimes are given in CPU 
seconds. Table 4 compares the runtimes for optimisation of arithmetic expressions by 
the Tabular technique in [7] (columns ATT) with the algorithm proposed in this paper 
(columns Dual). We consider the simple functions taking the value 1 at the first three 
minterms (0, 1, 2), randomly generated functions with 25 % of all possible minterms, 
and randomly generated functions with 75 % of all possible minterms, where the number 
of variables n ranged from 7 to 12. Columns %d show the ratio (Dual – ATT)/ATT 
where ATT and Dual refer to the method in [7] and the proposed algorithm, respectively.  

It can be concluded that the number of minterms strongly influences the runtime of 
proposed algorithm, but the proposed algorithm is faster than ATT. 

7   Concluding remarks 
We have introduced the notion of dual polarities for arithmetic expressions for 

Boolean functions and present a method for conversion of arithmetic expressions from 
one polarity to another. Based on this method, we determine an algorithm for calculation 
of all arithmetic expressions for a given function f. Calculation is performed by starting 
from the positive polarity arithmetic expression which is calculated by using tabular 
method for calculation of fixed polarity arithmetic transform [1] of functions represented 
by the truth-vector. All arithmetic expressions are calculated along the route that pro-
vides calculation of each fixed polarity arithmetic expressions exactly once. Calculation 
of one FPAE starting from its dual polarity FPAE is performed by processing all terms 
in the dual polarity FPAE by a simple processing rules. This processing rule can be 
applied to both terms and cubes in the FPAE. 

The proposed method for transformation of FPAE from one to another dual polarity 
is simple. Therefore, our exhaustive-search arithmetic expression optimisation method is 
efficient. Experimental results confirm this. 

Future work will be on extension of the proposed method and the algorithm to 
various other polynomial expressions for multiple-valued functions.  

It is important to notice that the method proposed has high possibilities for par-
allelization. Each of processors performs the method along a piece of dual polarity route. 
In Table 7 are given these pieces of route for the optimisation of arithmetic expression of 
a three-variable Boolean function if the number of processors is 1, 2, and 3.  
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Table 3 - Polarity (010) to (011). 

polarity (010) new terms polarity (011) 

000 ~ (1) 
001 ~ (-1) 

 
010 ~ (-1) 

   011 ~ (2) 
 

101 ~ (1) 
 

111 ~ (-1) 

 
000 ~ (-1) 
001 ~ (1) 

 
010 ~ (2) 
011 ~ (-2) 
100 ~ (1) 
101 ~ (-1) 
110 ~ (-1) 
111 ~ (1) 

001 ~ (1) 
010 ~ (1) 

 011 ~ (-2) 
100 ~ (1) 

 101 ~ (-1) 
 110 ~ (-1) 
111 ~ (1) 

Table 4 - Polarity (010) to (000). 

polarity (010) new terms polarity (000) 

000 ~ (1) 
001 ~ (-1) 
010 ~ (-1) 

 
011 ~ (2) 

 
101 ~ (1) 
111 ~ (-1) 

 
 
000 ~ (-1) 
010 ~ (1) 
001 ~ (2) 
011 ~ (-2) 
 
101 ~ (-1) 
111 ~ (1) 

001 ~ (1) 
010 ~ (1) 

 011 ~ (-2) 
111 ~ (1) 

 

Table 5 - Polarity (010) to (110). 

polarity (010) new terms polarity (110) 

   000 ~ (1) 
001 ~ (-1) 
010 ~ (-1) 

   011 ~ (2) 
   101 ~ (1) 

 
111 ~ (-1) 

 
 
 
 

001 ~ (1) 
 101 ~ (-1) 
 011 ~ (-1) 
111 ~ (1) 

000 ~ (1) 
 010 ~ (-1) 
011 ~ (1) 

 101 ~ (-1) 
111 ~ (1) 
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Table 6 - Experimental results. 

(012) 25% 75% n ATT Dual %d ATT Dual %d ATT Dual %d 
7 
8 
9 
10 
11 
12 

<0,01 
0,02 
0,08 
0,3 

1,14 
4,62 

<0,01 
<0,01 
<0,01 
0,01 
0,04 
0,16 

- 
-50 
-87,5 
-96,67 
-96,49 
-96,53 

0,03 
0,16 
1,04 
6,12 
36,66 

222,22 

<0,01 
<0,01 
<0,01 
0,03 
0,07 
0,30 

-66,67 
-93,75 
-99,04 
-99,51 
-99,81 
-99,86 

0,09 
0,52 
3,01 
17,91 
108,29 
222,41 

<0,01 
0,01 
0,01 
0,03 
0,11 
0,35 

-88,89 
-98,08 
-99,67 
-99,83 
-99,90 
-99,84 

 

Table 7 - Parallel execution. 

Number of 
processors 

Polarities 

1 

 

P1: {(000)-(001)-(011)-(010)-
(110)-(111)-(101)-(100)} 

2 

 

P1: {(000)-(001)-(011)-(010)-
(110)}  

P2: {(000)-(100)-(101)-(111)} 

3 P1: {(000)-(001)-(011)} 
P2: {(000)-(010)-(110)} 

P3: {(000)-(100)-(101)-(111)} 
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