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Abstract: A lookup table based method to minimise generalised partially-mixed-polarity Reed- 
Muller (GPMPRM) expansions with k mixed polarity variables is presented. The developed 
algorithm can produce solutions based on the desired cost criteria for the systems of completely 
specified functions. A heuristic approach based on the exclusion rule is adopted to extract the best 
dual polarity variables from any fxed polarity Reed-Muller (FPRM) expansion. The obtained 
experimental results compared favourably with the recently published results and outperform those 
generated by the exact minimal FPRM expansion minimisers. 

1 Introduction 

The classical approach to analysis, synthesis and testing of 
digital circuits is based on the description by the operators 
of Boolean algebra. However, for many years, an alterna- 
tive representation based on the operations of modulo-2 
arithmetic has been developed [l-251. The algebra corre- 
sponding to ths  second approach, being an example of a 
Galois field (GF), supports such famhar methods for 
digital signal processing operations as matrices and fast 
transforms [5, 7, 9-11, 131. Any Boolean function can be 
represented in the modulo-2 algebra. The modulo-2 sum- 
of-products expression is known in the literature [2-12, 
16251 as the complement-free ring sum or Reed-Muller 
expansion. For a given Boolean function, each Reed- 
Muller expansion is unique and is its canonical form. 

It has long been known that, for some applications, the 
logic circuits using exclusive OR (EXOR) gates are more 
economical than the design based on other gates. Such situ- 
ations happen frequently for many useful functions applied 
in arithmetic and telecommunication circuits, having a hgh 
content of so-called linear part (EXOR part of the func- 
tion). Some of the examples of such functions are adders 
and parity checkers. With the advent of cellular field 
programmable gate arrays (FPGAs) and the introduction 
of new programmable logic devices (PLDs), for example, 
Xilinx lookup-based and Actel 1020 multiplexer-based 
FPGAs, and Signetics LHS501 folded NAND devices, 
propagation delay and gate area are no longer major 
concerns in exclusive sum-of-products (ESOP) [5, 11, 241 
implementation of logic circuits. What is more, the circuits 
built around the EXOR gates are easily testable [16, 181. 
Fault detection of any logical circuit by verification of its 
Reed-Muller coeficients was considered in [16]. The upper 
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bound on the number of Reed-Muller coefficients to be 
verified for detection of all multiple terminal stuck-at-faults 
and all single input bridging faults is shown to be n, where 
n is the number of input variables [16]. Recently, important 
problems of Boolean matching and symmetry detection 
were solved in the Reed-Muller domain [22, 231. 

Unfortunately, the ESOP of a Boolean function exists in 
many forms, and exact minimal solutions have been found 
practically only for functions with less than six variables 
[15]. Special interest and attention have been focused on 
two of the canonical subfamilies of ESOP, the fxed polar- 
ity Reed-Muller (FPRM) expansion [>IO, 12, 15, 17, 18, 
21, 231 and the Kronecker Reed-Muller (KRM) expansion 
[ll, 13, 241. The former has 2" altemative forms and the 
latter has 3" alternative forms. Owing to the high computa- 
tion complexity, no exact minimisation technique for a 
canonical form more general than KRM expansion has 
been proposed [24]. There is another Reed-Muller canoni- 
cal expansion known as the generalised Reed-Muller 
(GRM) expansion which consists of a total of 2"*"-' alter- 
native forms [3, 5, 8, 10, 11, 22, 24, 251. GRM expansion 
can be considered as a combination of two subfamilies of 
Reed-Muller expansions: the inconsistent mixed polarity 
Reed-Muller (IMPRM) expansion [3] and the FPRM 
expansion. Although minimal GRM expansion is expected 
to be closer to the minimal ESOP than the minimal KRM 
expansion, due to the greater number of alternative forms, 
an exhaustive search for a minimal GRM is also computa- 
tionally unfeasible even for a very small number of varia- 
bles [5, 10, 11, 22, 241. Recently, Wu et al. and Zeng et al. 
[24, 251 proposed another subfarmly of GRM called the 
generalised partially mixed-polarity Reed-Muller 
(GPMPRM) expansion. GPMPRM is a superset of 
FPRM, which has r12"-'2~~-' - (n - 1)2" alternative forms. 
Based on the number of alternative forms, it is believed 
that the minimal GPMPRM expansion is still much closer 
to the minimal ESOP than the minimal KRM expansion. 

The defition of GPMPRM expansion from [24] with 
only one mixed polarity variable was extended to k mixed 
polarity Variables in [25]. It should be stressed, however, 
that the authors of [25] have not found an efficient exact 
algorithm for k > 1, the task which is solved in the current 
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paper. The extension to k mixed polarity variables further 
reduces the gap between the minimal GPMPRM and the 
minimal ESOP since the total number of alternative forms 
is "Ck2n-k2k2*' - (T, - 1)2" based on the new definition, 
where "C, is the number of combinations of selecting k out 
of n objects. The lookup table based approach for the exact 
minimisation of FPRM expansion developed by the 
authors in [2, 71 is modified to generate a minimal 
GPMPRM expansion of k mixed polarity variables. We 
also show that the method based on the exclusion rule used 
for the extraction of single mixed polarity variable [14] can 
also be applied successfully to the general case of k mixed 
polarity variables. Heuristic minimisation of GPMPRM 
expansions for multiple output Boolean functions is also 
presented. For a system of Boolean functions, the direct 
minimisation of GPMPRM expansion for each output 
independently which can be performed easily by the single 
output minimisation algorithm would not maximise the 
possibility of shared products or literals by dlfferent 
outputs. The method proposed for the minimisation of 
GPMPRM expansions for multiple output functions has 
considered the reduction of total number of unique prod- 
ucts or literals by appropriate choice of polarities. To speed 
up the processing time, a quasi-minimisation method is 
proposed by assuming that the same Reed-Muller product 
term of different outputs has identical polarities for the 
corresponding variables. Contrary to all algorithms known 
from the literature, our algorithm for the minimisation of 
GPMPRM expansions is adaptable to different cost crite- 
ria, for instance, the total number of unique products, the 
total number of unique literals and the linear combination 
of both criteria. Based on the size of the tackled problem, 
our algorithm can use a different size of the lookup table to 
trade the space complexity problem into the processing 
time complexity problem. Experimental results show that, 
even without considering all possible combinations of k 
variables as the mixed polarity variables, for most functions 
reported in [24], whch considered all combinations of one 
mixed polarity variable, the quality of the results obtained 
by our algorithm is either the same or better. Moreover, 
our algorithm for multiple output function requires a much 
lower computation time than that of [24] which minimises 
only a selected output of the same function. 

2 Basic definitions 

An n-variable Boolean function can be expressed as a 
canonical Reed-Muller expansion [2-12, 16-25] of 2" terms 
as follows: 

2"-1 
F (x,,xn-l,. . . , X I )  = ,e aj fJ xyi (1) 

3=O z=l,j;=1 

where 0 denotes the modulo-2 addition, a, E (0, 1) is called 
a Reed-Muller coefficient and j ,  E (0, 1) is the ith bit of the 
binary representation of j ,  with j ,  being the least significant 
digit. o, E (0, 1) is the polarity bit of the variable x,. xlWi = 
x, when w, = 0, and xlWi = Js ,  when w, = 1. When each 
literal (x?, i = 1, 2, ..., n) throughout the expression 
(eqn. 1) has a consistent polarity bit value, such an expres- 
sion is known as a fvted polarity Reed-Muller (FPRM) 
expansion [2, 5-10, 12, 15, 17-19, 21, 231. If all the literals 
in eqn. 1 can have either polarity bit value in any combina- 
tion, it is known as the generalised Reed-Muller (GRM) 
expansion [3 ,  5, 10, 11, 22, 241. Since there are n2"-' literals 
in the complete expression (eqn. l), there are 2n2"' possible 
GRM expansions, including 2" FPRM expansions. 
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In [24], a strong constraint is placed in the definition of 
GRM expansion to obtain the generalised partially mixed- 
polarity Reed-Muller (GPMPRM) expansion. It is a subset 
of GRM expansions that encloses the FPRM expansions. 
However, the requirement that the polarities of all but one 
variable have to be fixed can be relaxed. A more general 
definition of GPMPRM expansion, the possibility which 
was mentioned in [25], is given as follows: 
Definition 1: The generalised partially mixed-polarity Reed- 
Muller (GPMPRM) expansions are obtained by allowing 
the k2"' literals of k variables in expression (eqn. 1) to 
freely assume either polarity while maintaining consistent 
futed polarities for all the literals of the remaining variables. 

Under this new definition, for an n-variable completely 
specified Boolean function, there are "ck2n-k2k2"1 - c c k  
- 1)2" alternative GPMPRM forms. The proof of ths  fact 
can be constructed in a simdar way to that shown in [24]. 
Definition 2: The first-order Boolean derivative (also 
known as Boolean difference) of an n-variable Boolean 
function is defined as [l]: 

63F(z, ,..., 2,+1,2,=1,2,-1, ... 21) 
(2) 

Since dF(x)Idx, is itself a (n - 1)-variable Boolean function, 
a higher-order derivative can be similarly defined. Hence 
the kth derivative is: 

(3) 
It should be noted that the order of evaluation of the 
hgher-order derivative is unimportant, i.e. 

@ F ( X )  - d2F(X) 
ax,ax3 ax, ax, -- 

Based on the definition of Boolean derivative, the FPRM 
expansion of a Boolean function F(X) in a fuced polarity 
number w = w, ... w2 w1 can be expressed as: 

Comparing eqns. 1 and 4, we have: 

aj = a ' ' j ( p  l x = u  (5) 

where a 2  = l-I$,,=, ax, and the symbol X = w denotes 
that the function F(X) or Boolean derivative is evaluated 
for the set of variables x,, xn-l ... x1 = CO, .CO,' ... w1. The 
symbol lbll is the Hamming weight of the integer j ,  and it 
represents the number of 1s in the binary representation of 

The ordered set of all 2" FPRM expansion coefficients 
[a,, a1 ... 34 in some chosen polarity number w is called 
the polanty vector, denoted by A"(1;3. AW(1;3 can also be 
represented by a decimal number ai x 2' with q, as the 

j .  

IEE Proc.-Circuits Devices Syst., Vol. 147, No. 4, August 2000 



least sigmfkant bit and a2n-1 the most significant bit of its 
binary equivalent. By arranging the 2" polarity vectors 
AYF) in ascending order of o, a polarity coefficient matrix 
PC(q (2, 7, 91 is formed. The element uii in row i (i = 0, 1, 
..., 2" - 1) and column j (j = 0, 1, ..., 2" - I) of the polarity 
coefficient matrix PC(F) is the coefficient uj of the FPRM 
expansion with polarity number w = i. 

The goal of ths  paper is to find efficiently an optimal 
GPMPRM expansion with a minimal number of products 
and literals. 

3 Minimisation of GPMPRM expansions 

Recently, an algorithm has been developed that utilises 
only a subset of Walsh coefficients to reveal all the infor- 
mation carried by the polarity coefficient matrix of any 
three variable Boolean functions [6]. Each class of the func- 
tions is associated with a specific subroutine that computes 
the optimal polarities, optimal weights, optimal fuced polar- 
ity Reed-Muller expansions etc. without resorting to an 
exhaustive search. Direct extension of the method in [6] to 
handle larger Boolean functions with the number of varia- 
bles n > 3 is unmanageable due to the increasing number of 
different classes. Nevertheless, exact optimal generation of 
FPRM expansions for large n have been solved by reduc- 
ing the polarity coefficient matrix into submatrices of 
smaller dimension such that each submatrix is a polarity 
coefficient matrix of a subfunction obtained by either Shan- 
non's decomposition or Boolean difference with respect to 
some variables [2, 71. A s d a r  approach to [2] can be 
applied to the minimisation of GPMPRM expansions by 
selecting an optimal FPRM expansion for each subfunc- 
tion, with the exception that the k mixed polarity variables 
may have different polarities for different subfunctions. 
Lemma I :  The polarity coefficient matrix PC(F) of an n- 
variable completely specified Boolean function F(X), can be 
partitioned into four submatrices of order 2"-' as [2, 7, 91: 

Let us notice that 

In general, we can apply eqn. 2 recursively to partition the 
polarity coefficient matrix of order 2" into q2 submatrices of 
order 2k, where q = 2"*, i.e. 

where the k-variable subfunction, A,o = F ,  and Aj = 
d1lFddZ for all i = 0, I ,  ..., q - 1 and j = I ,  ..., q - 1. Y is 
the set of literals xk;$ for all values of r E { 1, 2, ..., n - k} 
satisfying j,. = 0, when i and j are expressed as binary 
(n - k)-tuples. Similarly, Z is the set of variables Xk+, for all 
values of r E { 1, 2, ..., n - k }  satisfying j ,  = 1. 

Each submatrix in P C ( q  is a polarity coefficient matrix 
of a k-variable subfunction. Furthermore, the subfunction, 
Lj when ir = I, for all r = 1, 2, ..., n - k satisfying j ,  = 
0. The total number of unique subfunctions is equal to 3"*. 
Example I :  Consider the five variable Boolean function 
F(x~, ~ 4 ,  ~ 3 ,  ~ 2 ,  X I )  = h ( 8 ,  10, 11, 16, 17, 19, 23, 24, 26, 
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PC (z 3 z 1 vz 3 x 2 x 1) P C  (z 3 z 1 vz3 2.2 2 

PC (E 3 5 2 vx2 51) PC (E3 2 2  x 1 vz 3 2 2  E 1 vxg "2 x 1) 

P c ( q  = 

L PC (53 z 1 vz 3 2 2 2 1) PC (z3 2 2  2 1 vz 3 xz z 1 vx3 2 2  x 1) 

Pc(z3zzvZ2zl) PC(z3~zv22x1) 

P C ( 0 )  PC(z3z2V22x1) 

PC(P3zzVx221) Pc(z3z2vxzxl) 
PC(0)  PC(53z2Vxzx1) 

Considering the second row (i = I), the eight possible 
FPRM expansions can be written as: 

PC ( 3 3 3 1  v 3 3 2 2 2 1 )  @ 34PC ( 3 3 2 1  v 2:35221) 

@ 25PC(O) x 5 2 4 P C  ( 3 3 3 2  v 2 2 2 1 )  

A GPMPRM expansion with a lower implementation cost 
than these eight FPRM expansions can be obtained by 
selecting the minimal FPRM expansion for each of the 
subfunctions X3xI v X~X~XI, X3x1 v j S 3 ~ 2 ~ 1  and X3X2 v 
x2xI. The GPMPRM is gven by: 

F ( X )  = (E3 @ 2 3 2 2 ~ 1 )  @ E 4  (Z3 CB 2 3 2 2 2 1 )  

CE 2 5 3 4  ( 2 2 2 1  @ E3 CB 2 3 5 2 )  

= 5 3  @ 3 3 2 2 z l  @ 5 4 2 3  @ %4%3%221 

@ 2 . 5 2 4 2 2 2 1  @ 2 5 2 4 2 3  @ z 5 2 4 2 3 2 2  

From the above example, a GPMPRM expansion can be 
derived from each row of the decomposed polarity coeffi- 
cient matrix given by eqn. 7. For each value of row index i, 
the most si&icant n - k variables in Y form the fuced 
polarity variables of the GPMPRM expansion. Their 
polarities are determined by the corresponding bit values of 
i, where i is expressed as a binary (n - k)-tuple. The least 
sigmficant k variables have mixed polarity. The fixed polar- 
ity variables associated with the submatrix PCy;j) are 
given by nlarsn-k,jr=l x& . The GPMPRM expansion gen- 
erated in this manner has the advantage that the polarities 
of the fured polarity variables need to be specified only 
once, and only k polarity bits of the mixed polarity varia- 
bles need to be specified for every value ofj. 

For simplicity, in the sequel, we assume that the k mixed 
polarity variables of a GPMPRM expansion are xl, x2, ..., 
xk and the fuced polarity variables are ++I, xk+2, ..., x,,. 
Selection of a different set of mixed polarity variables 
affects both the indexing of the variables, which can be cor- 
rected by reordering the input variables of the function, 
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and the cost of the final GPMPRM expansion. A heuristic 
approach for selecting the best mixed polarity variables will 
be presented in the next Section. 
Theorem 1: Let wpcf; 4) be the number of product terms of 
the minimal FPRM expansion of the k-variable functionf 
with polarity number I$ = wk ... col. The number of 
product terms, w (F) of the minimal GPMPRM expansion 
for an n-variabre Boolean function F, generated from 
eqn. 7 is given by: 

ro-l , .1 

where q = 2n4. 
Proofi Let be an optimal polarity of an FPRM expan- 
sion of PC(F). Then, wpV;.., @'n) = minck@<p wpu;j, @). 
BY replacing PCU;~)  for ad i ., j = O ,  ' 1, ..., q - 1  ineqn.7 
with their respective optimal polarity FPRM expansions, a 
GPMPRM expansion with futed polarity number i = U, 

up1 ... uk+l is derived. The number of product terms of 
ths  GPMPRM expansion is given by Z,G1 wpU;j, @-). 
Since there are q different polarity numbers for the (n - k) 
fmed polarity variables, the number of product terms of the 
minimal GPMPRM expansion is given by eqn. 8. 
Theorem 2: Let w a  @) be the number of product terms of 
the minimal FPRM expansion of the k-variable functionf 

with polarity number 4 = wk q - 1  ... wl. The number of lit- 
erals, w,(F) of the minimal GPMPRM expansion for an n- 
variable Boolean function F, generated from eqn. 7 is given 
by: 

( 0 - 1  - 

where q = 2"* and 
Proof Each submatrix P C u J  has the dimension of 2k x 
2k. The number of literals contributed by any polarity 
vector A@('&) of PC('&) for 0 s @ < 2k, is given by w&, 
@). For 0 5 j < q, the product terms in the GPMPRM 
expansion are contributed by the conjunction of the fxed 
polarity term nlsrsn-k,jr=l $+k and the optimal polarity 
vector of PCy;j>. Since the number of literals in the fxed 
polarity term is equal to Ib11, the total number of literals 
contributed by each subfunction Lj is equal to 

number of literals of a GPMPRM expansion with fxed 
polarity number i = un4 u,4-l ... o ~ ~ + ~  derived in this 
manner is given by 

is the Hamming weight ofj. 

minos@<Awl(f;j, @) + 11/11 x w p g j ,  @N. Therefore, the 

Table 1: Lookup table, (@min(c,j), wpmin(c,], Admin(6 , ) )  for k =  3 

IO, 0,01 V,l, 1281 16, 1, 1281 16, 1,641 {5, 1, 1281 {5, 1,321 
{4, 1,1281 {5,2,96} {4,1,321 {5,2,144} {4, 1,641 {6,2,144} 
I3, 1, 1281 I3, 1,81 {2,2,721 (2.2, 1321 {I, 2, 401 {I, 2, 1301 
IO, 4, 1201 (0, 4, 1351 {0,4,2101 {6,3,441 {O, 4, 1801 {5,3,741 
I2, 1, 1281 {3,2,721 (2. 1 ,s)  {3,2, 1321 {O, 4, 1081 {0,4, 1471 
{O, 2,401 {I, 4, 1501 {O, 2, 1301 {6,3, 1041 {O, 4,2281 {6,2,241 
Q, 1,641 {6,2, 1321 {7,2, 1321 {2, 1,41 IO, 4, 1561 {3,3,981 
{0,4,2161 {6,2,361 {2,3,981 {4,3, 1331 {0,2,201 V,3, 1481 
{I, 1, 1281 {3,2,40} {O, 4, 1061 (0, 4, 1491 {I, 1.81 {3,2, 1301 
{O, 2,721 {2, 4, 1501 (0, 4,2261 {5,2,241 IO, 2, 1321 {5,3, 1041 
{I, 1,321 {5,2, 1301 (0.4, 1541 {3,3, 1001 17, 2, 1301 {I, 1,2} 
IO, 4, 1841 {5,2,66} IO, 2, 181 {7,3, 1461 {1,3, 1001 {4,3,1311 
{O, 2,961 {3,4,2321 IO, 4,2021 {3,2,361 {O, 4, 1721 {3,2,661 
{O, 4,2321 {I, 3,221 {O, 2,66} {I, 5,2331 {O, 2,361 {I, 5, 1581 
{0,2, 1441 {3,3, 104) {2,3,561 {I, 3, 1331 {I, 3,881 {2,3, 1311 
{0,2,241 {I, 5, 1821 {2,3, 1461 {1,3,731 {1,3, 1481 {2,3,411 
(0, 1, 1281 {I, 4, 1061 {2,2,401 {I, 4, 1491 {I, 2,721 {I, 4,2261 
(0, 1,81 {I, 4, 1661 {2,2, 1301 {4,3,881 {1,2, 132) {4,3,561 
{I, 2,961 {1,4,2021 I2, 4,2321 {2,2,36} {I, 4,2321 {I, 2,661 
{I, 4, 1721 {I, 2,61 {2,2,661 {6,3, 1341 {I, 2,361 {5,3, 1341 
IO, 1,321 {1,4, 1541 {4,2, 1301 {2,3, 1001 {I, 4, 1841 {1,2, 181 
16,2, 1301 {6,2,661 IO, 1,21 {6,3, 1941 {O, 3, 1001 {4,3, 1461 
{1,2, 1441 {2,3,441 {2,3, 1041 {O, 3, 1331 {I, 2,241 {3,3, 1461 
{O, 3,881 {2,3, 1341 {2,3, 1941 {I, 2,91 {O, 3, 1481 {O, 5, 1071 
IO, 1,641 (2, 4, 1561 {2,4,2161 {2,2,201 {4,2, 1321 {I, 3,981 
{5,2, 1321 {5,2,361 IO, 3,981 {4,3, 1481 {O, 1,41 {5,3, 1641 
{2,2,1441 11,3,741 {2,2,241 13,3, 148) {I, 3, 1041 IO, 3,131) 
IO, 3,561 {I, 3, 1341 {O, 3, 1461 {0,5, 1091 {I, 3, 1641 {2,2,91 
{3,2, 1441 {3,2,241 IO, 3,741 {2,3, 1481 {O, 3,441 {1,3, 1461 
{0,3, 1041 IO, 5, 1511 {0,3, 1941 {1,3,41} {0,3, 1641 {2,3,731 
(0, 1, 161 {3,3, 1521 {2,3, 1521 {4,2,651 {I, 3, 1521 {4,2,331 
{O, 3, 1521 {4,3,971 {5,2,331 {5,2, 1291 {6,2,651 (6.2, 1291 

I4,2.961 
V, 2,1441 
IO, 4, 1501 
V, 2,241 
{O, 4, 1981 
{4,3,741 
V, 2,361 
{6,3, 1481 
{O, 4, 1661 
{4,3, 441 
17.2.661 
{5,3,1461 
{0,2,61 
{4,3. 1341 
{3,3, 1341 
{I, 5, 1071 
{3,4, 1501 
{4,3, 1041 
{0.3,221 
{O, 5, 1581 
{4,2,661 
{4,3, 1941 
{O, 5, 1821 
{3,3,411 
{4,2,361 
14,3, 1641 
io, 5,2141 
{3,3,731 
IO, 3, 1341 
{3,2,91 
{5,3,971 
V, 2,1291 

{4,2, 1441 
{4,1,161 
{7,3, 1041 
{3,3,1451 
{6,3,561 
{2,3,1451 
{5,3, 1331 
{O, 2,651 
{5,3,881 
{I, 3, 1451 
{6,3. 1311 
{O, 2,331 
V, 3, 1341 
11,3,971 
IO, 2,91 
{O, 2, 1291 
{4,2,241 
{0,3, 1451 
{O, 5,2331 
{O, 3.97) 
{6,3, 1461 
11,2,331 
IO, 3,731 
{I, 2, 1291 
{5,3,1481 
{2,2,651 
{O, 3,411 
{2,2, 1291 
{O, 5,1211 
{3,2,1291 
{4,2, 1291 
IO, 1,11 
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q-1 r 

Eqn. 9 is obtained by selecting the expansion with the 
smallest number of literals among the expansions of q dif- 
ferent fned polarities. 

For a small number of mixed polarity variables k, 'typi- 
cally k s 5, a precomputed lookup table consisting of the 
fields of w-U;~),&J&) and A h ( & )  can be used. If the 
minimisation objective is the number of product terms, 

are the corresponding optimal polarity number and oph- 
mal polarity vector of the subfunction J;j, respectively. 
Each polarity vector in the lookup table is represented by a 
decimal number Z $;' 2'4 where a, is the rth coefficient of 
the expansion. The same decimal number representation is 
used to uniquely characterise the index to the lookup table 
h2 In the continuation, the same syrnbolAj will be used to 
denote either the Boolean function or its decimal equiva- 
lent. That is 

2"-1 

WminKj )  = minols4<2k w p K j ,  $) and L K j )  and AhU$ 

fi,j = 2Tm, 
T Z O  

where mr E (0, 1) is the value of the rth minterm of the k- 
variable subfunction,L$ Based on this representation f f  = 
22k - 1 -Lj and all subfunctionsAj from P C ( 8  for j z 0 
can be calculated by the modulo-2 sum of @kQjfk@i,o, 
where the notation k CO j means the set of integers k 
belongs to the zero subnumber o f j  [9]. The conditions for 
whch k CO j are given by k, = 0 i f j ,  = 0 and k, = 0 or 1 i f  
j ,  = 1 for all values of r = 1, 2, ..., n - k. The lookup table 
for k = 3 is shown in Table 1. In Table 1, the entries are 
arranged in ascendmg order of&, from left to right of each 
row. The leftmost entry in the first row corresponds to& = 
0, and the leftmost entry in the second row corresponds to 
f . = 8 etc. If the minimisation objective is the number of 

!J hterals, an additional field min0,#<2k wig, ., 4) is included in 
the lookup table. Since A@(&) and A @ h j )  differ only in 
the constant term a,, w,CfT, @) = wlUj,  &). However, from 
theorem 2, the constant term of each subfunction contrib- 
utes lMl literals to the final GPMPRM expansion and can- 
not be neglected. When there are more than one optimal 
polarities for a subfunction, the optimal polarity for the 
polarity vector with a, = 0 is chosen. 

Our approach to the minimisation of GPMPRM expan- 
sion can be viewed as a partition of the polarity coefficient 
matrix into 2*k by 2n-k submatrices after the selection of 
the k mixed polarity variables. Each submatrix is repre- 
sented by a single decimal number indexed into various 
lookup tables. By accumulating the weights obtained from 
the lookup table for every column in a row, a row weight is 
obtained and compared to the value of a global variable 
storing the optimal row weight. At the beginning, the opti- 
mal row weight is set to the row weight of the first row. As 
subsequent rows are scanned, the optimal row weight is 
updated i f  a smaller row weight is detected. Based on theo- 
rems 1 and 2, the algorithm for the fast computation of the 
minimal GPMPRM expansion is shown in Fig. 1. The 
principle of operations is dustrated by Example 2. As the 
example uses the names of the variables in Fig. 1, it will be 
presented after the pseudocodes have been explained. 

In Fig. 1, table2 and table2 are lookup tables for different 
options of minimisation specified by the Boolean variable 
optimbe-nofgroducts. Each product term of a GPMPRM 
is considered as a concatenation of two products (i.e., the 
products of the futed polarity variables and the mixed 

, , 
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polarity variables). The presence of a mixed polarity prod- 
uct is indicated by a 1 in the binary k-tuple of 
o p t - G P M P m ] ,  while its associated fued polarity varia- 
bles is indicated by the 1s in the binary (n - k)-tuple of j .  
The polarities of the fued polarity variables of the final 
GPMPRM expansion are stored in the bit fields of the 
variable optimalfixedgolarity, and the polarities of the 
mixed polarity variables in the products terms of 
o p t - G P M P w ]  are stored in the bit fields of 
optimal-mixedqolaritybl. 

GPMPRM 
{ 

first-time = TRUE; 
for (each selection of k variables) { 

for (i = 0 to 2"-tl) { 
weighf = 0; 
for(j=Oto2"+-1) { 

if (optimize_no/groduct) { 
lookup(fablel,f;, wFtnV;J); 

lookup(table2,f;, w~.V;J,WMV;J)); 
weight = weight + WW,&) + llill wm&); 

weight = weight + wPlinV;J; 
) else { 

} 
1 
if (first-time) { 

optimal-weight = weight; 
optimal f i e d g o l a r i f y  = i; 
for U =  0 to 2n*-1) f 

if (opfim~e-nofgroduct~) lookup(tablel,j;, +m,,,V;~), -4#*W,)); 
else lookup(table2,f;,, LfJJ, AI"%)); 
optimal_miredpola~ifyity[il= bm&); 
opf imal-GPMPw] = A 4 & 6 j ) ;  

> 
frxt-time =FALSE 

if (weight < opfimal-weighf) { 
optimal-weight = weight; 
optimal fuedpolar i ty  = r; 
for (/ = 0 to 2"*-1) { 

1 

if (optim~e_no/producfs) lookup(fablel& +.,&), A ' " ' 6 j ) ) ;  

else lookup(fable2J;, +..V;J, A"*V;J): 
optimal-m_misedgolarifyrylil= +mtn&J); 

optimal_GPMPRM[il= A"Wj); 
I 

) 
1 

} 

Fig. 1 Generation of minimal GPMPRM e x p w n  

If we consider only one arbitrary set of k mixed polarity 
variables, the outer loop of GPMPRM can be removed 
and the resulting GPMPRM expansion is optimum with 
respect to a given set of mixed polarity variables. Such a 
constraint is frequently encountered in practice as it may be 
more cost effective to restrict the privilege of dual polarities 
to only some specific variables. 
Example 2 Consider the five variable Boolean function F 
from Example 1. By expressing the subfunctions in the dec- 
imal number representation as described before, the polar- 
ity coefficient matrix of F can be written as: 

1 P C ( 0 )  PC(13) PC(139) PC(139) 

PC(13) PC(13) PC(0)  PC(139) 

PC(139) PC(134) PC(139) PC(139) I PC(13) PC(134) PC(0)  PC(139) 

P C ( F )  = 

From Table 1, wp(0) = 0, wp(13) = 2, ~ ~ ( 1 3 9 )  = 3 and 
~ ~ ( 1 3 4 )  = 4. For w p 4  = 00, wp(F) = 0 + 2 + 3 + 3 = 8. 
For wsw4 = 01, w P ( q  = 2 + 2 + 0 + 3 = 7. For u p 4  = 10, 
w p ( q  = 3 + 4 + 3 + 3 = 13. For wsw4 = 11, w p ( q  = 2 + 4 
+ 0 + 3 = 9 .  

Since wmi,(F) = 7 is the minimal weight, the fned polar- 
ity' literals are chosen to be x5 and x4 From Table 1, 
optimal-mixedqolarity[O] = optimal-mixedqolarity[l] = 
&,h(13) = 6, optimal-mixedqohrity[2] = k n ( O )  = 0 
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optimal-mixedgolurity[3] = kin(139) = 4. Also, A6(13) = 
144 = 100100002 or X 3  0 X 3 X 2 ~ 1 ,  Ao(0) = 0 and A4(139) = 
88 = 0101 10002 or x2 x l  0 X3 0 X3x2. The minimal GPM- 
PRM expansion obtained is the same as that given in 
Example 1. 

4 

The algorithm presented in the previous Section assumes 
that the mixed polarity variables are the k least significant 
variables. If the mixed polarity variables are not the least 
significant variables, they can always be reordered such 
that they become the k least significant Variables. However, 
the ordering of the input variables has an effect on the cost 
of the final GPMPRM expansion. To extract the best 
mixed polarity variables such that our minimisation will 
yield good quality result for a given function, we have 
investigated several reduction rules used in the minimisa- 
tion of EXOR expressions. To avoid high computation 
complexity, simplification rules that cause a temporary 
expansion in the dimension of the initial representation are 
avoided. 

Of the different reduction rules used for EXOR minimi- 
sation [19], exclusion only operates on two EXOR product 
terms with futed polarity variables. It is therefore the most 
suitable candidate for extraction of mixed polarity variables 
based on an initial FPRM expansion of the function. The 
exclusion ru le  withy= xi has been used in [14] for extracting 
the single mixed polarity variable for minimisation of 
GPMPRM expansion with one mixed polarity variable. In 
what follows, we will show that the exclusion rule can also 
be a good heuristic for extracting multiple dual polarity 
variables. 

Consider the application of exclusion rulefg 0 g = Tg 
on the following FPRM expansion, where g is a product 
term that does not contain the variable xi and xj 

Selection of mixed polarity variables 

Substitution of g 0 gx? 0 gx? 0 g x F x p  by g x , z  xJ”i 
saves three product terms. In the above example, the exclu- 
sion rule has been applied twice to extract the mixed polar- 
ity variable xi in the first step. The same result can also be 
obtained by applying the exclusion rule twice to extract the 
mixed polarity variable xj in the first step. This implies that 
there are two pairs of FPRM product terms different only 
in the variable xi and two pairs of FPRM product terms 
different only in the variable xj in the original FPRM 
expansion. In general, for each of the k variables, if there 
are 2k-’ pairs of product terms of an FPRM expansion 
different only in that variable, there exist 2k FPRM prod- 
uct terms that can be reduced to a single mixed polarity 
term containing these k variables with their .polarities all 
inverted. 

The heuristic for the selection of k best dual polarity var- 
iables with a trivial modification of the procedure presented 
in [14] is given as follows: 
(i) Fomi an array G of binary n-tuples, such that the deci- 
mal equivalent of any element j E G when aj = 1 fo r j  = 0, 
1, ...) 2” - 1. 
(ii) Form an integer array S of dimension n. Initialise all 
elements si to 0 for i = 1, 2, ..., n. 
(iii) If, for a pair of numbers {a, 6) in G, the absolute 
difference la - 61 = 2”’, increment the element si in S by 1. 
Repeat for all pairs of numbers in G. 
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(iv) Select k elements with biggest values from S. Their 
indices are the indices of the k mixed polarity variables. 
It should be noted that, due to the difference in minimisa- 
tion approach, there is no need to sort the elements in G in 
ascending order of magnitude, as opposed to the procedure 
given in [14]. As the above extraction algorithm has a com- 
putation complexity of O(lGI2) where IGI is the cardinality 
of the array G, it is more beneficial to use the optimal 
polarity FPRM expansion in Step 1. 
Example 3: Consider the five-variable Boolean function F 
in Example 1. The minimal FPRM expansion obtained by 
the algorithm in [2, 71 is given by: F = X3 0 X3XZx1 0 X4X3 
0 X4X3X2xl 0 x5.Z4x1 0 XgxqX2x1 0 ~ 5 X 4 X 3 X 2 .  The set of 
FPRM product terms in decimal number representation is 
given by (4, 7, 12, 15, 25, 27, 30). Following the extraction 
procedure, we have s1 = s3 = s5 = 0, s2 = 1 for the pair (25, 
27}, and s4 = 2 for the pairs (4, 12} and (7, 15}. Thus, x4 
and x2 must be selected as the mixed polarity variables. For 
k = 3, if we reorder the variables by interchanging the vari- 
ables x4 and x 1  such that x4 becomes the least sigdcant 
variable and x2, the second least significant variable, we 
have: 

1 PC(10) P C ( 2 )  PC(1) PC(68) 

P C ( 8 )  PC(2)  PC(69) PC(68) 

PC(11) PC(70) PC(1) PC(68) i PC(77) PC(70) PC(69) PC(68)  

P C ( F )  = 

The minimal GPMPRM expansion generated by Proce- 
dure GPMPRM is given by: 

With futed polarity literals x5 and x l ,  a saving of three 
product terms is achieved as compared with the GPM- 
PRM expansion obtained in Example 2. 

If only one mixed polarity variable is allowed as in algo- 
rithms from [14, 241, the minimal GPMPRM expansion 
generated will have five product terms with x4 selected as 
the optimal mixed polarity variable. The minimal GPM- 
PRM expansion is given by: 

F = 3 3 5 4  @ 5 1 % 3 % 2 5 4  @ 2 5 3 3 % 2 3 4  @ z 5 z 1 2 2 % 4  

F = 3 3 5 4 @ z 1 % 3 3 2 5 4  @2,533%2%4 @ 5 5 5 1 % 4  @ 5 5 5 1 % 2 % 4  

5 

Many ESOP minimisers use a two-phase method when 
dealing with multiple output functions. Each output of the 
multiple output functions is first treated as an independent 
single output function. After applying the minimisation 
procedure, each output is further minimised according to 
some predetermined order based on the previously 
obtained expressions. Such an approach, however, cannot 
guarantee global minimality. Particularly for the cube- 
based methods [9, 18, 231, the second phase employs an 
iterative improvement technique which has both the final 
result and complexity relying greatly on the ordering of the 
outputs and the sorting of cubes which has been experi- 
mentally demonstrated in [23]. The minimal polarity for 
one output is not likely to be optimum for the complete 
system of functions as there may be replication of identical 
product terms in a number of outputs. 

To perform global minimisation for a system of com- 
pletely specified functions, common terms for each polarity 
must be sought. Let F,, F2, ..., F, be the outputs of a sys- 
tem of m completely specified n-variable Boolean functions 
F. Furthermore, let CfJ, denote a subfunction J;, of F, 
where 1 5 Y s m, 0 5 j 5 2”& - 1 and the binary representa- 
tion of i = w, ... wk+l is the polarity number of the 
fixed polarity variables x,, x , -~ ,  ..., x ~ + ~ .  The subfunctions 

Minimisation for multiple output functions 
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u;>ij for all r = 1, 2, ..., m form a system of k-variable 
Boolean functions e.$ Under the assumption that the dual 
polarity variables xk, xk-1, ..., x1 assume the same optimal 
polarity @ = wk wk-1 ... o1 for alI outputs of the subfunc- 
tions (jJiJ with the same value ofj, theorem 3 provides a 
multiple output variant of theorems 1 and 2 for determin- 
ing the weight of the GPMPRM expansion w ( q  with 
product terms shared by more than one output counted 
only once. 
Theorem 3: Let w(Cj,  $) denote the total number of unique 
product terms (w,) or hterals (wl) of the FPRM expansions 
for a system of k-variable functions, qj in polarity 4. The 
weight vector W(FJ = [w(&~,  0) w ( ~ ~ ~ ,  1) ... w(&~,  zk - l)IT 
is given by: 

W (Fi,j 1 

+ w ( ( f i ) i , j  e (f2)i,j . . . ( f m ) i , j ) }  

(10) 
whereg, h, e E {I ,  2, ..., m } ,  g # h, h # e, g z e. 

It follows that the weight in terms of the total number of 
unique products w, or literals wI of the GPMPRM expan- 
sion of F with polarity number i for the fixed polarity vari- 
ables is given by: 

q-1 

W(F, 2)  = w ( ~ , j  > 4 jmin )  (11) 
j =O 

where w(Fij, @min) = min0s~,j<2k[~(Fij, @;)I and q = 2"k. 
Prooj Consider any arbitrary polarity @, ,O 5 4 s 2k - 1. 
Let the polarity vectors of the m subfunctions cfi)iJ, (f2)i ., 
..., be Al,  A2, ..., A,. Any nonzero GPMPRM coed- 
cient a, of F that appears in at least one of A, ,  A2, ..., A,  
contributes a weight of 1 to w,(&, 6) or lltll to w1(KJ, @) 
f 0 r j 2 ~  s t < (j + 1)2k, and 0 sj s q - 1. Letp, be the con- 
tribution of the nonzero coefficient a, to w,($ ., @) and I, be 
the contribution of a, to w1(e j ,  @). p t  = 0 iff a, = 0 in all 
the polarity vectors Al,  A2, ..., A,  and 1 otherwise. It = 0 Iff 
t = 0 or a, = 0 in all the polarity vectors Al,  A2, ..., A,  and 
lltll otherwise. Since 11011 = 0, I ,  = lltll x p,.  

Define y t l ,  yt2, ..., y,, E (0, 1) to be the variables repre- 
senting the logical value of any coefficient a, in Al,  A2, ..., 
A,, respectively. Then p ,  = yt l  v yI2 v ... v ytm. It can be 
shown by induction that, for any Boolean variable xi, 2*' 
( V v  1=1 Xi ) = ZFlxi + Z(aH combinations of EXORing of 
two variables) + Z(all combinations of EXORing of three 
variables) + ... + Z(alI combinations of EXORing of m - 1 
variables) + (EXORing of m variables), where Z means 
arithmetic summation. Thus, 

2"-1 

~ " - 1  m 2"-1 

t=O g=1  t = O  

- - 

2"-1 m 2"-1 

g = 1  t=O t=O 

- - 

2"-1 

} 
2 k  -1 

+ . . .+ OltlCBYt2@. . .CEYtm) 
t=O 

- f m  

Hence, 

w (FZj) =- 
g=1  

where W(&J = [ w ( e j ,  0) w ( e j ,  1) ... w ( & ~ ,  2k - 1)IT. 
For each value of j ,  there is a polarity number for 

whch the weight W ~ ( F , , ~  4) is the minimum among the ele- 
ments in W(Fij). From theorems 1 and 2, we have w(F, i) = 

It should be noted that the weight of the GPMPRM 
expansion for any fixed polarity number i obtained by 
theorem 3 is not the absolute minimum as we have 
assumed that all output functions have identical mixed 
polarity literals for the same product. It is possible to 
achieve a lower weight in term of the total number of 
unique products or literals by applying theorem 3 to all "C, 
systems of r (r = 1, 2, ..., m) k-variable functions selected 
from FiJ for every value ofj. The system of functions that 
has the minimum weight among the "Cr systems wdl have 
the same @J, ,  for their mixed polarity literals. The process 
repeats with these functions being removed from ej until 

To apply theorem 3 to obtain global minimisation of 
multiple output functions, the lookup tables used in the 
algorithm GPMPRM have to be extended. Three lookup 
tables NP, N L  and RM are indexed by the decimal number 
representation of a k-variable subfunction f. Each record of 

Z;Zd W(FjJ, @@in). 

. 

for all functions have been found. 
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NP and NL contains a weight vector Wp(f) and Wly>, 
respectively, and each record of RM consists of a polarity 
coefficient matrix ofJ; PCY). To conserve memory space, 
PCY) is stored as a 2k x 1 column vector with each 
element being a decimal number representation f the 
polarity vector A@ where $ = 0, 1, ..., 2k - 1. Since A@ = 1 
0 A@, only the records of half of the total number of k- 
variable Boolean functions are required for the lookup 
table RM 
Corullury I :  It follows from theorem 3 that, for a system of 
m n-variable completely specified Boolean functions F, the 
weights in terms of the total number of products, wp(F, i) 
and the total number of literals, y ( F ,  9 of the GPMPRM 
expansion in an arbitrary polarity number i for the futed 
polarity variables are given by: 

%(F, 2 )  

where s, is the rth ( r  = I ,  2, ..., m) bit in binary m-tuple of 
the integer s. cf,)i,j is the subfunctionJ;j of the rth output, 
Fr. NZ7.1 and NL[.] are weight vectors from the lookup 
tables NP and NL, respectively. The function minos &(.) 
gives the minimum value among elements of the 2 x 1 
column vector and the row number @ for which this mini- 
mum value $+ occurs. 
Corullury 2: The coefficient of the GPMPRM expansion 
for each output r is given by the binary 2n-tuple A, as 
follows: 

% 

j = O  

(14) 
where cj = 1 if (jJij 2 22k-' and 0 otherwise. The binary 
equivalent of A, is equal to u2n-1 ... ul and can be formed 
as a concatenation of the binary 2k-tuples of cj 0 
RM[min(&, (j&][$. in] for j = 0, 1, ..., zn-k - 1. The 
polarity number for t g  mixed polarity variables in thejth 
tuple is given by 

Based on corollaries 1 and 2, the algorithm GPMPRM 
in Fig. 1 can be easily modified to achieve a global "i- 
sation for multiple output functions. The resulting GPM- 
PRM expansions are either optimal or quasioptimal due to 
the simplification explained earlier. 
Exumple 4: Consider the minterm lists of a 5-variable 3- 
output function F taken from [14]: 

fl ( 2 5  7 5 4  1 53,52,x1) 

= Cm(G,7,11,14,1G,18,20,23,30,31) 

f 2  ( 2 5  7 2 4  7 5 3  , 2 2  , 2 1 )  

= Cm(2,10,11,17,19,21,22,2G) 
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f 3  (x5,54,53 , 2 2  , z1) 
= Cm(l,5,7,10,14,18,22,25,29,31) 

Consider the case of x3, x2 and x1 as the mixed polarity 
variables and the fxed polarity number i = 1 (i.e. the fmed 
polarity literals are x5 and x,). The calculation of the 
GPMPRM expansion by corollaries 1 and 2 is shown as 
follows: 

For j  = 0, (f)l,O = (f),,, = 72, cf2)1,0 = m 5 . x 4  = 12 and 
G)l,O = cf3)X5x 68. c f i ) l , O  @ Cf2)1,0 = 68, c f i > l , O  @ cf3)1,0 = 
12, C f i > l , O  0 U l , l , O  = 72, and (f) l ,O @ Cf2)1,0 @ w 1 , o  = 0. 
From the lookup table NP, Np[72] = [2346326 4IT, 
NP[12] = [2 2 4 4 1 1 2 2IT, NP[68] = [2 1 4 2 2 1 4 21' and 
NP[O] = [0 0 0 0 0 0 0 0IT. From theorem 3, W(F1,o) = 
t{NP[72] + Np[12] + NP[68] + Np[68] + NP[12] + NP[721 
+ NP[O]} = [3 3 6 6 3 -2 6 4IT. Therefore, hn = 5 and 
W,(F,,~, &,-) = 2. From the lookup table RM; 
RM[cf,)l,o][&,ln] = w72][5]  = 72 = 01001000~ = ~ 2 x 1  0 
x3x2. RM[V;)l,O][&&,] = RM[12][5] = 64 = 01000000~ = 

F o r j  = 1, (fi),,l = acfi),(dx4 = 136, (f2)1,1 = a G k ( d X 4  
= 8, cf3)1,1 = ay;),/ax4 = 230. c f i > l , l  @ V2)1,1 = 128, 6 ) l J  

0 (f3)1,1 = 110, v2>1,1 0 w 1 , 1  = 238. u;>I , l  @ v;>1,1 

X3~2. RM[cf3)l,o][&,J = RM[68][5] = 8 = 00001000~ = 
x2x1. 

@ (f3)1,1 = 102. From the lookup table NP, NP[136] = 
[l 2 2 4 1 2 2 4IT, NP[8] = [2 4 4 8 1 2 2 4IT, Np[230] 
= [3 5 5 6 4 5 5 6IT, Np[128] = [1 2 2 4 2 4 4 8IT, NP[110] 
= [4 5 5 6 3 5 5 6IT, NP[238] = [3 3 3 2 3 3 3 2IT and 
NP[102] = [2 3 3 2 2 3 3 2IT. From theorem 3, W(F,,l)= 
[4 6 6 8 4 6 6 8IT. Therefore, = 0 or 4, and wp(F,,~, 

= 4. Select $lmin = 0, from the lookup table RM, 
mcf i ) l , l l [$ ld  = RM[1361[0] = 1 @d m1191[ol = = 
000010002 = ~2x1. RM[Cf2)l,l][$lmi,J = RM[8][0] = 136 = 
100010002 = x2xl @ x3x2x1. Ji2M[df3)l,l][$ld = RM[2301[o] 
= 1 @d w25][0] = 134 = 100001 102 = XI @ ~2 0 ~3~2x1.  

For j  = 2, (fi)l,2 = acfi>xpx, = 136, cf2)1,2 = ~cf2)xpXs = 
8, (f3)1,2 = ay;>,,/axs = 230. cfi)l,2 @ cf2)1,2 = 128, cfi)l,2 
0 w 1 , 2  = 110, m 1 , 2  @ m 1 , 2  = 238. cfi)l,2 @ cf2)1,2 @ 

wp(F1,22 hmi3 = 4. Select h m i n  = 0, Wcfi)~,dM = 

XI 0 ~2 0 ~3x2~1.  

= 10% cf3)1,3 = '3%f3/aXSdX4 e 0. cfi)l,3 @ cf2)1,3 1872 (f)l,3 
@ cf3)1,3 = 221, 6 h , 3  @ df3)1,3 = lo2. (f)1,3 @ cf2)1,3 @ 

cf3)1,2 = 102. Since W(F,,,) = W(Fl,l), 4 ~ n  = 0 or 4, and 

x2x1. ~ c f 2 ) 1 , d [ k ? d  = x2xl @ x3x2Xl. RnillV;)~,d[hd = 

F o r j  = 3, cfi)l = d2fi/dx5dx4 = 221, cf2)1,3 = a2f,//axsdx4 

= 187. From the lookup table NP, Np[221] = 
[3 3 2 3 3 3 2 3IT, NP[102] = [2 3 3 2 2 3 3 2IT, and 
NP[187] = [3 2 3 3 3 2 3 3IT. From theorem 3, W(F1,~) = 
[4 4 4 4 4 4 4 4IT. Hence, 4min = 0, 1, ..., 7 and 
W ~ ( F ~ , ~ ,  4miJ = 4. Select 4- = 0, from the lookup table 
RM, wcfi)1,3][&d = RM[2211[0] = 1 @d RM[341[ol = 
= ~ 0 0 1 0 1 1 ~  1 @ Xi @ X2X1. wcf2)1,3][&~J = 
RM[102][0] = 6 000001 102 = XI 0 ~ 2 .  Mcf3)1,3][&J = 
RkqO][O] = 0 = 00000000~ = 0. 

BY eqn. 11, wp(E 1) = wp(F1,09 k i n )  + ~ ~ ( F I , I >  $I& + 
wp(Fl,z, h m i J  + wp(F1,3, Amin) = 14. By corollary 2, the 
GPMPRM expansion for each output is given as follows: 

A 1  = ( 2 2 3 1  EE 33x2) @ ? 4 ( 2 2 z 1 )  

2 5 ( 2 2 2 1 )  @ 2 5 % 4 ( 1  2 1  @ 52x1). 

A 2  = z 3 2 2  @ % 4 ( 5 2 2 1  @ ~ 3 ~ 2 ~ 1 )  

@ 2 5 ( 2 2 2 1  @ 2 3 2 2 x 1 )  @ 25?4(x1 @ 2 2 ) .  

A 3  = ~ 2 ? 1  @ %4(~1 @ 5 2  EE 2 3 5 2 2 1 )  

Z 5 ( 2 1  @ 2 2  @ 2 3 2 2 2 1 )  

IEE Proc.-Circuits Devices Syst., Vol. 147, No. 4, August 2000 



6 Experimental results 

The complexity of the lookup table based method 
GPMPRM depends on the total number of unique 
subfunctions. In the worst case, there are 3"-k subfunctions, 
and the computation complexity is of the order O(nCk 3 " 3  
since there are "C, selections of k mixed polarity variables. 
With the heuristic algorithm for the selection of k mixed 
polarity variables, the complexity is reduced to O( j~~3"~)  
where p is the number of FPRM terms. If the computation 
complexity is evaluated with the ratio of the number of 
alternative GPMPRM expansions to the order of computa- 
tion complexity, the ratio is greater than 1 and grows 
rapidly as n and k increase. In contrast, the ratio tends to 1 
as n becomes larger for the fast algorithm in [24] where the 
GPMPRM expansion is defined for only one mixed polar- 
ity variable. For multiple output function, under the 
assumption that each output has the same mixed polarity 
literals for the same GPMPRM product, the computation 
complexity is Ocp' 2m 3 " 3  where m is the number of 
outputs. 

Table 2: Benchmark results for GPMPRM, FPRM and ESOP 

The presented algorithm is implemented on the HP 
Apollo Series 715 workstation with k = 3 mixed polarity 
variables that are selected in an optimal way. The current 
implementation can calculate the minimal GPMPRM 
expansions for multiple output Boolean functions based on 
either the minimal number of products wp or literals wl, 
although theoretically any cost function of the form awl + 
bw,, is possible where a and b are integer constants. The 
quality of the results for a minimal GPMPRM expansion 
with three mixed polarity variables always outperforms the 
procedure with only one mixed polarity variable. A range 
of benchmark examples have been tested. Some multiple 
output two level examples in pla format from MCNC 
benchmarks minimised with wp and wl as cost functions are 
compared in Table 2 with the results obtained from the 
exact FPRM "isers  [2, 41. There are many exact mini- 
misers for FPRM expansions developed by different 
authors, but to compare the execution time for FPRM and 
GPMPRM on the same machine we used exact FPRM 
minimisers developed by us [2, 71. The columns labelled 
time (GPMPRM) and time (FPRM) are the user (usr) and 

GPMPRM FPRM time GPMPRM (s) time FPRM (s) EXMIN-2 EXORCISM-MV-2 
Function n m 

wp w, wp wl usr sys usr sys C, CL timea CT CL timeb 

5xpl 7 10 59 198 61 224 

Ssym 9 1 136 504 173 636 

con1 7 2 13 37 17 48 

misexl 8 7 16 51 20 68 

rd53 5 3 20 45 20 45 

rd73 7 3 63 189 63 189 

rd84 8 4 107 352 107 352 

sa02 10 4 70 365 100 707 

5.15 

46.87 

0.24 

7.81 

0.01 

2.05 

30.97 

387.14 

0.04 

0.01 

0.02 

0.01 

0.04 

0.01 

0.02 

0.02 

4.41 

47.32 

0.23 

7.62 

0.02 

2.05 

30.88 

386.30 

0.04 

0.01 

0.02 

0.03 

0.04 

0.02 

0.04 

0.04 

34 

53 

- 

15 

42 

59 

29 

186 

433 

- 

60 

221 

330 

310 

13 

25 

- 

2 

20 

45 

8 

33 

51 

9 

12 

14 

38 

57 

28 

178 

425 

37 

89 
57 

191 

317 

286 

13.6 

39.0 

0.4 

1.4 

1.3 

24.6 

168.2 

10.9 

squar5 5 8 23 56 23 56 0.08 0.01 0.06 0.06 - - - 19 82 2.9 

xor5 5 1 5 5 5 5 0.02 0.01 0.00 0.01 - - - 5 10 0.2 

Z9sym 9 1 136 504 173 636 60.48 0.02 61.00 0.04 - - - - _ _  
clip 9 5 181 825 206 995 136.14 0.05 134.14 0.04 68 517 55 65 490 66.9 

a CPU seconds on SPARC Station I+. CPU seconds on SPARC Station 1. 

Table 3: Benchmark results of single output for GPMPRM, GPMPRMI, 
GPMPRMZ and CGRMIN 

Function n 

5xpl1 7 8 33 0.05 9 0.22 9 12 - 
5xp13 7 16 47 0.04 14 0.22 - 19 - 
5xp15 7 7 13 0.03 6 0.20 - 7 -  

Ssym 9 136 504 0.02 139 3.9 139 173 1851.3 

con 12 7 5 12 0.04 9 0.22 6 12 1.2 

rd532 5 5 5 0.05 5 0.03 5 5 1.1 

rd732 7 7 7 0.06 7 0.22 7 7 49.6 

rd842 8 8 8 0.06 8 0.83 8 8 364.2 

xor5 5 5 5 0.03 5 0.00 - 5 -  

10 34 174 0.05 37 16.58 37 58 642.1 sa022 

sa023 10 28 156 0.05 35 16.52 34 47 905.9 

GPMPRM GPMPRMI GPMPRM2 CGRMIN 

wp w, time wp time WP wp time 

z4ml l  7 15 56 0.08 22 0.2 15 25 - 
z4m 12 7 9 22 0.04 - 9 

z4m13 5 5 8 0.05 - 5 

z4m 14 3 3 3 0.05 - 3 

majority 5 6 17 0.06 - 6 

I-' indicates data not available 

- - -  
- - -  
- - -  
- - -  
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system (sys) execution time in seconds of our current imple- 
mentation of GPMPRM and the exact FPRM minimiser 
[2, 7, respectively. For most functions, our results for 
GPMPRM expansions are significantly better than the 
exact FPRM expansions. The savings in the total number 
of literals for GPMPRM expansion are more prominent 
than the savings in the number of product terms. For com- 
pleteness with recent results on exclusive or sum-of-prod- 
ucts (ESOPs), we also included the results for heuristic 
minimisation of ESOP expression for multiple-valued func- 
tions obtained by the EXMIN-2 and EXORCISM-MV-2 
minimiser [20]. It should be noticed that each variable in 
ESOP can have an arbitrary polarity in different terms, and 
that the same sets of literals can be repeated in different 
terms. In Table 2, the symbols CT and CL have the follow- 
ing meaning [20]: C, is the total number of multiple-valued 
terms in the solution, and CL is the total number of input 
multiple-valued wires to the AND and EXOR gates in the 
solution. As expected, the most general ESOP forms for 
multiple-valued functions are more compact in number of 
terms and connections when compared to the binary case. 
It is, however, obtained at the expense of the final circuit 
realisation as a multiple-valued circuit require more silicon 
area and larger number of transistors. Table 3 summarises 
the comparison between the quality and system execution 
time of our algorithm and those of the exact minimisers 
with one mixed polarity variable, GPMPRMl [24] and 
GPMPRM2 [14], and an exact FPRM minimiser, 
CGRMIN [18] for single output functions. Our results for 
the majority of the functions are either the same or better 
than that for GPMPRMl and GPMPRM2, and outper- 
form CGRMIN. Moreover, the processing time of our 
algorithm is remarkably lower than that for GPMPRMl 
and CGRMIN. It should, however, be noticed that 
Table 3 uses time taken from [18, 241 directly, so the time 
is also influenced by the different workstations used in each 
of the experiments. 

7 Conclusion 

Th~s  paper solves the open problem stated in [25] on how 
to minimise GPMPRM expansions with k mixed polarity 
variables. For such a case, this expansion has nCk2“k2k2fl-‘ 
- (Tk - 1)2” alternative forms which is closer to the ESOP 
than the original definition. An efficient lookup table based 
method is presented in ths  paper for the heuristic minimi- 
sation of GPMPRM expansions with k < 6 mixed polarity 
variables for multiple output functions. The complexity of 
the minimisation problem varies with the value of k,  with k 
= 0 and n represent the extreme cases of the FPRM and 
GRM expansions, respectively. In general, the size of 
GPMPRM is smaller than the size of FPRM but the size 
of GPMPRM is probably much greater than the size of 
GRM or pseudo Kronecker expansions [5]. A comparison 
of these expansions is the topic of our current research 
study. As the table lookup operation involves constant time 
computational complexity, increasing the value of k speeds 
up processing for a more complex minimisation problem at 
the expense of higher storage requirements. The value of k 
is limited by the exponential complexity of the lookup 
table. Due to the inherent nature of the NP problem, the 
presented algorithm is highly efficient for up to ten input 
variables with k = 3. It is also adaptable to various cost 
functions whch is what is lacking in the existing minimiser 
[24, 251. 
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