-8
Hardware/Software Deadlock
Avoidance for Multiprocessor

Multiresource System-on-a-Chip

Dissertation Defense
By
Jaehwan Lee

Advisor: Vincent J. Mooney lli

School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA USA

1 © 2004 Georgia Institute of Technology

Outline B

2 Motivation and Objective

u Background and Prior Work

2 Proofs about Deadlock Detection Unit
2 Deadlock Avoidance Unit

u Parallel Banker’s Algorithm Unit

a Integration into & hardware/software RTOS
framework

= Conclusion

2 © 2004 Georgia Institute of Technology

Motivation

- Technology Trends

= Future SoC's

» Multiple heterogeneous processors (tens of processes)

» Multiple on-chip hardware resources
, DSP, FFT, MPEG, GPS, Shared Memory, etc

, Examples

» Xilinx Virtex-II Pro FPGA includes multiple PowerPC

» Broadcom BCM1400 includes multiple MIPS64

m Processes in such an SoC

» Dynamically request and use resources

» May end up in deadlock

a Current embedded system or single processor system

» Typically ignored today

3 © 2004 Georgia Institute of Technology

ra
| |
GPS \ PEZ
MPEG L
pSP L1 PE?
FFT che
Arbiter enot % i

SoC: System on Chip

——

Motivation
- Does deadlock really matter?

a1 Examples of future real-time systems
» Human-like robot with multiple processes
, In case of deadlock
e Damage
e People get injured
e Law-suits
» Mars Rover
, In case of deadlock
e Money loss
e Time loss
» Industrial control
, Cars
u Even if low probability of deadlock, prefer no
deadlock whatsoever
4 © 2004 Georgia Institute of Technology

Objective
- Problem, Solution and Goal

a Problem
» How to deal with deadlock?
u Goal
» Allow software to make requests in any order
, Grant as many resources as possible
» Avoid deadlock correctly and quickly
2 Solution

» A hardware/software mechanism of deadlock

avoidance, easily applicable to Real-Time
Multiprocessor System-on-a-Chip (SoC) design

5 © 2004 Georgia Institute of Technology JM

Background: Definitions

2 Definition of Deadlock

, A system has a deadlock iff the
system has a set of processes, each
of which is blocked, waiting for
requirements that can never be

satisfied ®4_
. t

[H—

6 © 2004 Georgia Institute of Technology

——

Background: Definitions

2 Definition of Livelock

»Livelock is a situation where a request
for a resource is repeatedly denied and
possibly never accepted because of the
unavailability of the resource, resulting
in a stalled process, while the resource
iS made available for other process(es)
which make progress

——

7 © 2004 Georgia Institute of Technology

Background: Definitions

2 Definition of Deadlock Avoidance

,A way of dealing with deadlock
where resource usage is dynamically
controlled not to reach deadlock
(i.e., on the fly, resource usage is

controlled to ensure that there can
never be deadlock)

8 © 2004 Georgia Institute of Technology

——

Background: Definitions

a Definition of a Safe Sequence

, A safe sequence is an enumeration p,,
P,, ..., P, Of all processes in the system,
such that for each i=1, 2, ..., n, the
resources that p, may request are a
subset of the union of resources
currently available plus resources
currently held by py, p,, -y Piy

9 © 2004 Georgia Institute of Technology

——

Background: Terms
Request deadlock (R-dl)

2 A deadlock situation directly caused by a request

2 Assumptions: No restriction on resource usage
» (i) P1 requires either Q1, Q2, or both depending on software flow
, (i) P2 also requires either Q1, Q2, or both
» (iii) We don't know in advance

= When P1 and P2 take flows that they require both Q1 and Q2

t1

<— Request edge
—> Grant edge

P1, P2: processes

Q1, Q2: resources

10 © 2004 Georgia Institute of Technology

——

Background: Terms
Grant deadlock (G-dl)

2 A deadlock situation directly caused by a grant
» The same assumptions with the previous

Q1 pera Q3
<— Request edge Assumption (iv):
—> Grant edge Priorities P1>P2>P3

11 © 2004 Georgia Institute of Technology

——

Differentiation between
R-dl and G-dI

1 Reason

, Some actions can only be taken for either R-dl or G-dlI.

(E.g., G-dl could have been avoided by granting Q2 to
P3 instead of P2 in the previous G-dl example.)

o Sl N ~:

Q2 @ Q1| [eH Q3

12 © 2004 Georgia Institute of Technology

——

Why does deadlock occur?
- Four Deadlock Conditions

Properties of Resources
» Mutual Exclusion
» No simultaneous sharing of a resource

» No Preemption

» A resource can be released only by the process holding
the resource.

Behavior of Processes
, Hold and Wait

» A process may hold some resources while the process
requests additional resources.

, Circular Wait

» A process must wait for unavailable resources to become
available.

13 © 2004 Georgia Institute of Technology

——

Background: Terms
Single vs. Multiple Instance Resources

2 Single instance resources
» A resource that can support one process at a time
, E.g., a printer
2 Multiple instance resources

,» A resource that can support a certain number of
multiple processes simultaneously

, E.g., a counting semaphore associated with
allocable memory

14 © 2004 Georgia Institute of Technology

——

Background: Terms
Resource Allocation Graph (RAG)

2 A Set of Nodes V =@)U ©Q
» P processes, Q;: resources

a A Set of Edges E = (P, - Q) U (QJ — P)

<4— Request edge
—> Grant edge

“Bipartite
Graph”

15 © 2004 Georgia Institute of Technology

——

Terms - RAG and
Corresponding Matrix Representation M

a1 Used in Deadlock Detection Unit (DDU)

\Ima Gil i) =] [x])), (=] (][]
RAG Allocation matrix

F1 P2 P3 P4 FE: _Mlg |k | ek
000 ProCesses P 6/
Srdhrd .

F2 G| R

P3 G
/ P4

Pa

resources

16 © 2004 Georgia Institute of Technology

——

Terms — RAG and

Corresponding Matrix Representation M

request

S AN

BIEE

Allocation matrix

edges —]

a1

Qz

Q3

Q4

Q5

G

R

"G

grant —

edges —

"

NSRRI E

17 © 2004 Georgia Institute of Technology

——

Terms - RAG and
Corresponding Matrix Representation M

Terminal nodes Terminal row

Connect nodes Terminal column
\ l

XX G/ \E@IE hxw I BICIE
? Incoming
edge

Allocation matrix

Mij| @1 G2 QF | Q4| Q5

o ‘G H
P2 G R
P3 G| R
_ P4 G| R
Outgoing L LG
edge

Terminal edges

18 © 2004 Georgia Institute of Technology

——

Prior Work by Shiu, Tan and Mooney
Deadlock Detection Hardware Unit (DDU)

a Matrix based parallel operation approach

a1 Terminal edge reduction technique to reveal cycles
(i.e., deadlock)

» Terminal (i.e., removable) edge*: not related to deadlock

a Simple bit-wise Boolean operations
» Implementation easier

» Operation faster, O(min(m,n))
, 2~3 orders of magnitude faster than software @ P3

2 Novelty from previous algorithms

» Does NOT trace exact cycles *
» Does NOT require linked lists

P. Shiu, Y. Tan and V. Mooney, "A Novel Parallel Deadlock Detection Q]_ QZ Q3
Algorithm and Architecture," 9th International Workshop on
Hardware/Software Codesign (CODES'01), pp. 30-36, April 2001.

19 © 2004 Georgia Institute of Technology

——

Abstraction of DDU

u Check the reducibility of an allocation matrix
» Remove all terminal edges currently revealed at each step in matrix M
, If A(either R’s or G) in column i (terminal column\)

= remove all entries in column i e VIR BIES
, If 3(either R’'s or G’s) in row j (terminal row) S
— Remove all entries in row j j e
, Iterate until -(reducible) or empty el [<] =" TH—~Terminal
: . T edges
u Determine deadlock I sy edo
» If empty (no edges), no deadlock
, If =(empty), deadlock
[=][0][x] [=][0][x] OGS OGS OGS OGS OGS
Mij| Q1| 02| Q3 | Q4| Q5 ﬂl Q1| Q2| Q3| Q4| Q3 ﬂl Q1| Q2| Q3| Q4| Q3 Mij| Q1| Q2| Q3 | Q4| @5 Mij| Q1| Q2| Q3 | Q4| @5 Mij| Q1| Q2| Q3 | Q4| @5 Mij| Q1| Q2| Q3 | Q4| @5
| L d
: Not empt
Iterations PY _, Deadlock

20 © 2004 Georgia Institute of Technology

——

Prior Work in Deadlock Avoidance

a Traditional Methods
, Require some knowledge of future requests
, Declare maximum claims (each process)
, Give a grant only if remaining in a safe state
2 Advantages
, No deadlock
» No preemption
u Disadvantages
» Low resource utilization
, Worse for single unit resources
,» Performance degradation
, Due to dynamic avoidance decision
, Practical issues — long software run-time

21 © 2004 Georgia Institute of Technology

——

Prior Work in Deadlock Avoidance

= Dijkstra: Banker’s Algorithm (1968)
» For a single multiple-instance resource
» Maximum claims strategy
= Habermann: O(nm?) (1969)
» For multiple-instance multiple resources
, Livelock problem
@ Holt: O(mn) (1972)
, Solved livelock problem using wait-time counters
» For general resource systems
a Belik (1990)
» Path matrix representation
, Resource allocation 2>
Changing an acyclic digraph while keeping it acyclic
, For multiple single-instance resources
» O(mn) in general, O(1) in the best case

2 No prior work in hardware implementation of a deadlock avoidance
approach

22 © 2004 Georgia Institute of Technology

——

Outline B

2 Motivation and Objective

u Background and Prior Work

1 Proofs about Deadlock Detection Unit
2 Deadlock Avoidance Unit

u Parallel Banker’s Algorithm Unit

a Integration into & hardware/software RTOS
framework

= Conclusion

23 © 2004 Georgia Institute of Technology

Proofs of the Correctness of and
run-time complexity of DDU

2 Why do proofs matter?
» Authenticity
» No false alarm
, To avoid any damages or liability
, To ensure timeliness in a real-time SoC

, Within a certain amount of time for a
robot not to fall over in a deadlock

* Additional details can be found in a journal submission and a technical report [3, 7]

24 © 2004 Georgia Institute of Technology

——

Proof of the Correctness of DDU

= Deadlock vs. Cycle Relation
+» Deadlock = 3 Cycle(s) in an RAG

Cycle(s) = 3 Deadlock
P2 @&

Q2 BN 01 (o4 03

2 DDU detects deadlock iff there exists a cycle
in an RAG

25 © 2004 Georgia Institute of Technology

——

Proof of the Correctness of DDU
- Intuition behind proofs

Remove edges in columns and rows with only G’s or only R’s

Operations performed in parallel throughout the matrix at each
iteration

A cycle: a circular pairs of R-G edges in rows and in columns

X A lzh [=][T[] (=] [x] (=] [x] (=] [x] (=] [x] (=][o][]
| 1| ez | 1 az | | o i | o
ﬂ P P P P P
~ Step0 ~ Step1 ~ Step2 ~ Step3 ~ Step4 ~ Step5
: Completely reducible
Iterations Peey

» No deadlock

26 © 2004 Georgia Institute of Technology

——

Proof of the Run-time Complexity of

DDU

2 An upper bound on the number of edges in a
path (not a cycle or RAG) = 2*min(m,n)
» Due to the bipartite property

a2 DDU, implemented in hardware, completes its
computation in at most 2*min(m,n) - 3 steps

, O(min(m,n))

e
/

Q1

e

3

2*min(6,3)=6

* Additional details in a journal submission and a technical report [3, 7]

27 © 2004 Georgia Institute of Technology

——

Outline B

2 Motivation and Objective

u Background and Prior Work

2 Proofs about Deadlock Detection Unit
1 Deadlock Avoidance Unit

u Parallel Banker’s Algorithm Unit

a Integration into & hardware/software RTOS
framework

= Conclusion

28 © 2004 Georgia Institute of Technology

Deadlock Avoidance Unit (DAU)

|

|

No declaration of maximum claims
No restriction on resource usage

Advantages
» Higher resource utilization
» Fast avoidance due to hardware implementation

Disadvantages
, Somewhat unfairness on a special occasion
» When avoiding G-dI

(a lower priority process could proceed before a higher
priority process, which would end up in deadlock)

-- Similar concept to priority inheritance
, But, resulting in higher resource utilization
» Possibility of resource preemption
» When avoiding R-dl

Assumption: all resources single-instance

29 © 2004 Georgia Institute of Technology

——

Deadlock Avoidance Algorithm (DAA)

Ani event off a reguest

avallable?

* No deadlock here

Would cause R-ai?

Y

Priority of requester >

Priority of owner

Y

Resolve
livelock
N, as well as
deadloc

Mark the

|

N request
pending

30 © 2004 Georgia Institute of Technology

;

Deadlock Avoidance Algorithm (DAA)

An event of al relea

C
=)

Improve
Afiy process is waiting: resource
<< = utilization

ranting it t

PIrOCEsS causes G

i 10 a proc ant the
Mark the resource L1t 10 @ proce Jr - ,J, .
PrIOKItY.
PHOCESS Walting

It
Jvailable uru N0 deadloc nighest
— iiter finding such a r)rr

31 © 2004 Georgia Institute of Technology

——

Proof of the Correctness of DAA

u Proof with lemmas and theorems

Theorem 1 (R-dl case)

Denying the request in the case of R-dl results in
livelock unless a process involved in the deadlock
releases a resource involved in the deadlock

Theorem 2 (G-d| case)

For a given system, not currently deadlocked,
where a grant of a resource occurs, there must
exist at least one process to which the resource
can be granted without deadlock

* Additional details in a technical report
32 © 2004 Georgia Institute of Technology

——

Architecture of the DAU

DDU decoier
(matrix) _ Command
Start D AA : registers
Reset —— L O g | C - v

W] FSM__ B3,

DDU: Deadlock Detection Unit
FSM: finite state machine

33 © 2004 Georgia Institute of Technology

Address
control

Data

——

State Transition Diagram
- DAA Logic FSM

waiting? y Sﬁae;ih
release . 7ot

pending

Ny n

reque

make

y pending
| available?
{ owner } Eequeste?
give up) (give upJ
R>O/ O>
find compare
owner riorities FSM: finite state machine

34 © 2004 Georgia Institute of Technology

——

DAU Experimentation
- Target System-on-a-Chip

a Four MPC755’s

, Each CPU has 32KB I-Cache
and 32KB D-Cache

» 100MHz external clock,
, 16MB shared memory

a1 Four resources
, Q1: Video Interface (VI)

m 6 urab|9 5
e re°°“|03ic D(u V1 MPCT:
Vi] MPCT55
CcT
NI MB L2
Arbiter ot .//4 MPCTS?

, Q2: Inverse Discrete Cosine Transform (IDCT)
, Q3: Fast Fourier Transform (FFT)

, Q4: Network Interface (NI)

35 © 2004 Georgia Institute of Technology

——

DAU Experimentation
- RTOS, Application, Environment

2 Atalanta RTOS 0.3
» By Sun, Blough and Mooney at Georgia Tech

u Each process requires two resources except P4
, P1: processing a video stream (needs VI + IDCT)
» P2: separating/enhancing frames (needs IDCT + FFT)
, P3: extracting special images (needs FFT + VI)
, P4: transferring images (needs NI)
, One active process for each processing element (PE)

a0 Seamless CVE from Mentor Graphics

, Instruction accurate simulation
» VCS (Synopsys) and XRAY (Mentor)

36 © 2004 Georgia Institute of Technology

——

Experimental Results of DAU

2 G-dl avoidance simulation: Two kinds
» DAU: Synopsys VCS runs compiled Verilog code
, DAA in software: MPC755 runs compiled C code in Seamless CVE
» Example application invokes deadlock avoidance 12 times

37 © 2004 Georgia Institute of Technology

——

Experimental Results of DAU
(cont'd)

a G-dl avoidance simulation result
2 Time line with resource usage

| Q; and Q, r
P, L 1 >
t,=801 t,=16801
. QandQ;

: | | | {

2 t;=8977 t.=16804 t,=24888 tg=34791

I p Qand Qs

P L A >

3 t,=4903 t.=16809 t,=24885

bus clock cycles

38 © 2004 Georgia Institute of Technology

——

Experimental Results of DAU
(cont'd)

a G-dl avoidance simulation result
a Performance improvement
» 99% algorithm execution time reduction
» 37% reduction in an application execution time

Method of Deadlock Algorithm Exe. Normalized Application Exe.

Avoidance Time (cycles) Exe. Time Time (cycles)
DAU Hardware /7 (average) 1X 34791
DAA in Software 2188 (average) 312X 47704

39 © 2004 Georgia Institute of Technology

——

Experimental Results of DAU
(cont'd)

» R-dl avoidance simulation: Two kinds
» DAU: Synopsys VCS runs compiled Verilog code
, DAA in software: MPC755 runs compiled C code in Seamless CVE
» Example application invokes deadlock avoidance 14 times

4

~16
4

t L !

Ql Q3 Q3

40 © 2004 Georgia Institute of Technology

——

Experimental Results of DAU
(cont'd)

= R-dl avoidance simulation result

a Performance improvement
» 99% algorithm execution time reduction
» 44% reduction in an application execution time

Method of Deadlock Algorithm Exe. Normalized Application Exe.

Avoidance Time (cycles) Exe. Time Time (cycles)
DAU Hardware /.13 (average) 1X 38508
DAA in Software 2102 (average) 294X 55627

41 © 2004 Georgia Institute of Technology

——

Synthesis Results of DAU

u Synopsys Design Compiler
a TSMC .25um technology library from Qualcore Logic
2 0.05% of the total SoC area with four PEs and memory

Total Area in terms of Lines of Verilo
M two-input NAND gates HDL Code -

DAU 5x5 1597 523

7X7 2429 552

10x10 4309 612

15x15 8868 753

20x20 15247 943
MPSoC 40 Million -

Clock period used: 4 ns

42 © 2004 Georgia Ins?i-%lt\él%l; '-rrea(]: nglgg%g' I;?gcdel;gg; I\é?enn'::g?&tu e Company

——

Outline B

2 Motivation and Objective

u Background and Prior Work
2 Proofs about Deadlock Detection Unit
2 Deadlock Avoidance Unit

1 Parallel Banker’s Algorithm Unit

a Integration into & hardware/software RTOS
framework

= Conclusion

43 © 2004 Georgia Institute of Technology

Parallel Banker’s Algorithm (PBA)

a Parallelized Version of the Banker’s Algorithm
, For multiple-instance resources

2 Advantages
» Guarantee deadlock avoidance
» Support multiple instance resources

» Provide O(n) run-time complexity
,» Reduced from the original O(mn?2)
,» O(1) in the best case

u Disadvantages
» Require hardware
» Require maximum claim declaration
, May under-utilize resources

44 © 2004 Georgia Institute of Technology

——

PBAU Architecture (3x3)

prooe=sar intarfaca
requast raquaszt |

1T

45 © 2004 Georgia Institute of Technology

Parallel Banker’s Algorithm (PBA)

Anievent off a reguest

C valia?

avallable?

Jndo allec

46 © 2004 Georgia Institute of Technology

——

Parallel Banker’s Algorithm (PBA)

Work|jl:=Availapie(j] for all'j
Finisai] = false for all |

Find rJH gpIe=to-1ir/s/ PHOCESSES I In parallel

(i-e:, Eimishli] == false anaNeed[i][j] = V! \/or}ch forall’y)

For all such| ab/e=to=1i/5/ Process
Finisalill = true

Work{j] = Work{j] + Allecation[i][jiffor allj
)\

g

47 © 2004 Georgia Institute of Technology

;

Resource Allocation by PBA

TR RS Initial state ---ccooeeeeeennenenens :
resources :

48 © 2004 Georgia Institute of Technology

— Instances —
for resources

. available

allocated

for processes

need

——

Resource Allocation by PBA

Seseesesisensnea Current safe state

d;

resources

p1 .

49 © 2004 Georgia Institute of Technology

— Instances —;

for resources

. available

allocated

for processes

need

. allocated

——

Resource Allocation by PBA

Seseesesisensnea Current safe state -----oeeeeeeenee :
resources :
d;

50 © 2004 Georgia Institute of Technology

— Instances —
for resources

. available

allocated

for processes

need

. allocated

——

Resource Allocation by PBA

D Next State, safe?

d;

resources

51 © 2004 Georgia Institute of Technology

— Instances —;

for resources

. available

allocated

for processes

need

. allocated

——

Resource Allocation by PBA

d;

resources

d

P .
P> .

P

52 © 2004 Georgia Institute of Technology

— Finish —

— Instances —
for resources

. available

allocated

for processes

need

. allocated

© @ O

——

Resource Allocation by PBA

d;

resources

d

P .

P2 H B

P

53 © 2004 Georgia Institute of Technology

— Finish —

— Instances —
for resources

. available

allocated

for processes

need

. allocated

© @ O

——

Resource Allocation by PBA

resources

d;
H B

d

P .

P2

P

54 © 2004 Georgia Institute of Technology

— Finish —

— Instances —
for resources

. available

allocated

for processes

need

. allocated

SN N _

——

Resource Allocation by PBA

d;

resources

d

P1

P2

P

55 © 2004 Georgia Institute of Technology

— Finish —

— Instances —
for resources

. available

allocated

for processes

need

. allocated

SN N _

——

Resource Allocation by PBA

— Instances —
resources for resources

d;
EEE HEE Bl 2vaiabie

— Finish — allocated

P

for processes

need

. allocated

P2

P

A safe sequence: p, > p; = Pp;

56 © 2004 Georgia Institute of Technology

——

Resource Allocation by PBA

— Instances —
q resources for resources
1

d>
. . available

— Finish — allocated

P1 . . ‘
for processes
need
P2 . . ‘

. allocated
2 o

A safe sequence: p, 2 p; = ps, 3 steps, i.e., O(n)

57 © 2004 Georgia Institute of Technology

——

Resource Allocation by PBA
An example of O(1) run-time

— Instances —
resources for resources
d4 d .

' available

— Finish — allocated
o -

for processes

need

P; O

. allocated
P; O

58 © 2004 Georgia Institute of Technology

——

Resource Allocation by PBA
An example of O(1) run-time

— Instances —
resources for resources
d4 d> .
. available
— Finish — allocated

P .

for processes

need

. allocated

P2

P

A safe sequence: any combination

59 © 2004 Georgia Institute of Technology

——

PBAU Experimentation
- System and Application

a1 Five processors

2 Four resources
» Q1: Multiple DSPs
» Q2: Hardware semaphores
» Q3: I/O buffers
» Q4: A memory allocator

2 PBAU 5x5

2 A robotic application
, Five processes
» Requires multiple instances

, 22 times of service requests to
PBAU

» Requests, releases and
claim settings

60 © 2004 Georgia Institute of Technology

4 reoor}gg;’c’able e NPT
pBY™ | |\
Multiple DSPs . » MPC755
Semaphores R?\/Ovm/,, MPC755
/0 buffers
Memory alocator | 46M 12 | MPC755
Arbiter mem® . \PCTES

——

Experimental Results of PBAU

a Performance improvement
» 99% algorithm execution time reduction
» 19% reduction in an application execution

time
Method of Deadlock Algorithm Exe. Normalized Application Exe.
Avoidance Time (cycles) Exe. Time Time (cycles)
PBAU Hardware 3.32 (average) 1X 185716
BA in Software 5398 (average) 1625X 221259

61 © 2004 Georgia Institute of Technology

——

Synthesis Results of PBAU

a1 Synopsys Design Compiler
a1 TSMC .25um technology library from Qualcore Logic
a 0.05% of the total SoC area with five PEs and memory
a All PBAUs able to handle up to 16 instances for each resource
Total Area in terms of Lines of Verilog
Module N
SIS two-input NAND gates HDL Code
PBAU 5x5 1303 600
8x8 3243 700
10x10 5030 770
15x15 11158 1000
20x20 19753 1350
MPSoC 42 Million -

Clock period used: 4 ns

TSMC: Taiwan Semiconductor Manufacturing Company
62 © 2004 Georgia Institute of Technologypp- Processing Element

——

Outline B

2 Motivation and Objective

u Background and Prior Work

2 Proofs about Deadlock Detection Unit
2 Deadlock Avoidance Unit

u Parallel Banker’s Algorithm Unit

1 Integration into the & hardware/software
RTOS framework

= Conclusion

63 © 2004 Georgia Institute of Technology

O framework

Hardware/Software RTOS/MPSoC Configuration
Framework

Enables automatic generation of different mixes of the
HW/SW RTOS

Can be generalized to instantiate additional HW or SW
RTOS components

Integrates parameterized IP Generators such as DDU,
DAU and PBAU generators

Designed by Mooney and Lee

RTOS Components: designed by B. Akgul, P. Kuarchroen,
J. Lee, K. Ryu, M. Shalan and E. Shin

64 © 2004 Georgia Institute of Technology

——

0 framework
- Methodology

0 Framework
PDU
DAU

PBAU

User GUI Tool
Input
e
HW SW
RTOS || RTOS
Info. Info.

65 © 2004 Georgia Institute of Technology

HW
Compile

HW
Library

SW
Compile

SW
Library

Executable Kace st

HW

Simulation
in
Seamless
CVE

Executable
SW

Result
and
Feedback

0 framework
- Methodology

Delta
HardwarefSoftware RTOS Design Framework

GUI

Target Architecture Bus System Bus: d eS|g ned

. Mumber of bus subsystems:
PE: _PowerpC_— | b
— y K. Ryu
Humber of PEs: |4
Humber of tasks: IEi
Humber of resources: IEi

IPC methods Specialized Software RTOS Components

BUS configuration |

_1 Semaphore _1 Deadlock Detection
1 Event _| Deadlock Avoidance
W MailBox N Memory Management

1 Queue

SoCLC: designed " toeation

by B.Akgul
Hardware RTOS Components
N Humber of Small locks: IB
o SoCLC
Number of Lonyg locks: IB

SOCDM M U - deS|g ned Deadiock Solutions: -~ DDU .. DAU 4 PBAU
Number of Memory Blocks: [256

by M . Sha |a n > | SoCDMMU Type of Request Selector: |1

Exit | Help Generate |

66 © 2004 Georgia Institute of Technology

——

0 framework
- Methodology

GUIs for a custom bus generation

-

Custom BUS Generation

Number of BAMs: IE_ fpply |

Address bus width: I -

Data bus width: b4 —

BAN configuration |

| Close |

67 © 2004 Georgia Institute of Technology

SUB #1 BAN #1 Configuration SUB #1 BAN #2 Configuration

CPU type: MPCFa5 — | CPU type: ARMIZD — |

Hon-CPU type: Hone — | Hon-CPU type: Hone — |
Number of Global Memory: ID Number of Global Memory: |D
Humber of Local Memory: |1 Humber of Local Memory: |1

Memory configuration | Memory configuration

Close |

Memory Configuration in BAN #1

Memory type: SRAM — |
fddress bus width of memory: |21

Data bus width of memory: 64 —

Close |

——

Deadlock IP generator

-

‘M=)

G U I Parametenzed Deadlock IF Core Generator

Target Architecture

PE: PowrerPC —-|
Humber of PEs: |4

Deadlock. Solution Far

i DDU Humber of processes: |1 1]
L1 bau Humber of resources: |5

~

= FBAU
Exit Help Generate |
Medifidnle
Hardwaew [P
Librany
PSR Parameter.v

CLIC _,_";ﬁ / process=10...
TO samen Makefi Verilog Pre—
T TTmeie— - Jhel® Processing

= e — vpp dauvpp.v

68 © 2004 Georgia Institute of Technology

DOUv

ddu linputs).. |

DALy

dau finputs).. |

Ballv

bau finputs).. |

——

0 framework
- Implementation

Verilog top file generation example

Start with PBAU description /m;ary\ ook SlooK gen GYSCLK
) R -

Generate instantiation code Generate | cpu_mpc750 cpul (...);

code
Desc PBAU |

enddesc arbiter arb (br_bar, bg_bar...);

bpau pbau5x5 (addr, data,...);

multiple instantiation code
if needed (e.g., PEs)

v l (ii) Add wires

and initial states

Add wires and initial
statements

(i) |wire addr;

PEs1,2,3,... PBAU After wire data;
—— Instan- |wire br_bar;

Clock tiation |wire bg_bar;

/—

Memory Arbiter
17 I L — initial begin ... end;

wire SYSCLK;

69 © 2004 Georgia Institute of Technology

——

Conclusion with Contribution

a Proofs of Deadlock Detection Unit (DDU)
, Correctness and run-time complexity

= Deadlock Avoidance Unit (DAU)
, Faster Deadlock Avoidance (312X)

» No prior knowledge about resource requirements
,» NO restrictions on resource usage

,» Higher resource utilization

» Solution to livelock

a Parallel Banker’s Algorithm Unit (PBAU)

, Faster deadlock avoidance for multiple instance multiple
resource systems (1600X)

, Small area (less than 0.1% in our example SoC)
u © Hardware/Software RTOS partitioning framework

, With custom deadlock IP generator for a specific target
70 © 2004 Georgia Institute of Technology JM

Publications

[1] J. Lee and V. Mooney “An O(n) Parallel Banker’s Algorithm for System-on-a-Chip,” submitted to Design,
Automation and Test in Europe (DATE0S5), under review.

[2] J. Lee and V. Mooney “Hardware/Software Partitioning of Operating Systems: Focus on Deadlock Detection and
Avoidance,” to be appeared in /EE Computer & Digital Technigues (IEE CDT), January 2005.

[3] J. Lee and V. Mooney “"An O(min(m,n)) Parallel Deadlock Detection Algorithm,” resubmitted to ACM Transactions
on Design Automation of Electronic Systems (TODAES) on September 2004, under review.

[4] J. Lee and V. Mooney “A Novel Deadlock Avoidance Algorithm and Its Hardware Implementation,” International
Conference on Hardware/Software Codesign and System Synthesis (CODES04), pp. 200-205, September 2004.

[5] J. Lee, V. Mooney, A. Daleby, K. Ingstrom, T. Klevin and L. Lindh, A comparison of the RTU hardware RTOS with a
Hardwa re/Software RTOS,” Proceedings of the Asia South Pacific Design Automation Conference (ASPDAC 2003),
pp. 683-688, January 2003. Best Paper Award Candidate (one of 12 nominees; not selected for Best Paper).

[6] J. Lee, K. Ryu and V. Mooney, “A framework for automatic generation of configuration files for a custom RTOS,”
Proceedings of the Engineering of Reconfigurable Systems and Algorithms (ERSA 2002), pp. 31-37, June 2002.

[7] J. Lee and V. Mooney “"An O(min(m

r_1|)) Parallel Deadlock Detection Algorithm,” Tech. Rep. GIT-CC-03-41, College
of Computing, Georgia Institute of Té

chnology, Atlanta, GA. September 2003.

(4

[8] B. Akgul, J. Lee and V. Mooney, “A System-on-a-Chip Lock Cache with Task Preemption Support,” Proceedings of
i‘/zg Té‘;rnl\?tiona{a Cog;(‘%fnce on Compilers, Architecture and Synthesis for Embedded Systems (CASES 2001), pp.
-157, November .

71 © 2004 Georgia Institute of Technology

——

Q& A

72 © 2004 Georgia Institute of Technology

Thank you!

——

Deadlock Avoidance Algorithm (DAA)
More about R-dl avoidance

Ask P2 to release Q2

IRz Q2 can be granted to P1

Ask P1 to release Q1

I 2= Q1 can be granted to P2

73 © 2004 Georgia Institute of Technology

——

Proof of the Correctness of
DDU Algorithm

u Correctness

» Not empty = 3 cycle(s) = deadlock

, Empty = 3 no cycle(s) = no deadlock
= Proof with

5 Lemmas
4 Theorems

Mij

[=[0][x]

Detection Matnx

Q1| Q2| @3 | Q4

Qa

3

P4

* Additional detail can be found in a journal submission and a technical report [3, 7]

74 © 2004 Georgia Institute of Technology

——

Proof of the Correctness of
DDU Algorithm (cont'd)

a2 5 Lemmas

» Removing terminal edges will not alter any cycle

, If @ RAG can be completely reduced, the system
does not have a deadlock

,» If no cycles in a RAG, the RAG can be completely
reduced.

, A process that is making progress is not involved in
deadlock

, If a system does not have a deadlock, all processes
can make progress within a finite time

75 © 2004 Georgia Institute of Technology

——

Proof of the Correctness of
DDU Algorithm (cont'd)

= 4 Theorems

, If @ RAG contains any cycle, the RAG cannot be

completely reduced

,» If @ RAG cannot be completely reduced, the RAG

contains at least a cycle

, A cycle is a necessary and su
deadlock

icient condition for

, DDU Algorithm detects deadlock iff there exists a

cycle in a RAG

76 © 2004 Georgia Institute of Technology

——

Proof of Run-Time Complexity of DDU

2 Q: How many steps

does DDU need to
detect deadlock in
parallel hardware?

2 Proof with
2 Corollaries
1 Lemma
1 Theorem

Mij

[=[0][x]

Detection Matnx

Q1| a2

Q3| Q4

Qa

3

P4

* Additional detail can be found in a journal submission and a technical report [3, 7]

77 © 2004 Georgia Institute of Technology

——

Proof of Run-Time Complexity of DDU
(cont'd)

u 2 Corollaries

» The total number of nodes in the smallest
possible cycle = 4

» The number of edges in any path (not cycle)
using all nodes in the smallest possible cycle

e \i

78 © 2004 Georgia Institute of Technology

——

Comparison: DDU and DAU

Method of Deadlock Detection Time

Detection (average cycles)
DDU 1.3
DDU in software 1830
Method of Deadlock Avoidance Time
Avoidance (average cycles)
Hardware /
Software 2188

79 © 2004 Georgia Institute of Technology

Normalized
Detection Time

1X
1408X

Normalized
Avoidance Time

1X
312X

——

