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Abstract—The existence of numerous number of linearly inde-
pendent (LI) transformations in GF(2) algebra finds application
in the design of exclusive-or based polynomial expansions. For
a chosen LI matrix transformation, such expansion gives a
canonical representation of an arbitrary completely specified
logical function. In this paper, family of LI transformations is
introduced which possesses fast forward and inverse butterfly
diagrams. These transforms are recursively defined and grouped
into classes where consistent formulas relating forward and
inverse transform matrices are obtained. The classification is
further extended into various LI transforms with horizontal and
vertical permutations. The possibility of easy implementation of
polynomial expansions based on classified LI logic transforma-
tions in the form of readily available fine grain FPGA’s and
EPLD’s is also illustrated.

Index Terms—Fast transforms, linearly independent logic, logic
polynomial expansions, Reed–Muller transform.

I. INTRODUCTION

T HE IDEA to represent switching circuits in different alge-
bra has evolved in recent years. Reed–Muller transform

utilizes algebra of GF(2) and any switching function may be
completely realized by the modulo-2 sum-of-products expres-
sion which is known as thecomplement-free ring-sum[3].
For many important functions that are nonunate (e.g., parity
checkers, adders and multipliers), Reed–Muller realizations are
advantageous when area, speed, and testability are of main
concern [23]. For such linear functions, they allow surprisingly
complex designs to be implemented using very few product
terms. When each variable throughout Reed–Muller expansion
assumes either true or complemented form, such an expression
is known asFixed Polarity Reed–Muller Expansion(FPRME).
It has been shown in the literature that for some switching
functions, more efficient implementations can be obtained
when each variable in Reed–Muller expansion can be both in
affirmation and negation. The latter expansion is calledMixed
Polarity Reed–Muller Expansion(MPRME).

The most general concept of a binaryLinearly Independent
(LI) Logic was introduced in [15], and expanded to a multiple-
valued case in [17]. For its various properties and special
cases see [8], [9], [12]–[17]. A theorem from [15] generalizes
all binary logic circuits that are realized in GF(2) algebra. It
has been shown there that for any LI set of basis switching
functions of variables represented as a matrix

Manuscript received May 22, 1995; revised February 22, 1996. This paper
was recommended by Associate Editor E. G. Friedman.

The authors are with the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798, Republic of Singapore.

Publisher Item Identifier S 1057-7130(97)03641-0.

there exists a canonical three-level realization
where functions

are the given LI basis functions and coefficients are
determined by multiplying matrix by the truth vector of
the function With such definition, FPRME is just a special
case of the new LI logic. Due to the fact that the selected LI
functions can appear in both true and complemented forms,
many MPRME can also be derived from LI Logic. Since the
number of all LI functions is very large even for the case of few
variables, efficient ways of finding those transform matrices
that have fast algorithms is of great importance.

In the current paper, ways of generation of fast transforms
for binary -dimensional LI transformation matrices are
introduced. These LI Transforms are shown which may be
created efficiently in the form of transform matrices for
2. Since the recursive equations for expanding the transform
matrices are provided, then the results presented for 2
can be easily extended to transform matrices with higher di-
mensions giving the best sets of basis functions for such cases
as well. Hence this paper introduces many new families of
basis functions for -dimensional LI transformation matrices
which should be used in finding their polynomial expansions
and resulting hardware implementations rather than more
general but computationally inefficient approach based on the
matrix operations in earlier papers [15]–[17]. It is obvious
that the fast transforms exist only for some basis functions
and they constitute a small fraction of all possible LI basis
function for 2. Such fast transform matrices are classified
under specific mathematical relations between its forward
and inverse transforms. Finally, those LI transform matrices
which require permutations for both the Forward and Inverse
transforms to obtain fast algorithms are also shown. Similarly
to arbitrary LI logic transformations [12]–[17], polynomial
expansions obtained from fast LI Transforms can always be
implemented in the form of fine grain FPGA’s or EPLD
devices. Hence, the fast LI transform matrices presented in this
paper should be used as the basis for LI expansions, rather than
the arbitrary LI transform matrices that in most cases do not
have recursive fast decomposition and require computationally
expensive matrix inversion and multiplication to obtain the
coefficients.

II. GENERAL DEFINITIONS OF GF(2)
LINEARLY INDEPENDENT LOGIC

Definition 1: Let be a matrix with columns
corresponding to minterms and rows corresponding to some
switching functions of variables. If the sets of rows are
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TABLE I

linearly independent with respect toXOR operations (i.e., rows
are bit-by-bitXORed), then has only one inverse in GF(2)
and is said to belinearly independent.

Lemma 1 [16]: Let be the Galois Field with
elements. The order of the group of all nonsingular-by-
matrices with entries in the field is

(1)

Lemma 2 [16]: Let and
be a switching function of variables. The number of all
possibleXOR canonical representations of the functions is

(2)

The derivation of a family of recursive LI logic commences
from basic 4 4 matrices, which may be recursively defined.
This ensures the existence of fast algorithms. For such basic
matrices, combinations of canonical representations of 2-
variable switching functions are adequate for the generation
of all existing recursiveXOR canonical forms for an arbitrary

-variable switching functions. In order not to loose any
information about the transformed functions, two different
columns in LI matrices cannot be identical, also the column
with zero entries is not allowed. Table I gives the set of
switching functions for 2.

The LI Transform based on Definition 1 and Lemma 1 can
be described by the following general formulas performed in
modulo-2 algebra:

(3)

(4)

where is a column vector defining
the truth vector of a switching function in a natural
binary ordering, is an LI matrix of order
defined by any LI set of -variable switching functions and

is the coefficient column vector
for the particular transform matrix with modulo-2 inverse

In particular, (3) may be expressed as

(5)

where is any set of -variable switching functions such that
the matrix

where represents the truth vector of the switching functions
and the symbol is the addition in modulo-2.

Example 1: Let with with .
Let the matrix

where

and

i.e., the basis LI functions are

and

The inverse of may be evaluated using Gaussian Elimi-
nation. By (4)

By (5)

To obtain the value of the original function for minterm 0 by
using its LI Polynomial Expansion, we have

Similarly all other values of the original function can be
obtained from this expansion.

In the continuation, the following notation for matrices will
be used repetitively.

• The matrix is a square matrix such that it
is recursively defined by

(6)

where each submatrix {1, 2, 3, 4}, has
a dimension of contains one recursive
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equation which is either or where
is a matrix with all its elements 0,

or is a identity
matrix and a reverse-identity matrix,
i.e., elements in the reverse-diagonal positions are 1 and
0 at others.

• The matrix is a square matrix such that it
can be partitioned into two vertical submatrices, each with
dimension i.e.,

(7)

or partitioned into two horizontal submatrices, each with
dimension i.e.,

(8)

where the subscript or denote the respective Vertical
or Horizontal partitioning of the original matrix

Definition 2: Let be a nonsingular square matrix which
is partitioned into four appropriate dimensional
submatrices as shown in (6).

The operator on the matrix is defined as interchang-
ing the diagonal submatrices

(9)

Definition 3: Let be a nonsingular square matrix which
is partitioned into four appropriate dimensional
submatrices as shown in (6).

The operator on the matrix is defined as interchang-
ing the reverse-diagonal submatrices

(10)

Definition 4: Let be a nonsingular square
matrix with submatrices built of basic nonsingular matrices
of dimension as shown in (6), where

The matrix consists of only one
submatrix, at least one submatrix not diagonally

opposite to plus two other submatrices which are either
or and the two submatrices contain any combi-

nations of the submatrices or The operator on
is defined as selecting the submatrix diagonally opposite

to and interchange it by the following operations:

if and are submatrices in

or

if is a submatrix in (11)

Example 2: Let a nonsingular matrix be defined recursively
as

Then

The operation on by (11) of Definition 4, is

i.e.,

and

Definition 5: Let be any nonsingular square
matrix such that is defined by (7). The operator on

is defined as interchanging the two partitioned
submatrices

(12)

Definition 6: Let be any nonsingular square
matrix such that is defined by (8). The operator on

is defined as interchanging the two partitioned
submatrices

(13)

Definition 7: Let be any nonsingular square
matrix such that is recursivelydefined by (6) and (7), i.e.,

The operator on is defined as grouping the recursive
equations in the submatrices vertically and interchanging them
in the submatrices horizontally

(14)

Definition 8: Let be any nonsingular square
matrix such that is recursivelydefined by (6) and (8), i.e.,

The operator on is defined as grouping the recursive
equations in the submatrices horizontally and interchanging
the equations in the submatrices vertically

(15)
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III. FAMILY OF FAST TRANSFORMS

FOR LINEARLY INDEPENDENT LOGIC

From (2) of Lemma 2, it can be shown that there are
altogether 840 LI matrices derived from combinations of 2-
variable switching functions. Table I shows the list of such 2-
variable switching functions that can be used as column entries
in LI matrices. Combinations of four basic switching functions
which satisfy condition in Definition 1 will form a basic LI
matrix over GF(2). The main interest is on those LI matrices
which can be expressed in recursive mathematical equations
and possess both fast forward and inverse transforms. This,
as mentioned earlier, will lead to existence of fast algorithms
and recursive butterfly structures for any number of variables,

. For transform matrices that are based on GF(2) algebra,
there are altogether 44 LI matrices, in which the forward and
inverse transform matrices may be constructed effortlessly.
Such results have been obtained computationally. The first
28 transform matrices are mentioned by the same authors
in [8]. The fast algorithms of those LI transform matrices
are efficiently constructed. In this paper, the family of LI
Transform matrices which can be formulated recursively, is
discussed in detail. Mathematical operations are developed,
allowing transformation of these 44 LI matrices into another
classes of LI matrices which require horizontal or vertical
permutations so as to possess similar property of recursiveness.

There are only 44 LI Transform matrices which can be
recursively defined. They are constructed by the basis recursive
submatrices , and where at most one
submatrix and two submatrices could appear in the
recursive definitions. In addition, there must be at least one

in the recursive equation. Figs. 1–4 list out these LI
transforms which do not require any horizontal or vertical
permutations. In Fig. 1, those LI transforms that have identical
fast forward and inverse transforms, i.e., are
shown. This is categorized as Class A of LI Logic. In this class
of LI Logic, the submatrices consist of no reverse-identity
matrix Moreover, the submatrix lies in either

or submatrices of (6) and As it
can be seen, Fixed Polarity Reed–Muller transform belongs to
this class of LI Logic. Moving the submatrix into either

or will bring the LI Transform matrices into
Class B. There are altogether 6 LI transforms in Class B. In
this class, the submatrices consist of no identity matrix
and the forward and inverse transform matrices are related by
the following Property 1, with

Property 1: Let be one of the nonsingular
square matrices in Class B. Then, the inverse of is given
by

(16)

Different combinations and permutations of identity matrix
with and reverse-identity matrix with

yield another class of LI Transforms. In this class, the position
of the zero submatrix lies in either and
This categorizes Class C of LI Logic and for matrices from
this class, Property 2 is satisfied.

Fig. 1. ClassA:

Fig. 2. ClassB:

Property 2: Let be one of the nonsingular
square matrices in Class C. Then, the inverse of is given
by

(17)

Fig. 3 shows the list of 16 LI Transforms in Class C. Shifting
the zero submatrix into either or and
keeping the respective combinations and permutations of iden-
tity matrix with and reverse-identity matrix
with from Class C produces Class D of LI Logic. The
following property of Class D may be derived.

Property 3: Let be one of the nonsingular
square matrices in Class D. Then, the inverse of is given
by

(18)

Property 4: Let and represent any nonsingular
square matrix in Class C and Class D, respectively. Then,

(19)

and

(20)

The or operations on the matrix is a one to one and
onto mapping. Hence, there are similarly 16 LI Transforms
in Class D. The following mathematical relationship may be
derived.
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Fig. 3. ClassC:

Property 5: Let and represent any nonsingular
square matrix in Class C and Class D, respectively. If

or then from Properties 2–4,

(21)

or

(22)

respectively.
Proof: Let and From (18)

Interchanging and

From (17) of Property 2,

Fig. 4. ClassD:

Equation (22) of Property 5 may be proved similarly.
Classes A, B, C, and D of LI Logic form the basic LI

Transforms which possess fast algorithms in forward and
inverse transform. They do not require any horizontal or
vertical permutations for the existence of their recursiveness.
Those 2 permutations, horizontal and vertical, are introduced
earlier by Definitions 5, 7 and Definitions 6, 8, respec-
tively. The LI transforms are classified according to their
mathematical relationship of forward transform matrices with
their respective inverse transform matrices. As shown from
all the basic LI transforms, they are constructed from four
basic submatrices, namely the zero submatrix the
identity submatrix the reverse-identity submatrix
and the recursive submatrix in which general rules are
applied to them, following their classifications. The general
computational complexity of each LI transforms depends
solely on the construction of the matrices from the basic
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submatrices. Broadly speaking, LI transforms with matrices
constructed from only the recursive submatrix and the
zero submatrix yield least computational costs. This
implies that fixed polarity Reed–Muller transform belongs
to this category of LI transforms with lowest computational
complexity. Replacement of any submatrix with
regardless whether it is an identity matrix or reverse-
identity matrix increases the computational costs of the
transform. For it can be shown that LI transforms with
one or two submatrices of either or will increase
the computational costs of the transform by 1 or 2 modulo-
2 additions, respectively. However, it does not imply that LI
transforms having one or two submatrices of either or

are worse than the Reed–Muller transforms from the
implementation point of view, when LI polynomial expansions
for some logical functions are considered what is shown in
the following example.

Example 3: Let

with

Let LI transform matrix of order belong to Class C,
with recursive equation defined as

Applying operation to brings this matrix to Class D,
according to (20) of Property 4 i.e.,

For the transform matrix of order

From (17) of Property 2 and by (4)

From (22) of Property 5

It is clear that for the particular truth vector, the transform
matrix in Class C results in a simpler LI Spectrum with
more number of zeros than that of Class D. An LI transform
matrix from Class B which has the same computational costs
as the two transform matrices selected earlier is chosen for
comparison of the spectra. The recursive transform matrices
are

and

respectively. The resulting LI Logic spectra for the same
switching function are

and

respectively. Comparing , and it can be seen
that the optimal LI Logic spectrum results from the transform
matrix in Class B which has the highest computational cost
since it possesses only one in the recursive trans-
form matrix. The known Reed–Muller transform together with
transform matrix from Class C yield the second best spectra
with four nonzero spectral coefficients. However, it has the
least computational costs among the four compared transform
matrices. From (5), the LI Expansion based on matrix

where

and

is

The resultant LI Expansion may be implemented easily by
existing 20X8 PAL device [11]. The device, in general, has D
flip-flops driven byXOR gates. The inputs of theseXOR gates
are fed by two sum-of-products arrays with two product terms
each, allowing the resultant LI Expansion to be implemented
directly. Some LI transform matrices may require more than
two product terms, which is not appropriate for the 20X8
architecture. However, other types of devices are available
to fit this demand, for example, the Cypress 330 [11] allows
many product terms. The same expansion may also be easily
implemented by Concurrent Logic CFA6006 fine grain Field
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Programmable Gate Array [2]. The basic symmetrical cell for
this FPGA has two logic functions:NAND and XOR which
permits to implement arbitrary switching circuits represented
by their LI polynomial expansions.

From the basic LI transform matrices, another category of
LI transform matrices may be derived. In this new category,
horizontal or vertical permutations are required before making
the matrices recursive.

Property 6: Let be any nonsingular square
matrix with modulo-2 inverse Then

(23)

(24)

Definition 8: Let be any nonsingular, square, recursive
matrix belonging to Class Y of LI Logic where

, i.e., Then if
belongs to a class named where

and and are
classes in which its respective members are derived from the

operation on the LI transform matrices in Class Y. If
defines the modulo-2 inverse of the matrix then from
Property 6

(25)

Similarly, if then

(26)

and belongs to a class named where
and and are classes in which its

respective members are derived from the operation on the
LI transform matrices in Class Y.

Definitions 5 and 6 transform all the basic classes of LI
transforms having fast transforms into two categories, for
one of which the horizontal permutation needs to be done
in the forward transform and for the other one, the vertical
permutation needs to be performed instead.

Example 4: In this example, the same 3-variable switching
function from Example 3 is used. From Definition 4 and 5,
the corresponding transform matrices which require vertical
permutation at the Forward transforms are
and , respectively. For example,

and the corresponding modulo-2 inverse of is

The corresponding LI Logic spectra are evaluated similarly.
In summary

From the spectra, it can be seen that the coefficient vector from
transform matrix yields the optimal spectral coefficients.

Comparing with Example 3, still gives the best spectral
coefficients with maximum number of zero coefficients. It
should be noted that the corresponding vertical or horizontal
permutation of each class has identical complexity owing to
the same number of 1’s and 0’s in each permuted row.

So far, different LI transform matrices have been introduced
that may be classified into 3 large classes. Class Y presents
those LI transforms which require no permutations. Class

and include such LI transforms that respectively
require horizontal and vertical permutation at the forward
transform matrices, and in addition, vertical and horizontal
permutation at the inverse transform matrices. Another smaller
classes of LI transforms exist, which have distinct properties
from the above 3 large classes of LI transforms. In these
classes, the transform matrices require either both horizontal
or both vertical permutations at forward and inverse transform
matrices. This is categorized as Class E. Class E divides into
two subclasses, named and Fig. 5 shows the fast
transforms for Class E.

Definition 9: Let be one of the nonsingular square
matrices in Class E. Let and be two LI transform
matrices belonging to Classes and , respectively. Then
by definition, and

(27)

and

(28)

In this class of LI transform matrices, two fast forward
algorithms exist which are shown in Fig. 5. The inverse fast
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Fig. 5. ClassEH and EV :

transforms are easily derived byvertically flipping the fast
forward transforms. With this property, the same fast forward
transform may be used to calculate inverse transform by
reversing the order of the spectral coefficients.

Property 7: Let define the column vector representing
the truth vector of an -variable switching function and its
spectral coefficients in natural binary ordering. Suppose
represents the LI transform matrices in Class E such that by
(4) Defining the matrix operator to a column
vector as reversing the position of its elements, i.e.,

and

then

(29)

This implies

(30)

Equation (30) shows that LI transform matrices in Class E
have fast forward transform such that the same fast algorithm
could be used to evaluate the respective inverse by simply
reversing the input and output truth vectors. Equation (30)
applies to LI transform matrices in Class B too. In general, if
the forward and inverse transform matrices are related by
and matrix operators with no operator and the same
or operations are used at the forward or inverse transform
matrices, then the inverse fast transforms are easily derived
by vertically flipping the respective fast forward transforms,
and (29) and (30) are applicable. The operators in Class B or
Class E LI transform matrices involve only either or
matrix operator but not both. However, the existence of either
identical diagonal submatrices or reverse-diagonal submatrices
will satisfy the condition of forward and inverse transform
matrices related by and matrix operators. This property
is advantageous in terms of hardware architecture since the

same implementations of butterfly diagram can be used for
the calculation of both forward and inverse transforms.

Another class of transform matrices exists which has similar
properties to LI transform matrices in Class A but requires
identical permutations, either or at the forward or
inverse transform matrices. This is categorized as Class F. The
transform matrices in Class F contain no submatrices

Definition 10: Let be any nonsingular square matrices
from Class F, then and belong to two LI transform
matrices in Classes and accordingly, where

Then,

(31)

and

(32)

LI transform matrices in Class F have identical computa-
tional costs to that of Class E, since the recursive matrices
possess only one submatrix Fig. 6 shows the fast
forward and Inverse transforms for LI transforms in Class
F. Generally, two different fast transforms exist for each
LI transform matrix belonging to Classes E and F. This
is due to the operations of or to the recursive
equations. Finally, another class which requires only one
permutation either at the forward transform matrices or at
the inverse transform matrices but not at both, is introduced.
In this class of LI transforms, the matrices contain all four
different basic submatrices of , and
This is categorized as Class G. Fig. 7 lists the fast forward
transforms for Class G. The mathematical relations between
the Forward and Inverse Transform matrices are given in
each subclass of G. Some of the LI transform matrices of
G are related by the matrix operations or ( and

). Among all the presented LI transform matrices, Class
G is most impractical from a computational point of view.
For some logical functions, this class can however have the
simplest spectrum and the resulting hardware implementation
and therefore is also discussed. The LI transforms from
Class G possess more computationally expensive fast forward
algorithms and their Inverses, though may be mathematically
defined, have no relations with the respective fast forward
butterflies. Moreover, only for 2, the fast transform
requires six modulo-2 additions which is one of the highest
computational costs among all other classes of LI transform
matrices. This is the same as for all other LI transform matrices
which posses only one submatrix

IV. CONCLUSION

The suitability of an LI transform in a given application
depends not only on the choice of its basis functions but also
on the existence of efficient ways of its calculation. When
the concept of LI Logic was introduced, the author used
the conventional means of calculating the LI transformations
by matrix inversion and multiplication [15]–[17]. In this
paper, recursive forward and inverse equations and butterfly
structures are used to decompose matrix multiplications into
simple pairwise operations so that on average the number of
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Fig. 6. ClassFH and FV :

Fig. 7. ClassG:

modulo-2 operations is minimized from to for
an th-order transformation matrix.

Minimization of AND-OR and AND-XOR expressions has
already been well established in logic synthesis [3], [23], [24].
However some new technologies allow PLA’s with optional
XOR elements in their outputs [11] what increased research
interests in optimizing also different logical structures such as
the AND-OR-XOR expression. The LI polynomial expansions
may also be efficiently used in mapping to fine grain and cellu-
lar automata types of FPGA’s (such as those from Concurrent
Logic (now ATMEL), Crosspoint, Motorola, Plessey, Toshiba,
Algotronix (now Xilinx), National Semiconductor, Pilkington)
what was earlier discussed in [16] and [17] and shown by our

example. The theory presented in this paper allows to find and
calculate the polynomial expansions by using fast transforms.
The design of the next generations of fine grain architectures
should be influenced by the introduced efficient bases of LI
logic transformations so that the resulting hardware implemen-
tation could be calculated efficiently by fast transforms and use
minimal number of basic cells with a compact routing. As the
result, it would have also the advantages of high speed and area
minimization. Hence the practical applications of presented
developments on the direction of future technology are
enormous.

For a selected class of LI logic transformations, the corre-
sponding polynomial expansion of an arbitrary logical function
is canonical. The proper selection of the transform matrix can
greatly reduce the final implementation of a given function
not only in the form of available EPLD devices and fine grain
FPGA’s but also as custom made FPGA’s. One of the future
related research topics is to associate presented classification of
LI Logic with some known classification of logical functions
and use it for matching. The ability to select in advance
those computationally effective fast LI transformations will
result in simple implementation of some classes of logical
functions. The good starting point in this new research would
be to use spectral classification of logical functions based
on Walsh functions and known relations between Walsh and
Reed–Muller spectra [3]. This is to find the relations between
LI transforms and expansions and spectral classification based
either on standard or generalized Walsh functions [6], [7].

The same concept of LI Logic can be applied easily to
logical functions with multiple-valued inputs (the transform
matrix is the same for two-valued and multiple-valued
cases) [14], [20]–[22] and all the presented derivations are
valid for such instances as well. A unified approach to the
generation of butterfly structures for family of LI matrices can
be also of interest for researchers developing efficient multires-
olution digital signal processing systems using unconventional
applications of butterfly LI decomposition techniques [1], [4],
[5], [10], [18], [19], [25].
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