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Abstract 

The choice of a set of basis functions with 

which to represent Reed-Muller canonical forms 

makes less and less difference, on average, to 

the efficiency, as measured by the number of 

non-zero terms, in which they can be expressed, 

as the number of variables in the function 

increases. This is because the possible efficiency 

gain itself declines exponentially in the general 

case, independently of the basis used. We 

explain why this is so, and using an integrated 

set of software tools, including a genetic 

algorithm, we provide supporting evidence of 

the phenomenon. 

1. Introduction 

A combination of sum and product type 

operations can be used to obtain a representation 

for multiple-valued logic functions. The 

minimisation of these expressions in terms of 

the complexity of their representation is 

important, and attracts interest, because of the 

need to optimise their implementation on 

Programmable Logic Array architecture, for 

example [Utsumi et al 1997], [Tirumalai et al 

1991]. 

Early attempts to compare the complexities 

of different algebras statistically using 

computer-generated data have encountered the 

problem of excessively long computation times 

to process samples of functions of reasonable 

size. [Stankovic et al 1998] compared two 

algebras for 2 and 3-variable functions for a 

sample size of 20,000 and [Adams et al 2002] 

compared five algebras using sample sizes of 

20,000 2-variable functions. In [Adams et al 

2003], we compared six algebras with functions 

of up to 5 variables with a sample size of 1,000, 

and found evidence that the optimisation 

procedures deliver less and less reduction in the 

number of non-zero terms, and that the bases 

perform similarly and converge in performance, 

as the number of variables increases. Recent 

improvements in the algorithm for exact 

optimisation [Stankovic et al, 2003], and the use 

of a genetic algorithm (in this paper), has 

enabled us to revisit this question and extend the 

function space to 6,7,8, and 9 variable functions. 

By examining samples from these higher 

variable function spaces we have found further 

evidence that the phenomenon of convergence is 

real. In this paper we present the evidence and 

provide an explanation as to why it occurs. 

The basis functions and the corresponding 

transform matrices for the algebras used are 

given in Table 1. These are the Reed-Muller-

Fourier of [Stankovic et al 1998], the algebra of 

[Dubrova et al 1996], Level Detector algebra 

described in [Adams et al 2002], and an 

extension of the algebra proposed by [Calingairt 

1961], described in [Adams et al 1999]. These 

all use MOD 4 arithmetic. The fifth is the finite 

field arithmetic of [Green et al 1974] and lastly 

we include the McGregor/Adams basis 

introduced in [Adams et al  2002] . These latter 

two use GF(4) arithmetic. The basis functions 

are represented as matrix columns and the 

corresponding transform matrix is the inverse, 

using the appropriate arithmetic. 

The structure of the remainder of this paper 

is as follows. Section 2 explains the theoretical 

background and why convergence occurs. 

Section 3 describes the procedure carried out 

and the software used. Section 4 presents the 

experimental results. Finally Section 5 draws 

conclusions. 

2. Theoretical background 

Let Q be the set {0,1,2,3}; then a totally 

defined function, f : i=1X
i=n Q → Q where X is

the cross product, is a quaternary multi-valued 

n-variable function. Let F be the set of all such 

functions. An element of F is f(x1, x2, x3… xi…

xn) = [f1, f2, f3… fj… fm]T, which is the truth 

table of the function, where xi, fj ∈ Q , and m = 
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4n. We can transform this function f into a 

function g using a 4x4 basis matrix B, as 

follows: g = (i=1⊗i=n
B

-1 ) f, where ⊗ represents 

the Kronecker product, the elements of B are 

quaternary digits, and the algebra used is any 

arbitrarily defined sum-of-product algebra. 

Bases defined in the literature and used in this 

paper are given in Table 1. We can extend this 

concept of function transformation by 

considering also the use of polarities. For our 

purposes here we define a polarity change as a 

permutation of the rows of the basis matrix B,

and usually four of these are considered, 

corresponding to the effect of using the additive 

complements to the elements of Q, as defined 

by the associated algebra. The 4x4 permutation 

matrices P for the two algebras used (GF(4) and 

MOD 4) are given in Table 2. Thus a function f

can be transformed into a function g = ( 

i=1⊗i=n
(P<pi>

B)-1 ) f, with pi = 0,1,2, or 3. Where 

pi = 0, P is the identity matrix, and the function 

g is referred to as the zero-polarity transform of 

f.

If we denote by <p> the polarity vector <p1,

p2, p3… pi… pn>, we now define X
<p> = 

i=1⊗i=n
(P<pi>

B)-1, so that g = X
<p>f, and we let 

G(f) ⊆ F be the set of functions for which there 

exists a polarity vector <p> such that g = X<p>f.

This defines a partition of F where each 

equivalence class is that set of functions which 

can be transformed into one another using the 

polarities of the basis. We note that for any f, the 

maximum size of this set, |G(f)|, is 4n.

We can now define the optimisation 

procedure as a function op : F → F where op(f)

∈ G(f) and is a function with the minimum 

possible number of non-zero values. This is an 

injection from F to F. Since |F| = 4m and the 

maximum size of  G(f) is 4n, the minimum size 

of the image of op, Im(op), is 4m/4n, or 4m-n. The 

theoretically ideal basis B is the one for which 

Im(op) achieves this minimum, and contains no 

function which has more non-zero values than a 

function not in Im(op). 

For a given number of variables, n, there are 

m = 4n possible terms in a function, and 4m

possible functions. The number of these that 

have t terms is mCt*3t since there are mCt ways of 

choosing the terms, and each of these terms can 

have one of three possible coefficients (1,2, or 

3). This is the Binomial distribution, centred 

around a mean, or expected value En, of (¾)*4n.

A illustrative graph of this distribution, for the 

case of 4-variable functions is shown in Figure 

1. The formula for the mean is derived from 

elementary statistical theory, but we can see it 

intuitively by noting that since the 4 possible 

coefficients 0,1,2, and 3 occur equally often, and 

that three of them are non-zero, then we can 

expect, on average, ¾ of the maximum number 

of terms, 4n. By examining the frequency 

distribution of the numbers of functions versus 

the number of terms in the function (t), we can 

calculate the average number of terms for 

|Im(op)| functions, starting with the those with 

the lowest number of terms, and continuing with 

increasing numbers of terms until we have 4m-n = 

|Im(op)| functions. Table 3 shows the values 

obtained by this process. In Table 3 we can see 

that for 8 variables the possible minimum 

number of terms (on average) rises to 99% of 

the expected number of terms, so that, on 

average, only a 1% reduction in the number of 

terms is available for a polarity procedure where 

there are four polarities per variable. A graph of 

this reduction is shown in Figure 2. 

Thus there is an inherent upper bound to the 

available savings in numbers of non-zero terms 

available by employing a polarity procedure for 

optimising functions. This bound is low, and 

declines exponentially as the number of 

variables increases. 

3. Experiments and software 

3.1. Exact optimisation 

In [Jankovic et al 2003] an optimisation 

technique making use of the dual polarity 

property is described. Essentially it exploits the 

fact that when the number of terms needed to 

represent a function is known for a given 

polarity vector for the variables, then the number 

of terms needed for a polarity vector which 

differs by only one value can be efficiently 

calculated. We have implemented an improved 

variation on this by starting with the zero-

polarity representation and stepping through the 

polarity vectors in a Gray code order to search 

for the vector corresponding to the 

representation with the minimum number of 

terms. In fact the difference in the numbers of 

terms as we move from one set of polarities to 

the next does not depend on the function and can 

be pre-calculated and stored in a look-up table.  

An integrated suite of C programs used to 

optimise functions expressed in an arbitrary 

basis and algebra is described in [Adams et al 

2002] and [Adams et al 2003]. We implemented 

the above technique and incorporated it into our 

system. Using C running under LINUX on a 
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1GHz PC with 128Mb of memory the times 

taken to optimise functions are shown in the first 

column of Table 4. The times are independent of 

the number of terms in the function, and 

independent of the algebra and basis used. We 

found, for example, that the time to optimise 

exactly any 7-variable function is 43 seconds as 

opposed to figures ranging from 251.32 to 

299.28 seconds as given in [Stankovic et al, 

2003] running on a similar hardware 

configuration. 

At 9 variables the time taken to optimise a 

function (about 5 hours) becomes prohibitive, 

but in addition to that, a space limitation, 

limiting the number of variables, becomes 

apparent. In the case of 10 variables, a fully 

defined function in a 10 dimensional array is 

needed, implying 410 entries, and this is 

infeasible without a strategy which would 

involve prohibitive amounts of Disk I/O which 

is very time consuming. Accurate and 

comfortable exploration of function spaces 

beyond 9 variables is therefore problematic for 

fully defined functions both for space and time 

considerations, and would require a different 

approach. 

The computer code is available at 

http://spring.infm.ulst.ac.uk/mvl/, which also 

has other supporting material. 

3.2. Optimisation using a genetic 

algorithm 

The Genetic Algorithm used is a basic 

model. For an n-variable function, a gene is an 

n-length vector of numbers ranging from 0 to 3, 

which represent the polarities of the basis 

functions in which the variables are expressed, 

<p1, p2, p3… pn>. The fitness of the gene is the 

number of zero coefficients in the resulting 

canonical expression of the function using these 

polarities. We form an initial pool of poolSize

randomly constructed genes and calculate their 

fitness as the number of zero coefficients found 

by searching through all the polarities in the 

manner described above. Using a roulette wheel 

selection method we randomly choose a pair of 

genes and select (randomly) a chromosome at 

which to split them. We top and tail the genes at 

this chromosome to produce two children, and 

add them to a subsidiary pool. We repeat this 

process nCrossover times. We then randomly 

choose a child gene from this subsidiary pool 

and make a random change in one of its 

(randomly chosen) chromosomes. We do this 

nMutation times. We note in passing that a child 

could remain unchanged, and that a child could 

also be changed more than once. We then 

calculate the fitness of the resulting children and 

pick from the original pool and the subsidiary 

pool the fittest poolSize genes. We repeat this 

process nGeneration times. 

The parameters available for variation are 

the size of the gene pool (poolSize), the number 

of crossovers to be used (nCrossover) and the 

number of mutations where a random 

chromosome from a randomly chosen gene is 

randomly changed (nMutation). During the 

testing phase the algorithm was run until the 

known or estimated minimum was found; 

subsequently the GA was run for a suitable fixed 

number of generations. 

4. Experimental Results 

4.1. Exact optimisation for 5-variable 

functions

Using the exact optimisation technique 

described above, we constructed 20,000 random 

5-variable functions and found the minimum 

number of coefficients needed to represent them 

using both the Green/Taylor basis (GT) and the 

Level Detector basis (LD). The results were 723 

for GT and 726 for LD. The expected mean (E5)

over the entire function space is 768 and this 

proved to be the average number of terms in the 

zero-polarity transform of the initial functions. 

Thus the ‘savings’ as a proportion of E5 are 

5.9% and 5.5% respectively, and this is just 

below the theoretical average maximum 

percentage available of 6% (see Table 3). This 

provides further evidence that there is a low 

upper bound to the savings available, and that 

consequently the reduction achieved by different 

bases is approximately the same. 

4.2. Genetic algorithm performance vs 

exact method 

4.2.1. Speed of the genetic algorithm 

The time for exact optimisation of functions 

increases exponentially as the number of 

variables increases. A procedure such as a 

genetic algorithm is needed if any reasonable 

numbers of functions are to be examined. In 

order to demonstrate the efficiency in speed 

terms we first optimised numbers of random 

functions exactly (for the Green/Taylor basis), 

and then used the genetic algorithm to try to find 

this exact optimum. In all the cases that we tried 

the genetic algorithm was successful, and the 

average CPU seconds required over the various 
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samples of functions is given in the latter 

columns of Table 4. On average, over 2,000 

functions, the algorithm was able to optimise a 

7-variable function, for example, in 14.2 

seconds (as opposed to 43 seconds using the 

exact technique). Our conclusion is that 

sufficient speed gains to examine reasonable 

numbers of functions can be achieved without 

loss of accuracy by using the genetic algorithm. 

4.2.2. 5-variable functions 

In order to demonstrate the effectiveness of 

the genetic algorithm we ran it against 5,000 

randomly generated 5-variable functions which 

we first optimised using the exact method 

referred to in Section 3. By this means we 

obtained a selection of functions where the 

minimum number of non-zero coefficients 

needed to represent them was known. We then 

used the genetic algorithm to see if we could 

arrive back at this minimum number of terms by 

finding the correct polarity vector. We choose a 

gene pool size of 24, with a crossover rate of 10 

and a mutation rate of 10 per generation, and we 

ran the algorithm for 250 generations. We did 

this for two bases, Green/Taylor and Level 

Detector. 

These results are shown in Table 5. We see 

that 60.1% (GT) and 80.4% (LD) of functions 

are optimised within 25 generations, with over 

99% being optimised within 250 in each case. 

The average number of generations to optimise a 

5-variable function is 33.7 in the case of GT, 

and 18.9 in the case of the LD. Our conclusion is 

that the genetic algorithm can optimise 5-

variable functions accurately and quickly.  

4.2.3. 6, 7, 8, and 9-variable functions 

As the number of variables increases the 

time taken to optimise functions increases also. 

As alluded in Section 3, for functions of 6 and 

more variables, exact optimisation of large 

numbers of functions becomes infeasible. For 

these cases, random functions of specific 

numbers of (unique) terms were generated and 

this therefore provided an upper bound for the 

minimum number needed to represent the 

function. Thus we tested the ability of the 

genetic algorithm to find the number of terms 

originally used to generate the function, rather 

than the actual, exact minimum.  

The results are shown in Table 6. They 

indicate, for example, that for a 7-variable 

function, which is pre-constructed from a fixed 

number of terms, the genetic algorithm can find 

that number of terms in 10.2 seconds, on 

average (calculated over a random sample of 

2,000 functions). The algorithm performs better 

at this task than the results shown for exact 

optimisation in Table 4, since it is not finding 

the actual minimum, but an upper bound to that 

minimum. We conclude that the genetic 

algorithm can find functions where there is a 

significant reduction in the number of terms, and 

can do so efficiently. 

4.3. Results found by genetic algorithm 

We ran the genetic algorithm to optimise 

randomly generated sets of 5, 6, 7, and 8-

variable functions for the six bases described in 

Section 1. We used a pool size of 24, and 

crossover and mutation rates of 10 per 

generation, and we ran for 40 generations. 

Excessive computation times (ranging from 5.4 

hours for the 5-variable experiment, to 47.7 

hours for 8 variables) precluded the use of 

greater sample sizes, or a larger number of 

generations. The results are shown in the four 

parts of Table 7. Each of the four parts can be 

interpreted similarly and we now discuss the 6-

variable case to explain the results.  

For a random 6-variable function, the 

expected (or average) number of terms will be 

E6 = ¾*46 = 3,072. From the discussion in 

Section 2 we have that the theoretical minimum 

number of non-zero coefficients needed to 

represent 6-variable functions, on average, is 

2,967 (See Table 3). That is to say, on average,

using an ideal basis and arithmetic, we could 

expect to reduce the figure of 3,072 terms to a 

figure of 2,967 terms. This figure is independent 

of the basis used, and is a consequence of the 

properties of the Binomial distribution, which 

corresponds to the distribution of the numbers of 

non-zero terms in quaternary multiple-valued 

functions.  

In Table 7 we see that the average minima 

found by the genetic algorithm for the six 

different bases are (a) close to this figure, 

ranging from 0.47% to 0.61% above it, and (b) 

close to each other, ranging from 2981 to 2985. 

The other parts of Table 7 present a similar 

picture and can be interpreted in the same way. 

They provide confirming evidence of our 

conclusions. 

5. Conclusions 

The first conclusion to be drawn is that 

optimisation of functions using polarities, when 

taken over the entire function space, delivers 
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less and less reduction of the numbers of non-

zero coefficients as the number of variables 

increases, diminishing to an average of 1% with 

8-variable functions. This phenomenon is a 

consequence of the statistical properties of the 

Binomial distribution, and is confirmed by the 

experimental evidence here presented. Secondly, 

it follows that choosing different bases makes no 

difference, and our evidence supports this 

conclusion also. 

Essentially the proportion of simple 

functions (those with fewest non-zero 

coefficients) diminishes exponentially as the 

number of variables decreases and therefore 

there is an exponentially diminishing 

opportunity to significantly reduce the number 

of terms in a function by searching among the 

different polarities. The strategy of randomly 

sampling the entire function space, testing 

different bases and polarity procedures, is 

therefore of little value to distinguish between 

algebras. 

It remains to examine, perhaps, classes of 

functions, such as symmetric, monotone, or 

threshold functions for example, to see if the 

picture is any different. As well, a 

comprehensive set of carefully constructed 

benchmark functions (which could be quite large 

in size), incorporating examples of all of the 

features of interest in multiple-valued functions 

might be much more useful as a tool to 

investigate the complexities and features of 

possible different algebras. 
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(DM) Dubrova/Muzio (MOD 4) 

Basis B Inverse  B-1

1 0 0 0 1 0 0 0 

1 1 0 0 3 1 0 0 

1 0 1 0 3 0 1 0 

1 0 0 1 3 0 0 1 

(GT) Green/Taylor (GF(4)) 

Basis B Inverse  B-1

1 0 0 0 1 0 0 0 

1 1 1 1 0 1 3 2 

1 2 3 1 0 1 2 3 

1 3 2 1 1 1 1 1 

(CQ) Calingairt-Q (MOD 4) 

Basis B Inverse  B-1

1 0 0 0 1 0 0 0 

1 1 0 0 3 1 0 0 

1 0 1 0 3 0 1 0 

1 1 1 1 1 3 3 1 

(LD) Level Detector (MOD 4) 

Basis B Inverse  B-1

1 0 0 0 1 0 0 0 

1 1 0 0 3 1 0 0 

1 1 1 0 0 3 1 0 

1 1 1 1 0 0 3 1 

(RM) Reed/Muller/Fourier (MOD 4) 

Basis B Inverse  B-1

3 0 0 0 3 0 0 0 

3 1 0 0 3 1 0 0 

3 2 3 0 3 2 3 0 

3 3 1 1 3 3 1 1 

(MA) McGregor/Adams (GF(4)) 

Basis B Inverse  B-1

0 2 0 3 1 3 2 2 

1 3 1 1 2 3 0 1 

2 0 1 2 3 2 2 2 

3 0 3 2 3 2 0 3 

Table 1 Basis functions and their inverses 

GF(4) 

P
<0> 

P
 <1> 

P
 <2> 

P
 <3> 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 

MOD 4 

P <0> P <1> P <2> P <3> 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 

0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 

Table 2 Polarity permutation matrices 
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4-variable functions by numbers of terms

0

1E+152

2E+152

3E+152

4E+152

5E+152

6E+152

7E+152

8E+152

9E+152

0 50 100 150 200 250

number of terms

n
u

m
b

e
r 

o
f 

fu
n

c
ti

o
n

s

Figure 1 Distribution of 4-variable functions by the number of non-zero terms 
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Figure 2 Expected number of terms compared with average minimum number of terms for n-variable

functions (Table 3) 
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n

Expected number 

of terms 

En

Average 

possible 

 minimum 

Average 

as % of 

En   

Average % reduction 

available in  

number of terms 

2 12 8.4 70% 30% 

3 48 39 81% 19% 

4 192 171 89% 11% 

5 768 720 94% 6% 

6 3072 2967 97% 3% 

7 12288 12060 98% 2% 

8 49152 48664 99% 1% 

Table 3 Expected number of terms compared with average minimum number of terms for n-variable 

functions (Figure 2) 

n

Exact

Optimisation 

(secs)

Optimisation 

using GA 

(secs) 

Sample 

Size

5 0 0.25 20,000 

6 3 2.2 2,000 

7 43 14.2 2,000 

8 1007 111 400 

9 18070 721 10 

Table 4 Time need for optimisation of n-variable functions over four polarities 

(poolsize=24, nCrossover=10, nMutation=10)

Number of 

generations 

GT

GF(4) 

Cumulative % of 

functions optimised 

LD

MOD 4 

Cumulative % of 

functions optimised 

25 3006 60.1% 4022 80.4% 

50 841 76.9% 519 90.8% 

75 469 86.3% 201 94.8% 

100 257 91.5% 113 97.1% 

125 160 94.7% 55 98.2% 

150 105 96.8% 35 98.9% 

175 63 98.0% 22 99.3% 

200 28 98.6% 11 99.6% 

225 31 99.2% 5 99.7% 

250 14 99.5% 7 99.8% 

Not found 

in 250 

generations 

26 0.5% 10 0.2% 

Average  

number of  

generations 

33.7 18.9

Table 5 Effectiveness of GA in optimising a random sample of 5,000 5-variable functions for 

Green/Taylor and Level Detector bases (poolsize=24, nCrossover=10, nMutation=10) 

Number 

of

Variables 

Optimisation 

using GA 

(secs) 

Sample 

Size

6 1.7 2,000 

7 10.2 2,000 

8 58 1,000 

9 431 500 

Table 6 Time needed to find numbers of terms in functions randomly constructed from fixed numbers 

of terms ranging through 100, 200, … 1,000 (poolsize=24, nCrossover=10, nMutation=10) 
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 5 variables (2,000 functions) 

Basis 

Average 

minimum 

found 

Theoretical 

average 

minimum 

Difference %

GT 725 720 5 0.69% 

LD 729 720 9 1.25% 

CQ 726 720 6 0.83% 

DM 725 720 5 0.69% 

MA 725 720 5 0.69% 

RM 725 720 5 0.69% 

Computation time: 5.4 hours 

 6 variables (2,000 functions) 

Basis 

Average 

minimum 

found 

Theoretical 

average 

minimum 

Difference %

GT 2982 2967 15 0.51% 

LD 2985 2967 18 0.61% 

CQ 2981 2967 14 0.47% 

DM 2981 2967 14 0.47% 

MA 2984 2967 17 0.57% 

RM 2981 2967 14 0.47% 

Computation time: 27.7 hours 

 7 variables (500 functions) 

Basis 

Average 

minimum 

found 

Theoretical 

average 

minimum 

Difference %

GT 12105 12060 45 0.37% 

LD 12097 12060 37 0.31% 

CQ 12098 12060 38 0.32% 

DM 12107 12060 47 0.39% 

MA 12107 12060 47 0.39% 

RM 12097 12060 37 0.31% 

Computation time: 35.8 hours 

 8 variables (100 functions) 

Basis 

Average 

minimum 

found 

Theoretical 

average 

minimum 

Difference %

GT 48772 48664 108 0.22% 

LD 48760 48664 96 0.20% 

CQ 48769 48664 105 0.21% 

DM 48767 48664 103 0.21% 

MA 48779 48664 115 0.23% 

RM 48765 48664 101 0.21% 

Computation time: 47.7 hours 

Table 7 Average minimum numbers of coefficients achieved for random functions by the GA 

compared with theoretical (average) minimum possible (poolsize=24, nCrossover=10, nMutation=10, 

nGeneration=40) 
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