
On the Optimisation of Reed-Muller Expressions

K.J. Adams J. McGregor

Intelligent Systems Engineering Laboratory

Faculty of Engineering, University of Ulster

Magee College, Londonderry BT48 7JL

United Kingdom

rj.mcgregor@ulst.ac.uk kj.adams@ulst.ac.uk

Abstract

The choice of a set of basis functions with

which to represent Reed-Muller canonical forms

makes less and less difference, on average, to

the efficiency, as measured by the number of

non-zero terms, in which they can be expressed,

as the number of variables in the function

increases. This is because the possible efficiency

gain itself declines exponentially in the general

case, independently of the basis used. We

explain why this is so, and using an integrated

set of software tools, including a genetic

algorithm, we provide supporting evidence of

the phenomenon.

1. Introduction

A combination of sum and product type

operations can be used to obtain a representation

for multiple-valued logic functions. The

minimisation of these expressions in terms of

the complexity of their representation is

important, and attracts interest, because of the

need to optimise their implementation on

Programmable Logic Array architecture, for

example [Utsumi et al 1997], [Tirumalai et al

1991].

Early attempts to compare the complexities

of different algebras statistically using

computer-generated data have encountered the

problem of excessively long computation times

to process samples of functions of reasonable

size. [Stankovic et al 1998] compared two

algebras for 2 and 3-variable functions for a

sample size of 20,000 and [Adams et al 2002]

compared five algebras using sample sizes of

20,000 2-variable functions. In [Adams et al

2003], we compared six algebras with functions

of up to 5 variables with a sample size of 1,000,

and found evidence that the optimisation

procedures deliver less and less reduction in the

number of non-zero terms, and that the bases

perform similarly and converge in performance,

as the number of variables increases. Recent

improvements in the algorithm for exact

optimisation [Stankovic et al, 2003], and the use

of a genetic algorithm (in this paper), has

enabled us to revisit this question and extend the

function space to 6,7,8, and 9 variable functions.

By examining samples from these higher

variable function spaces we have found further

evidence that the phenomenon of convergence is

real. In this paper we present the evidence and

provide an explanation as to why it occurs.

The basis functions and the corresponding

transform matrices for the algebras used are

given in Table 1. These are the Reed-Muller-

Fourier of [Stankovic et al 1998], the algebra of

[Dubrova et al 1996], Level Detector algebra

described in [Adams et al 2002], and an

extension of the algebra proposed by [Calingairt

1961], described in [Adams et al 1999]. These

all use MOD 4 arithmetic. The fifth is the finite

field arithmetic of [Green et al 1974] and lastly

we include the McGregor/Adams basis

introduced in [Adams et al 2002] . These latter

two use GF(4) arithmetic. The basis functions

are represented as matrix columns and the

corresponding transform matrix is the inverse,

using the appropriate arithmetic.

The structure of the remainder of this paper

is as follows. Section 2 explains the theoretical

background and why convergence occurs.

Section 3 describes the procedure carried out

and the software used. Section 4 presents the

experimental results. Finally Section 5 draws

conclusions.

2. Theoretical background

Let Q be the set {0,1,2,3}; then a totally

defined function, f : i=1X
i=n Q → Q where X is

the cross product, is a quaternary multi-valued

n-variable function. Let F be the set of all such

functions. An element of F is f(x1, x2, x3… xi…

xn) = [f1, f2, f3… fj… fm]T, which is the truth

table of the function, where xi, fj ∈ Q , and m =

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

4n. We can transform this function f into a

function g using a 4x4 basis matrix B, as

follows: g = (i=1⊗i=n
B

-1) f, where ⊗ represents

the Kronecker product, the elements of B are

quaternary digits, and the algebra used is any

arbitrarily defined sum-of-product algebra.

Bases defined in the literature and used in this

paper are given in Table 1. We can extend this

concept of function transformation by

considering also the use of polarities. For our

purposes here we define a polarity change as a

permutation of the rows of the basis matrix B,

and usually four of these are considered,

corresponding to the effect of using the additive

complements to the elements of Q, as defined

by the associated algebra. The 4x4 permutation

matrices P for the two algebras used (GF(4) and

MOD 4) are given in Table 2. Thus a function f

can be transformed into a function g = (

i=1⊗i=n
(P<pi>

B)-1) f, with pi = 0,1,2, or 3. Where

pi = 0, P is the identity matrix, and the function

g is referred to as the zero-polarity transform of

f.

If we denote by <p> the polarity vector <p1,

p2, p3… pi… pn>, we now define X
<p> =

i=1⊗i=n
(P<pi>

B)-1, so that g = X
<p>f, and we let

G(f) ⊆ F be the set of functions for which there

exists a polarity vector <p> such that g = X<p>f.

This defines a partition of F where each

equivalence class is that set of functions which

can be transformed into one another using the

polarities of the basis. We note that for any f, the

maximum size of this set, |G(f)|, is 4n.

We can now define the optimisation

procedure as a function op : F → F where op(f)

∈ G(f) and is a function with the minimum

possible number of non-zero values. This is an

injection from F to F. Since |F| = 4m and the

maximum size of G(f) is 4n, the minimum size

of the image of op, Im(op), is 4m/4n, or 4m-n. The

theoretically ideal basis B is the one for which

Im(op) achieves this minimum, and contains no

function which has more non-zero values than a

function not in Im(op).

For a given number of variables, n, there are

m = 4n possible terms in a function, and 4m

possible functions. The number of these that

have t terms is mCt*3t since there are mCt ways of

choosing the terms, and each of these terms can

have one of three possible coefficients (1,2, or

3). This is the Binomial distribution, centred

around a mean, or expected value En, of (¾)*4n.

A illustrative graph of this distribution, for the

case of 4-variable functions is shown in Figure

1. The formula for the mean is derived from

elementary statistical theory, but we can see it

intuitively by noting that since the 4 possible

coefficients 0,1,2, and 3 occur equally often, and

that three of them are non-zero, then we can

expect, on average, ¾ of the maximum number

of terms, 4n. By examining the frequency

distribution of the numbers of functions versus

the number of terms in the function (t), we can

calculate the average number of terms for

|Im(op)| functions, starting with the those with

the lowest number of terms, and continuing with

increasing numbers of terms until we have 4m-n =

|Im(op)| functions. Table 3 shows the values

obtained by this process. In Table 3 we can see

that for 8 variables the possible minimum

number of terms (on average) rises to 99% of

the expected number of terms, so that, on

average, only a 1% reduction in the number of

terms is available for a polarity procedure where

there are four polarities per variable. A graph of

this reduction is shown in Figure 2.

Thus there is an inherent upper bound to the

available savings in numbers of non-zero terms

available by employing a polarity procedure for

optimising functions. This bound is low, and

declines exponentially as the number of

variables increases.

3. Experiments and software

3.1. Exact optimisation

In [Jankovic et al 2003] an optimisation

technique making use of the dual polarity

property is described. Essentially it exploits the

fact that when the number of terms needed to

represent a function is known for a given

polarity vector for the variables, then the number

of terms needed for a polarity vector which

differs by only one value can be efficiently

calculated. We have implemented an improved

variation on this by starting with the zero-

polarity representation and stepping through the

polarity vectors in a Gray code order to search

for the vector corresponding to the

representation with the minimum number of

terms. In fact the difference in the numbers of

terms as we move from one set of polarities to

the next does not depend on the function and can

be pre-calculated and stored in a look-up table.

An integrated suite of C programs used to

optimise functions expressed in an arbitrary

basis and algebra is described in [Adams et al

2002] and [Adams et al 2003]. We implemented

the above technique and incorporated it into our

system. Using C running under LINUX on a

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

1GHz PC with 128Mb of memory the times

taken to optimise functions are shown in the first

column of Table 4. The times are independent of

the number of terms in the function, and

independent of the algebra and basis used. We

found, for example, that the time to optimise

exactly any 7-variable function is 43 seconds as

opposed to figures ranging from 251.32 to

299.28 seconds as given in [Stankovic et al,

2003] running on a similar hardware

configuration.

At 9 variables the time taken to optimise a

function (about 5 hours) becomes prohibitive,

but in addition to that, a space limitation,

limiting the number of variables, becomes

apparent. In the case of 10 variables, a fully

defined function in a 10 dimensional array is

needed, implying 410 entries, and this is

infeasible without a strategy which would

involve prohibitive amounts of Disk I/O which

is very time consuming. Accurate and

comfortable exploration of function spaces

beyond 9 variables is therefore problematic for

fully defined functions both for space and time

considerations, and would require a different

approach.

The computer code is available at

http://spring.infm.ulst.ac.uk/mvl/, which also

has other supporting material.

3.2. Optimisation using a genetic

algorithm

The Genetic Algorithm used is a basic

model. For an n-variable function, a gene is an

n-length vector of numbers ranging from 0 to 3,

which represent the polarities of the basis

functions in which the variables are expressed,

<p1, p2, p3… pn>. The fitness of the gene is the

number of zero coefficients in the resulting

canonical expression of the function using these

polarities. We form an initial pool of poolSize

randomly constructed genes and calculate their

fitness as the number of zero coefficients found

by searching through all the polarities in the

manner described above. Using a roulette wheel

selection method we randomly choose a pair of

genes and select (randomly) a chromosome at

which to split them. We top and tail the genes at

this chromosome to produce two children, and

add them to a subsidiary pool. We repeat this

process nCrossover times. We then randomly

choose a child gene from this subsidiary pool

and make a random change in one of its

(randomly chosen) chromosomes. We do this

nMutation times. We note in passing that a child

could remain unchanged, and that a child could

also be changed more than once. We then

calculate the fitness of the resulting children and

pick from the original pool and the subsidiary

pool the fittest poolSize genes. We repeat this

process nGeneration times.

The parameters available for variation are

the size of the gene pool (poolSize), the number

of crossovers to be used (nCrossover) and the

number of mutations where a random

chromosome from a randomly chosen gene is

randomly changed (nMutation). During the

testing phase the algorithm was run until the

known or estimated minimum was found;

subsequently the GA was run for a suitable fixed

number of generations.

4. Experimental Results

4.1. Exact optimisation for 5-variable

functions

Using the exact optimisation technique

described above, we constructed 20,000 random

5-variable functions and found the minimum

number of coefficients needed to represent them

using both the Green/Taylor basis (GT) and the

Level Detector basis (LD). The results were 723

for GT and 726 for LD. The expected mean (E5)

over the entire function space is 768 and this

proved to be the average number of terms in the

zero-polarity transform of the initial functions.

Thus the ‘savings’ as a proportion of E5 are

5.9% and 5.5% respectively, and this is just

below the theoretical average maximum

percentage available of 6% (see Table 3). This

provides further evidence that there is a low

upper bound to the savings available, and that

consequently the reduction achieved by different

bases is approximately the same.

4.2. Genetic algorithm performance vs

exact method

4.2.1. Speed of the genetic algorithm

The time for exact optimisation of functions

increases exponentially as the number of

variables increases. A procedure such as a

genetic algorithm is needed if any reasonable

numbers of functions are to be examined. In

order to demonstrate the efficiency in speed

terms we first optimised numbers of random

functions exactly (for the Green/Taylor basis),

and then used the genetic algorithm to try to find

this exact optimum. In all the cases that we tried

the genetic algorithm was successful, and the

average CPU seconds required over the various

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

samples of functions is given in the latter

columns of Table 4. On average, over 2,000

functions, the algorithm was able to optimise a

7-variable function, for example, in 14.2

seconds (as opposed to 43 seconds using the

exact technique). Our conclusion is that

sufficient speed gains to examine reasonable

numbers of functions can be achieved without

loss of accuracy by using the genetic algorithm.

4.2.2. 5-variable functions

In order to demonstrate the effectiveness of

the genetic algorithm we ran it against 5,000

randomly generated 5-variable functions which

we first optimised using the exact method

referred to in Section 3. By this means we

obtained a selection of functions where the

minimum number of non-zero coefficients

needed to represent them was known. We then

used the genetic algorithm to see if we could

arrive back at this minimum number of terms by

finding the correct polarity vector. We choose a

gene pool size of 24, with a crossover rate of 10

and a mutation rate of 10 per generation, and we

ran the algorithm for 250 generations. We did

this for two bases, Green/Taylor and Level

Detector.

These results are shown in Table 5. We see

that 60.1% (GT) and 80.4% (LD) of functions

are optimised within 25 generations, with over

99% being optimised within 250 in each case.

The average number of generations to optimise a

5-variable function is 33.7 in the case of GT,

and 18.9 in the case of the LD. Our conclusion is

that the genetic algorithm can optimise 5-

variable functions accurately and quickly.

4.2.3. 6, 7, 8, and 9-variable functions

As the number of variables increases the

time taken to optimise functions increases also.

As alluded in Section 3, for functions of 6 and

more variables, exact optimisation of large

numbers of functions becomes infeasible. For

these cases, random functions of specific

numbers of (unique) terms were generated and

this therefore provided an upper bound for the

minimum number needed to represent the

function. Thus we tested the ability of the

genetic algorithm to find the number of terms

originally used to generate the function, rather

than the actual, exact minimum.

The results are shown in Table 6. They

indicate, for example, that for a 7-variable

function, which is pre-constructed from a fixed

number of terms, the genetic algorithm can find

that number of terms in 10.2 seconds, on

average (calculated over a random sample of

2,000 functions). The algorithm performs better

at this task than the results shown for exact

optimisation in Table 4, since it is not finding

the actual minimum, but an upper bound to that

minimum. We conclude that the genetic

algorithm can find functions where there is a

significant reduction in the number of terms, and

can do so efficiently.

4.3. Results found by genetic algorithm

We ran the genetic algorithm to optimise

randomly generated sets of 5, 6, 7, and 8-

variable functions for the six bases described in

Section 1. We used a pool size of 24, and

crossover and mutation rates of 10 per

generation, and we ran for 40 generations.

Excessive computation times (ranging from 5.4

hours for the 5-variable experiment, to 47.7

hours for 8 variables) precluded the use of

greater sample sizes, or a larger number of

generations. The results are shown in the four

parts of Table 7. Each of the four parts can be

interpreted similarly and we now discuss the 6-

variable case to explain the results.

For a random 6-variable function, the

expected (or average) number of terms will be

E6 = ¾*46 = 3,072. From the discussion in

Section 2 we have that the theoretical minimum

number of non-zero coefficients needed to

represent 6-variable functions, on average, is

2,967 (See Table 3). That is to say, on average,

using an ideal basis and arithmetic, we could

expect to reduce the figure of 3,072 terms to a

figure of 2,967 terms. This figure is independent

of the basis used, and is a consequence of the

properties of the Binomial distribution, which

corresponds to the distribution of the numbers of

non-zero terms in quaternary multiple-valued

functions.

In Table 7 we see that the average minima

found by the genetic algorithm for the six

different bases are (a) close to this figure,

ranging from 0.47% to 0.61% above it, and (b)

close to each other, ranging from 2981 to 2985.

The other parts of Table 7 present a similar

picture and can be interpreted in the same way.

They provide confirming evidence of our

conclusions.

5. Conclusions

The first conclusion to be drawn is that

optimisation of functions using polarities, when

taken over the entire function space, delivers

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

less and less reduction of the numbers of non-

zero coefficients as the number of variables

increases, diminishing to an average of 1% with

8-variable functions. This phenomenon is a

consequence of the statistical properties of the

Binomial distribution, and is confirmed by the

experimental evidence here presented. Secondly,

it follows that choosing different bases makes no

difference, and our evidence supports this

conclusion also.

Essentially the proportion of simple

functions (those with fewest non-zero

coefficients) diminishes exponentially as the

number of variables decreases and therefore

there is an exponentially diminishing

opportunity to significantly reduce the number

of terms in a function by searching among the

different polarities. The strategy of randomly

sampling the entire function space, testing

different bases and polarity procedures, is

therefore of little value to distinguish between

algebras.

It remains to examine, perhaps, classes of

functions, such as symmetric, monotone, or

threshold functions for example, to see if the

picture is any different. As well, a

comprehensive set of carefully constructed

benchmark functions (which could be quite large

in size), incorporating examples of all of the

features of interest in multiple-valued functions

might be much more useful as a tool to

investigate the complexities and features of

possible different algebras.

References

Adams, K.J., Campbell, J.G., Maguire L.P.,

Webb J.A.C. (1999) State assignment techniques

in multiple valued logic. Proc. 29th Int. Symp.

on Multiple-Valued Logic, 220-225, Freiburg.

(IEEE)

Adams, K.J., McGregor, J. (2002) Comparison

of Different Features of Quaternary Reed-Muller

Canonical Forms and Some New Statistical

Results. Proc. 32nd Int. Symp. On Multiple-

Valued Logic, 83-88, Boston. (IEEE)

Adams, K.J., McGregor, J. (2003) New

Information on the Effectiveness of Different

Reed-Muller Algebras on the Representation of

Quaternary Functions. Proc. 33rd Int. Symp. On

Multiple-Valued Logic, 33-39, Tokyo. (IEEE)

Calingairt P. (1961) Switching Function

Canonical forms Based on Commutative and

Associative Binary Operations. Trans. Amer.

Inst. Elect. Eng. Vol 79 Jan, 808-814 (Springer)

Dubrova E.V., Muzio, J.C. (1996) Generalized

Reed-Muller Canonical Form for Multiple-

valued Algebra. Multiple Valued Logic, An
International Journal, 1, 65-84. (Gordon and

Breach, Netherlands)

Green, D.H., Taylor, I.S. (1974) Modular

Representation of Multiple-valued Logic

Systems. Proc. Of the IEE, Vol. 121, 424-429.

(IEE)

Jankovic, D., Stankovic, R.S., Moraga, C.

(2003) Optimisation of GF(4) Expressions

Using the Extended Dual Polarity Property.

Proc. 33rd Int. Symp. On Multiple-Valued Logic,

50-55, Tokyo. (IEEE)

Spiegel, M.R. (1972) Theory and Problems of

Statistics. McGraw-Hill.

Stankovic R.S., Jankovic, D., Moraga C. (1998)

Reed-Muller-Fourier versus Galois Field

Representation of Four-valued Logic Functions.

Proc. 28th Int. Symp. on Multiple-Valued Logic,

186-191. Fukuoka. (IEEE)

Tirumalai P., Butler J. (1991) Minimisation

Algorithms for Multiple-Valued Programmable

Logic Arrays. IEEE Trans. on Comp. Vol 40,

No. 2, 167-177.

Utsumi T., Kamiura N., Hata Y., Yamato K.

(1997) Multiple-valued Programmable Logic

Array with Universal Literals, Proc. 27th Int.
Symp. Multiple Valued Logic, 163-169. (IEEE)

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

(DM) Dubrova/Muzio (MOD 4)

Basis B Inverse B-1

1 0 0 0 1 0 0 0

1 1 0 0 3 1 0 0

1 0 1 0 3 0 1 0

1 0 0 1 3 0 0 1

(GT) Green/Taylor (GF(4))

Basis B Inverse B-1

1 0 0 0 1 0 0 0

1 1 1 1 0 1 3 2

1 2 3 1 0 1 2 3

1 3 2 1 1 1 1 1

(CQ) Calingairt-Q (MOD 4)

Basis B Inverse B-1

1 0 0 0 1 0 0 0

1 1 0 0 3 1 0 0

1 0 1 0 3 0 1 0

1 1 1 1 1 3 3 1

(LD) Level Detector (MOD 4)

Basis B Inverse B-1

1 0 0 0 1 0 0 0

1 1 0 0 3 1 0 0

1 1 1 0 0 3 1 0

1 1 1 1 0 0 3 1

(RM) Reed/Muller/Fourier (MOD 4)

Basis B Inverse B-1

3 0 0 0 3 0 0 0

3 1 0 0 3 1 0 0

3 2 3 0 3 2 3 0

3 3 1 1 3 3 1 1

(MA) McGregor/Adams (GF(4))

Basis B Inverse B-1

0 2 0 3 1 3 2 2

1 3 1 1 2 3 0 1

2 0 1 2 3 2 2 2

3 0 3 2 3 2 0 3

Table 1 Basis functions and their inverses

GF(4)

P
<0>

P
 <1>

P
 <2>

P
 <3>

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

MOD 4

P <0> P <1> P <2> P <3>

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0

Table 2 Polarity permutation matrices

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

4-variable functions by numbers of terms

0

1E+152

2E+152

3E+152

4E+152

5E+152

6E+152

7E+152

8E+152

9E+152

0 50 100 150 200 250

number of terms

n
u

m
b

e
r

o
f

fu
n

c
ti

o
n

s

Figure 1 Distribution of 4-variable functions by the number of non-zero terms

Available average reduction in number of terms in functions

0%

5%

10%

15%

20%

25%

30%

35%

0 1 2 3 4 5 6 7 8 9

number of variables

%
 r

e
d

u
c

ti
o

n
 a

v
a

il
a

b
le

Figure 2 Expected number of terms compared with average minimum number of terms for n-variable

functions (Table 3)

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

n

Expected number

of terms

En

Average

possible

 minimum

Average

as % of

En

Average % reduction

available in

number of terms

2 12 8.4 70% 30%

3 48 39 81% 19%

4 192 171 89% 11%

5 768 720 94% 6%

6 3072 2967 97% 3%

7 12288 12060 98% 2%

8 49152 48664 99% 1%

Table 3 Expected number of terms compared with average minimum number of terms for n-variable

functions (Figure 2)

n

Exact

Optimisation

(secs)

Optimisation

using GA

(secs)

Sample

Size

5 0 0.25 20,000

6 3 2.2 2,000

7 43 14.2 2,000

8 1007 111 400

9 18070 721 10

Table 4 Time need for optimisation of n-variable functions over four polarities

(poolsize=24, nCrossover=10, nMutation=10)

Number of

generations

GT

GF(4)

Cumulative % of

functions optimised

LD

MOD 4

Cumulative % of

functions optimised

25 3006 60.1% 4022 80.4%

50 841 76.9% 519 90.8%

75 469 86.3% 201 94.8%

100 257 91.5% 113 97.1%

125 160 94.7% 55 98.2%

150 105 96.8% 35 98.9%

175 63 98.0% 22 99.3%

200 28 98.6% 11 99.6%

225 31 99.2% 5 99.7%

250 14 99.5% 7 99.8%

Not found

in 250

generations

26 0.5% 10 0.2%

Average

number of

generations

33.7 18.9

Table 5 Effectiveness of GA in optimising a random sample of 5,000 5-variable functions for

Green/Taylor and Level Detector bases (poolsize=24, nCrossover=10, nMutation=10)

Number

of

Variables

Optimisation

using GA

(secs)

Sample

Size

6 1.7 2,000

7 10.2 2,000

8 58 1,000

9 431 500

Table 6 Time needed to find numbers of terms in functions randomly constructed from fixed numbers

of terms ranging through 100, 200, … 1,000 (poolsize=24, nCrossover=10, nMutation=10)

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

 5 variables (2,000 functions)

Basis

Average

minimum

found

Theoretical

average

minimum

Difference %

GT 725 720 5 0.69%

LD 729 720 9 1.25%

CQ 726 720 6 0.83%

DM 725 720 5 0.69%

MA 725 720 5 0.69%

RM 725 720 5 0.69%

Computation time: 5.4 hours

 6 variables (2,000 functions)

Basis

Average

minimum

found

Theoretical

average

minimum

Difference %

GT 2982 2967 15 0.51%

LD 2985 2967 18 0.61%

CQ 2981 2967 14 0.47%

DM 2981 2967 14 0.47%

MA 2984 2967 17 0.57%

RM 2981 2967 14 0.47%

Computation time: 27.7 hours

 7 variables (500 functions)

Basis

Average

minimum

found

Theoretical

average

minimum

Difference %

GT 12105 12060 45 0.37%

LD 12097 12060 37 0.31%

CQ 12098 12060 38 0.32%

DM 12107 12060 47 0.39%

MA 12107 12060 47 0.39%

RM 12097 12060 37 0.31%

Computation time: 35.8 hours

 8 variables (100 functions)

Basis

Average

minimum

found

Theoretical

average

minimum

Difference %

GT 48772 48664 108 0.22%

LD 48760 48664 96 0.20%

CQ 48769 48664 105 0.21%

DM 48767 48664 103 0.21%

MA 48779 48664 115 0.23%

RM 48765 48664 101 0.21%

Computation time: 47.7 hours

Table 7 Average minimum numbers of coefficients achieved for random functions by the GA

compared with theoretical (average) minimum possible (poolsize=24, nCrossover=10, nMutation=10,

nGeneration=40)

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

	footer1:

