
Three Dimensional Multi-Valued Design in Nanoscale Integrated Circuits

Sergey Edward Lyshevski
Department of Electrical Engineering

Rochester Institute of Technology
Rochester, New York 14623-5603, USA

E-mail: Sergey.Lyshevski@rit.edu

Abstract

 Novel three-dimensional (3D) nanoscale
integrated circuits (nanoICs) are examined in this
paper. These nanoICs are synthesized utilizing
aggregated 3D neuronal-hypercells (-hypercells)
with multi-terminal electronic nanodevices. The
proposed nanodevices ensure multi-valued input-
output characteristic that lead to a direct technological
solution of multi-valued logic synthesis problem.
Super-high-performance computing architectures and
memories can be devised (synthesized), designed and
optimized. At the system-level, we examine nanoICs as
networked aggregated 3D -hypercells. In particular,
scalable 3D -hypercell topologies are under
consideration. These -hypercells integrate
interconnected functional multi-terminal electronic
nanodevices that implement logic functions. The
proposed nanoICs platform suits the envisioned
cognizant computing ensuring preeminent information
processing and immense memory.

1. Introduction

 Two-dimensional computing architectures have
been examined extensively and exceptional solutions
have been proposed. However, two-dimensional
paradigm approaches fundamental limits. Optimal
topologies and structures of the super-high-
performance computer architecture are three-
dimensional [1-3]. New areas in design of nanoICs
have been emerged including nanoarchitectronics [1].
It has been shown that functional multi-terminal
electronic nanodevices exhibit multi-valued input-
output characteristics [2]. Thus, multi-valued logic
becomes a reality that can be integrated within
advanced networked 3D -hypercell topologies. These
hypercells are mapped in 3D space performing logic
design, optimization and analysis tasks. This paper
reports technology-dependent synthesis and design
concepts for nanoICs. A library of 3D -hypercells

can be developed and utilized. Three-dimensional
design methods are based on embedding decision
diagrams [3, 4] extending results reported in [5-14]. In
this paper we generalize approaches in design of 3D

-hypercell topologies. We report methods of
manipulation, representation and optimization of multi-
valued nanoICs with the ultimate goal to perform the
logic design and synthesize nanoICs.

2. Synthesis and Design Taxonomy

We propose a novel 3D computing architecture
focusing on the unified technology-dependent top-
down and bottom-up synthesis taxonomy. As reported
in Figure 1.a, by utilizing this synthesis and design
taxonomy, one can coherently perform integrated top-
down and bottom-up syntheses.
 Top-down synthesis: devise novel super-high-
performance computing platforms implemented
utilizing aggregated 3D -hypercells with electronic
nanodevices (see Figures 1.b and 1.c);
 Bottom-up synthesis: use functional molecules
(interconnected multi-terminal electronic nanodevices)
aggregated within 3D -hypercells, and utilize these
aggregated (networked) -hypercells within
computing architectures.
 Three-dimensional computing architectures can be
synthesized using -hypercells Dijk that are analogous
to multi-terminal neurons in the superb brain
bioarchitecture shown in Figure 1.b. The reported
concurrent synthesis taxonomy results in a radically
new computing platform that utilize novel phenomena,
advanced design, as well as new technologies at
system-, subsystem- (aggregated -hypercells) and
device-levels, see Figure 1.c. Synthesis and
optimization of computing architectures is formulated
using the Bayesian probability theory that results in a
viable decision-theoretic informative analysis [1, 3].
The topological entropy ET is a function of 3D
computing platform performance as well as
characteristics of -hypercells and -hypertopologies.

Proceedings of the 35th International Symposium on Multiple-Valued Logic (ISMVL’05)
0195-623X/05 $ 20.00 IEEE

The entropy can be maximized ensuring superior
achievable performance [1]. Specifically, efficiency,
bandwidth, reliability, compactness, simplicity,
robustness and other parameters can be maximized
while minimizing power and losses. Special attention
can be focused to ensure distinct priorities, for
example, robust massive parallel computing.

DEVISING
SYNTHESIS

MODELING
ANALYSIS

SIMULATION

DESIGN
OPTIMIZATION

FABRICATION

SOFTW
ARE

H
ARDW

ARE

3D
Nanobiocomputing

Architecture

3D N-
Hypercells

Nanobiodevice

(a)

D011 D111

D010 D110

D000 D100

D101D001

(b)

Novel
Physics and
Phenomena

System
N-hypercells

Nanodevice

Synthesis
Design and
Analysis

Fabrication:
Nanotechnology

Novel
Architecture

and Topology

Concurrent
Synthesis and Design

of 3D Computing
Architectures

Nanodevice
N-hypercells

System

(c)
Figure 1.
(a) Top-down and bottom-up taxonomy;
(b) Three-dimensional architectures synthesized using -
hypercells Dijk (neurons);
(c) Concurrent synthesis and design at system-,
subsystem- and device- levels.

 Synthesis of novel computing architectures is a
process to discover and study novel hardware
topological evolutions based upon fundamental theory
and synergetic integration of nanodevices in the unified

functional core. High-level hierarchy, abstraction,
adaptability, functionality, integrity, compliance,
configurability, flexibility and prototypeability are
integrated within proposed 3D -hypercell platform.
Coherent quantitative synthesis and symbolic
descriptions are used searching and evaluating possible
architectures and topologies examining -hypercells
aggregated in 3D -hypercells topologies [1]. Massive
parallelization is due to the fact that data structures are
embeddable to -hypercells and 3DA -
hypertopologies. Logic functions can be represented by
word-level decision trees and diagrams [3]. This is a
very important feature to ensure massive parallel
computing. The node implements the processing of a
set of functions reduced into a word. There are two
unique parallelization sources that result in massive
parallel computing: (1) natural parallelism of 3D -
hypercells and 3DA -hypertopologies is utilized
(decision trees that represent logic functions are
embedded into -hypercells); (2) enhanced parallelism
due to the word-level representation of logic functions
(each node performs logic computations on the bits in
the words in parallel).

3. Synthesis and Design of -Hypercells

 We start with useful definitions.
Definition 1. A multi-valued variable Xi can take

values from
1210 ,,,,

ii PPi aaaaP . If each

symbolic value ai is associated with a unique integer i,
we have 1,2,,1,0 iii PPP .

Definition 2. A multi-valued function F is a
function which maps vertices in nn PPPP 121

to PF, e.g.,
Fnn PPPPPF 121: .

Definition 3. A cube nn ccccc 121

can be written as a product of multi-valued literals
ic

iX as nn c
n

c
n

cc XXXX 121
121 . Here, ic

iX is the logic

function as
iijkii

c
i PcbbXbXX i),()(1

.

Definition 4. The cofactor of a function f with

respect to a multi-valued literal Xs, denoted as sX
f , is

obtained by eliminating all cubes of f that are disjoint
to s, and expanding the remaining cubes by unioning
into the X position all values not in s.

Multi-Valued Shannon Expansion Theorem. Let f

be a function, and ii cccc 121 be a set of

multi-valued cubes such that 1
1

N

i

ic . Then,

N

i
c

i

i
fcf

1

. Furthermore, iff ic
,1iff1 .

Proceedings of the 35th International Symposium on Multiple-Valued Logic (ISMVL’05)
0195-623X/05 $ 20.00 IEEE

 There are several methods for representing logic
functions in the multi-valued domain. -hypercell is a
core technology-defined subsystem in computing
architecture. Each -hypercell can be considered as a
homogeneous aggregated assembly for massive super-
high-performance parallel computing. In [3, 4], we
applied the switching theory in logic design of 3D
nanoICs in [3]. To perform logic design, the graph-
based data structures and 3D circuit topology was
utilized. The -hypercell is a topological
representation of a switching function by n-
dimensional graph, and the switching function f is
given as

FunctionSwitchingofForm...
12

0

FunctionSwitching

1
1

tCoefficien

Operation

ni
n

i

n

xxi
i

KL

 The data structure is described in matrix form
using the truth vector F of a given switching function f
as well as the vector of coefficients K. The logic
operations are represented by L.

-hypercells are used to compute switching
functions. To illustrate the concept, in [3] distinct
switching functions f (for example,

21xxf 21xx 321 xxx) were implemented by the

N-hypercube, see Figure 2.a. From the technology-
dependent implementation viewpoint, we proposed the

-hypercell as documented in Figure 2.b. This
topology maps the device-level consideration. Utilizing
the root and intermediate nodes at the edges, as shown
in Figure 2, the reported -hypecell implements f.
 The logic design in spatial dimensions is based on
advanced methods and data structures that fit 3D
topology. The appropriate data structure of logic
function and methods of embedding this structure in
the -hypercells must be found. The three-step-
solution in logic function manipulation to change the
carrier of information from the algebraic form (logic
equation) to the hypercube structure is reported [3]. In
particular, we proceed as follows.
 Step 1: Logic function (switching or multi-valued)
is transformed to the appropriate algebraic form (Reed-
Muller, arithmetic or word-level in matrix or algebraic
representation).
 Step 2: Derived algebraic form is converted to the
graphical form (decision tree, decision diagram or logic
network).
 Step 3: Obtained graphical form is embedded into

-hypercell.
 The design is expressed as

3Step2Step1Step
StructureHypercell-GraphFunctionLogic N

011 111

101

100000

010

001

110

1x 1x

3x
3x

3x

3x 3x

2x

2x

3x

3x 3x

2x

2x

011 111

101

100000

010

001

110

1x 1x

3x
3x

3x

3x 3x

2x

2x

3x

3x 3x

2x

2x

100000

010 110

1x

3x
3x

3x 3x

2x

001

1x 1x

3x
3x

3x

3x 3x

2x

2x

3x

3x 3x

2x

2x

Subcube

 Figure 2. N- and -hypercubes that implement function f

 The proposed procedure results in:
Algebraic representations and rules of
manipulations with switching and multi-valued
logic functions;
Matrix representations and rules of manipulations
with switching and multi-valued logic functions
(matrix representations provide a consistent
understanding of logic relationships for variables
and functions from the viewpoint of spectral
theory);
Graph-based representations are found using
decision trees, decision diagrams and logical
networks;
Data structures are embedded into -hypercells.

Definition 5. A ternary Shannon expansion

2
2

1
1

0
0 fxfxfxf iii is performed in every node

of the ternary decision tree. Here, for example, f0 = f(xi

= 0), f1 = f(xi = 1) and f2 = f(xi = 2). The complete n-
level ternary decision tree Cn, is a tree with 3k nodes at
the kth level, k = 0, 1, …, n - 1.

Definition 6. The -hypercell is an extended
classical hypercube that consists of terminal nodes,
intermediate nodes, root node and interconnect.

Figure 3 documents the ternary function f of two
variables (x1 and x2) and its implementation. Letting

2,1,0 2
1

1
1

0
1 xxx and 2,1,0 2

2
1
2

0
2 xxx , we

have corresponding 2,1,0
2

2,1,0
1 xx

f , e.g., 00, 01 and 02.

Proceedings of the 35th International Symposium on Multiple-Valued Logic (ISMVL’05)
0195-623X/05 $ 20.00 IEEE

0
1x 1

1x
2
1x

1
2x0

2x 2
2x

0
2

0
1 xx

f 1
2

0
1 xx

f 2
2

0
1 xx

f

1
2x0

2x 2
2x

0
2

1
1xx

f 1
2

1
1xx

f 2
2

1
1xx

f

1
2x0

2x 2
2x

0
2

2
1 xx

f 2
2

2
1 xx

f1
2

2
1 xx

f

f
S

S

S

S

0
1x

1
1x

2
1x

0
2x

1
2x

2
2x

S 1
2

1
1xx

f

2
2

1
1xx

f

0
2

1
1xx

f

0
2x

1
2x

2
2x

S

0
2x

1
2x

2
2x

S

0
2

0
1 xx

f

1
2

0
1 xx

f

2
2

0
1 xx

f

0
2

2
1 xx

f

2
2

2
1 xx

f

1
2

2
1 xx

f

Figure 3. Ternary function f of two variables (x1 and x2)
and its implementation using N-hypercubes

The ternary as well as higher order decision trees
can be embedded in -hypercells. The algorithm
embedding a ternary and quaternary decision trees is
illustrated by Figure 4. Letting q be the number of
variables of a ternary function, the numbers of terminal
and intermediate nodes in a -hypercell that represents
a ternary decision trees are 3q and 3q-1. The number of
terminal and intermediate nodes in a -hypercell that
represents a quaternary decision trees are 4q and 4q-1.

x1x2

x3x4

x5

x6

f=f(x1, x2, x3, x4, x5, x6)

f=f(x7, x8, x9, x10, x11, x12)
x12

x11

x10

x9

x8

x7

x1x2

x3x4

x5

x6

f1=f(x1, x2, x3, x4, x5, x6)

f2=f(f1, x7, x8, x9, x10, x11, x12)
x12

x11

x10

x9

x8

x7

Figure 4. Embedding a ternary (quaternary) decision
trees of two-variable ternary function into -hypercells

The N-hypercube primitives for Boolean ternary,
quartery as well as higher order functions are easy to
derive and apply in the logic design. The library of 3D
elementary gates, such as MIN, MAX, SUM, TSUM
and TPRODUCT, was developed in [3]. It is
documented that distinct decision trees are used to
design 3D MIN and MAX -hypercell models. Each
gate consists of three -hypercell primitives. The
number of activated terminal nodes is defined by a
logic function. In particular, the MIN gate has four
active nodes, while the MAX gate generates 8 active
nodes. In general, an arbitrary k-valued network can be
represented in -hypercell space over the library of 3D
primitives (e.g., gate primitives) because k-valued gate
can be represented by a k-ary decision tree that is
mapped to a -hypercell. Correspondingly, a network
of gates can be represented by a set of a k-ary trees.
These trees are mapped into a -hypercell topology
formed by connecting the -hypercell primitives. The
inner and outer -hypercells are three dimensional [3].
Each 3D -hypercell carries limited information
because the number of nodes and links is limited. The
3D -hypercells are aggregated in the 3D -
hypercells topologies. This technology-dependent
approach allows one to design novel architectures from
far-reaching physical, implementation, and
technological viewpoints.

4. Synthesis of Multi-Valued Logic
Networks Using Multi-Valued Decision
Diagrams

We examine a method for the synthesis of large
multi-valued logic networks with -hypercell (MV)
using multi-valued decision diagrams. These decision
diagrams can be mapped to netlists without reversing
the information flow. The size of the resulting MV is
linear in the size of the decision diagram.

In general, a MV can be modeled as a directed
acyclic graph C = (V, E) such that each vertex Vv
is labeled with the names of (1) basic cell, (2) input or
(3) output. The collection of basic cells that are
possible in the MV is given by a fixed library that
contains MIN, MAX, INV and LITERAL gates. It is
possible to include basic -hypercell with arbitrary
complexity and with a varying number of inputs. There
is an edge (u, v) in E from vertex u to v if and only if
an output pin of the cell associated with u is connected
to an input pin of the cell associated with v. Edges also
contain additional information to specify the pins of the
source and sink nodes that they are connected to.
Vertices have exactly one incoming edge per input pin.
The nodes labeled as input/output may not have

Proceedings of the 35th International Symposium on Multiple-Valued Logic (ISMVL’05)
0195-623X/05 $ 20.00 IEEE

incoming (outgoing) edges. To simulate a MV , each
input may assume the values of a given ordered finite
set P = {0, 1, …, k–1}, where k denotes the number of
logic levels. The complement (INV gate) of a signal x
is defined as xkx)1(. A LITERAL gate (a; b)

)0,,(kbaPba has one input and one

output. For a given input x, the behavior of this gate is

othervise:0

:1
)(

bxak
xf . We assume that the

characteristic functions are available for each of the
inputs. The set of Jj(xi) values as Jj (xi) = k – 1 if xi = j,
and Jj(xi) = 0 otherwise.

The binary decision diagram can be extended to
represent functions

1,,1,0: kf nB .

The resulting graphs represent a multi-terminal
binary decision diagram that can be extended to multi-
valued decision diagrams that represent function

}1,,1,0{}1,,1,0{: kkf n .

When the MV is represented as a directed
acyclic graph, a corresponding decision diagram is
designed as: (1) terminal nodes for the k constant
functions are synthesized; (2) for each input of the
MV , a graph vertex (variable) in the decision
diagram is designed, where the ith outgoing edge
points to the terminal node labeled

}1,,1,0{, kii ; (3) the gates of the MV are

checked in the topological order, and the corresponding
decision diagram operation is designed.

For the synthesis process, assume that a multi-
valued decision diagram, representing a k-valued
function of k-valued variables, is given. The outgoing
edges per node of a decision diagram are mapped to
small sets of logic gates, producing a k-output circuit.
If the function to being computed is f(X), then the k
outputs of the resulting circuit correspond to the
characteristic functions of f, e.g., J0(f(X)), …, Jk–1(f(X)).
The circuit outputs thus form a 1 of k code, where the
ith output of the circuit is logically true if and only if
the multi-valued decision diagram would evaluate to
logic value i. This represents a general procedure for
mapping a multi-valued decision diagram to a MV . It
is assumed that the logic gates compute the MIN and
MAX functions.

5. Ternary Field Logic

Ternary field consists of the set of elements
}2,1,0{T and two basic binary operations, e.g.,

addition (+) and multiplication (or absence of any
operator) as defined in Table 1. These addition and
multiplication are: (1) closed, e.g., for Tyx, ,

Tyx , while Txy ; (2) commutative and

associative, e.g., xyyx and yxxy

(commutative), zyzzyzzyx)()(and

xyzzxyyzx)()((associative); (3) multiplication is

distributive over addition, e. g., xzxyzyx)(.

 Table 1. Ternary field operations
+ 0 1 2 . 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

There are six reversible ternary unary operations
corresponding to six possible permutations of 0, 1, and
2. These operations are called reversible ternary shift
operations [16-19]. Six shift operations, their operator
symbols and equations are reported in [16, 17]. All
these six shift operators can be built as reversible
ternary gates. The gate symbols for these shift gates are
documented in Figure 5. A ternary signal can be
converted to one of the six forms using one of the
reversible ternary shift gates.

' " #'" ^

Figure 5. Gate symbols for shift gates

Literals of a ternary variable x can be defined. Any
ternary function can be expanded using the following
Shannon ternary field expansion theorem.

Theorem. A ternary function f can be expanded
with respect to the variable x as 2

2
1

1
0

0 xfxfxff .

 An optimized ternary decision diagrams for
reversible logic design for an n-variable function f can
be synthesized. The number of possible variable
ordering is n!. One has n16 possible choices of ternary
field expansions for n levels. Therefore, the total
number of possible Kronecker ternary field decision
trees for the function f is nn16! . For 3n , we have
24,576. The number of Kronecker decision diagrams is
the same resulting in the NP-hard optimization
problem. For a pseudo-Kronecker ternary field
decision tree for an n-variable function f, the number of
possible variable orderings is !n . However, the total
number of possible choices of ternary field expansions

is)13(2
1

16
n

 for)13(2
1 n nodes. Therefore, the total

number of possible decision trees for the function f is
)13(2

1

16!
n

n =27,021,597,764,222,976 for 3n .

Proceedings of the 35th International Symposium on Multiple-Valued Logic (ISMVL’05)
0195-623X/05 $ 20.00 IEEE

6. Conclusions

 This paper focuses on the development (synthesis),
integration and demonstration of a novel technology-
dependent 3DnanoICs architecture that will ensure
superior processing capabilities. It is envisioned that
the integration of the technology-dependent 3D logic
design with molecular nanotechnology (that allows one
to synthesize complex functional molecules) will result
in revolutionary performance evolvements.
Quantitative and qualitative performance indexes, such
as intrinsic data-intensive processing, robust adaptive
computing, enhanced functionality, reliability,
redundancy, fault- and defect-tolerance and other,
under specific criteria to be examined. Superior
performance are due to massive parallelism
implemented by 3D -hypercells in terms of logic
design and nanotechnology implementation. Though
we may possess a limited knowledge in the molecular
electronics design and its technological implementation
execution, from nanobiocomputing standpoints and
nanobioarchitectronics, we enable to mimic in some
extent superb 3D networked biomolecular
architectures. Novel methods under the developments
to design novel computing and memory systems.

7. References

[1] S. E. Lyshevski, Nanocomputers and Nanoarchitectronics,
Handbook of Nanoscience, Engineering and Technology, Ed.
W. Goddard, D. Brenner, S. Lyshevski and G. Iafrate, pp. 6.1-
6.39, CRC Press, Boca Raton, FL, 2002.

[2] S. E. Lyshevski, NEMS and MEMS: Fundamentals of
Nano- and Microengineering, CRC Press, Boca Raton, FL,
2005.

[3] S. Yanushkevich, V. Shmerko and S. E. Lyshevski, Logic
Design of Nano-ICs, CRC Press, Boca Raton, FL, 2005.

[4] S. N. Yanushkevich, V. P. Shmerko, L. Guy and D. C.
Lu, “Three dimensional multiple valued circuit design based
on single-electron logic,” Proc. Int. Symposium on Multi-
Valued Logic, pp. 1-6, 2004

[5] R. Drechsler and D.M. Miller, “Decision diagrams in
multi-valued logic,” Int. Journal Multi-Valued Logic, vol. 4,
pp. 1-8, 1998.

[6] B. Harking and C. Moraga, “Efficient derivation of Reed-
Muller expansions in multiple-valued logic systems,” Proc.
Int. Symp. Multi-Valued Logic, Sendai, Japan, pp. 436-441,
1992.

[7] D. Jankovic, R.S. Stankovic and R. Drechsler, “Efficient
calculation of fixed-polarity polynomial expressions for

multiple-valued logic functions,” Proc. Int. Symp. Multi-
Valued Logic, Boston, Massachusetts, pp. 76-82, 2002.

[8] P. Kerntopf, “Multiple-valued decision diagrams based on
generalized Shannon expansion,” Workshop on Post-Binary
Ultra-Large-Scale Integration Systems (ULSI), Tokyo, pp. 9-
16, 2003.

[9] K. L. Kodandapani and R.V. Setur, “Multi-valued
algebraic generalization of Reed-Muller canonical forms,”
Proc. Symp. Multi-Valued Logic, pp. 505-544, 1974.

[10] D. M. Miller and R. Drechsler, “On the construction of
multi-valued decision diagrams,” Proc. Int. Symp. Multi-
Valued Logic, Boston, MA, pp. 245-253, 2002.

[11] D. M. Miller and R. Drechsler, “Implementing a
multiple-valued decision diagram package”, Proc. Int.
Symp. Multi-Valued Logic, Fukuoka, Japan, pp. 52-57, 1998.

[12] D.M. Miller and R. Drechsler, “Augmented sifting of
multiple-valued decision diagrams,” Proc. 33rd IEEE Int.
Symp. Multiple-Valued Logic, Tokyo, pp. 375-382, 2003.

[13] T. Sasao, “Ternary decision diagrams: Survey,” Proc.
Int. Symp. Multi-Valued Logic, Antigonish, Nova Scotia,
Canada, pp. 241-250, 1997.

[14] R. S. Stankovic, “Functional decision diagrams for
multiple-valued functions,” Proc. Int. Symp. Multi-Valued
Logic, Bloomington, IN, pp. 284-289, 1995.

[15] L. Macchiarulo and P. Civera, “Ternary decision
diagrams with inverted edges and cofactors – an application
to discrete neural networks synthesis,” Proc. Int. Symp.
Multi-Valued Logic, pp. 58-63, 1998.

[16] A. Al-Rabadi and M. Perkowski, “Multiple-valued
galois field S/D trees for GFSOP minimization and their
complexity,” Proc. IEEE Int. Symp. Multi-Valued Logic,
Warsaw, Poland, pp. 159-166, 2001.

[17] K. M. Dill, K. Ganguly, R. J. Safranek, and M. A.
Perkowski, “A new Zhegalkin galois logic,” Proc. Int.
Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, Oxford University, UK, pp. 247-257, 1997.

[18] U. Kalay, D.V. Hall, and M. Perkowski, “Easily testable
multiple-valued galois field sum-of-products circuits,” Int.
Journal Multi-Valued Logic, vol. 5, pp. 507-528, 2000.

[19] P. Kerntopf, “Maximally efficient binary and multi-
valued reversible gates,” Workshop on Post-Binary Ultra-
Large-Scale Integration Systems (ULSI), Warsaw, Poland,
pp. 55-58, 2001.

Proceedings of the 35th International Symposium on Multiple-Valued Logic (ISMVL’05)
0195-623X/05 $ 20.00 IEEE

