
Q2

P1

P2

Q1

1 © 2004 Georgia Institute of Technology

Hardware/Software Deadlock
Avoidance for Multiprocessor

Multiresource System-on-a-Chip

Dissertation DefenseDissertation Defense
ByBy

Jaehwan LeeJaehwan Lee

Advisor: Vincent J. Mooney IIIAdvisor: Vincent J. Mooney III

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA USA

Q2

P1

P2

Q1

2 © 2004 Georgia Institute of Technology

Outline

Motivation and ObjectiveMotivation and Objective
Background and Prior WorkBackground and Prior Work
Proofs about Deadlock Detection UnitProofs about Deadlock Detection Unit
Deadlock Avoidance UnitDeadlock Avoidance Unit
Parallel BankerParallel Banker’’s Algorithm Units Algorithm Unit
Integration into Integration into δδ hardware/software RTOS hardware/software RTOS
frameworkframework
ConclusionConclusion

3 © 2004 Georgia Institute of Technology

Motivation
- Technology Trends
Future Future SoCSoC’’ss

Multiple heterogeneous processors (tens of processes)Multiple heterogeneous processors (tens of processes)
Multiple onMultiple on--chip hardware resourceschip hardware resources

DSP, FFT, MPEG, GPS, Shared Memory, etcDSP, FFT, MPEG, GPS, Shared Memory, etc
ExamplesExamples

XilinxXilinx VirtexVirtex--II Pro FPGA includes multiple PowerPCII Pro FPGA includes multiple PowerPC
BroadcomBroadcom BCM1400 includes multiple MIPS64BCM1400 includes multiple MIPS64

Processes in such an SoCProcesses in such an SoC
Dynamically request and use resourcesDynamically request and use resources
May end up in deadlockMay end up in deadlock

Current embedded system or single processor systemCurrent embedded system or single processor system
Typically ignored todayTypically ignored today

HW
SW

RTOS SoC: System on ChipSoC: System on Chip

4 © 2004 Georgia Institute of Technology

Motivation
- Does deadlock really matter?

Examples of future realExamples of future real--time systemstime systems
HumanHuman--like robot with multiple processeslike robot with multiple processes

In case of deadlockIn case of deadlock
•• DamageDamage
•• People get injuredPeople get injured
•• LawLaw--suitssuits

Mars RoverMars Rover
In case of deadlockIn case of deadlock

•• Money lossMoney loss
•• Time lossTime loss

Industrial controlIndustrial control
CarsCars

Even if low probability of deadlock, prefer no Even if low probability of deadlock, prefer no
deadlock whatsoeverdeadlock whatsoever

5 © 2004 Georgia Institute of Technology

Objective
- Problem, Solution and Goal

ProblemProblem
How to deal with deadlock?How to deal with deadlock?

GoalGoal
Allow software to make requests in any orderAllow software to make requests in any order
Grant as many resources as possibleGrant as many resources as possible
Avoid deadlock correctly and quicklyAvoid deadlock correctly and quickly

SolutionSolution
A hardware/software mechanism of deadlock A hardware/software mechanism of deadlock
avoidance, easily applicable to Realavoidance, easily applicable to Real--Time Time
Multiprocessor SystemMultiprocessor System--onon--aa--Chip (SoC) designChip (SoC) design

6 © 2004 Georgia Institute of Technology

Background: Definitions

Definition of Definition of DeadlockDeadlock
A system has a deadlock A system has a deadlock iffiff the the
system has a set of processes, each system has a set of processes, each
of which is blocked, waiting for of which is blocked, waiting for
requirements that can never be requirements that can never be
satisfiedsatisfied

Q2

P1

P2

Q1

7 © 2004 Georgia Institute of Technology

Background: Definitions

Definition of Definition of LivelockLivelock
Livelock is a situation where a request Livelock is a situation where a request
for a resource is repeatedly denied and for a resource is repeatedly denied and
possibly never accepted because of the possibly never accepted because of the
unavailability of the resource, resulting unavailability of the resource, resulting
in a stalled process, while the resource in a stalled process, while the resource
is made available for other is made available for other process(esprocess(es))
which make progresswhich make progress

8 © 2004 Georgia Institute of Technology

Background: Definitions

Definition of Deadlock AvoidanceDefinition of Deadlock Avoidance
A way of dealing with deadlock A way of dealing with deadlock
where resource usage is dynamically where resource usage is dynamically
controlled not to reach deadlock controlled not to reach deadlock
(i.e., on the fly, resource usage is (i.e., on the fly, resource usage is
controlled to ensure that there can controlled to ensure that there can
never be deadlock)never be deadlock)

9 © 2004 Georgia Institute of Technology

Background: Definitions

Definition of a Safe SequenceDefinition of a Safe Sequence
A safe sequence is an enumeration pA safe sequence is an enumeration p11, ,
pp22, , ……, , ppnn of all processes in the system, of all processes in the system,
such that for each i=1, 2, such that for each i=1, 2, ……, n, the , n, the
resources that presources that pii may request are a may request are a
subset of the union of resources subset of the union of resources
currently available plus resources currently available plus resources
currently held by pcurrently held by p11, p, p22, , ……, p, pii--11

10 © 2004 Georgia Institute of Technology

Background: Terms
Request deadlock (R-dl)
A deadlock situation directly caused by a requestA deadlock situation directly caused by a request
Assumptions: Assumptions: No restriction on resource usageNo restriction on resource usage

(i) P1 requires either Q1, Q2, or both depending on software flo(i) P1 requires either Q1, Q2, or both depending on software floww
(ii) P2 also requires either Q1, Q2, or both(ii) P2 also requires either Q1, Q2, or both
(iii) We don(iii) We don’’t know in advancet know in advance

When P1 and P2 take flows that they require both Q1 and Q2When P1 and P2 take flows that they require both Q1 and Q2

Q2

P1

P2

Q1
t1

Grant edge
Request edge

t2

t3 t4

t1

t2

P1, P2: processes
Q1, Q2: resources

11 © 2004 Georgia Institute of Technology

Background: Terms
Grant deadlock (G-dl)

A deadlock situation directly caused by a grantA deadlock situation directly caused by a grant
The same assumptions with the previousThe same assumptions with the previous

Q1

P1 P2

Q2

Grant edge

Request edge

Q3

P3

Q1

P1 P2

Q2 Q3

P3

Assumption (iv):

Priorities P1 > P2 > P3

t1 t3 t4
t5t1 t2t2

12 © 2004 Georgia Institute of Technology

Differentiation between
R-dl and G-dl

ReasonReason
Some actions can only be taken for either RSome actions can only be taken for either R--dl or Gdl or G--dl.dl.
(E.g., G(E.g., G--dl could have been avoided by granting Q2 to dl could have been avoided by granting Q2 to
P3 instead of P2 in the previous GP3 instead of P2 in the previous G--dl example.)dl example.)

Q1

P1 P2

Q2 Q3

P3

Q2

P1

P2

Q1

13 © 2004 Georgia Institute of Technology

Why does deadlock occur?
- Four Deadlock Conditions

Properties of ResourcesProperties of Resources
Mutual ExclusionMutual Exclusion

No simultaneous sharing of a resourceNo simultaneous sharing of a resource
No PreemptionNo Preemption

A resource can be released only by the process holding A resource can be released only by the process holding
the resource.the resource.

Behavior of ProcessesBehavior of Processes
Hold and WaitHold and Wait

A process may hold some resources while the process A process may hold some resources while the process
requests additional resources.requests additional resources.

Circular WaitCircular Wait
A process must wait for unavailable resources to become A process must wait for unavailable resources to become
available.available.

14 © 2004 Georgia Institute of Technology

Background: Terms
Single vs. Multiple Instance Resources

Single instance resourcesSingle instance resources
A resource that can support one process at a timeA resource that can support one process at a time

E.g., a printerE.g., a printer

Multiple instance resourcesMultiple instance resources
A resource that can support a certain number of A resource that can support a certain number of
multiple processes simultaneouslymultiple processes simultaneously

E.g., a counting semaphore associated with E.g., a counting semaphore associated with
allocable memoryallocable memory

15 © 2004 Georgia Institute of Technology

Background: Terms
Resource Allocation Graph (RAG)

P1 P2 P3 P4

Q1 Q4Q2 Q3

A Set of Edges E = (A Set of Edges E = (PPii →→ QQjj)) U (U (QQjj →→ PPii))

““Bipartite Bipartite
GraphGraph””

Grant edge

Request edge

A Set of Nodes V = A Set of Nodes V = PP U U QQ
PPii: processes, : processes, QQjj: resources: resources

16 © 2004 Georgia Institute of Technology

Terms – RAG and
Corresponding Matrix Representation M

processes

resources

Used in Deadlock Detection Unit (DDU)Used in Deadlock Detection Unit (DDU)

RAGRAG Allocation matrixAllocation matrix

17 © 2004 Georgia Institute of Technology

Terms – RAG and
Corresponding Matrix Representation M

request
edges

grant
edges

Allocation matrixAllocation matrixRAGRAG

18 © 2004 Georgia Institute of Technology

Terminal nodes

Terms – RAG and
Corresponding Matrix Representation M

Terminal edges

Connect nodes

Incoming
edge

Outgoing
edge

RAGRAG

Terminal column
Terminal row

Allocation matrixAllocation matrix

19 © 2004 Georgia Institute of Technology

Matrix based parallel operation approachMatrix based parallel operation approach
Terminal edge reduction technique to reveal cycles Terminal edge reduction technique to reveal cycles
(i.e., deadlock)(i.e., deadlock)

Terminal (i.e., removable) edge*: not related to deadlockTerminal (i.e., removable) edge*: not related to deadlock

Simple bitSimple bit--wise Boolean operationswise Boolean operations
Implementation easierImplementation easier
Operation faster, Operation faster, O(min(m,nO(min(m,n))))
2~3 orders of magnitude faster than software2~3 orders of magnitude faster than software

Novelty from previous algorithms Novelty from previous algorithms
Does NOT trace exact cyclesDoes NOT trace exact cycles
Does NOT require linked listsDoes NOT require linked lists

Prior Work by Shiu, Tan and Mooney
Deadlock Detection Hardware Unit (DDU)

P. Shiu, Y. Tan and V. Mooney, "A Novel Parallel Deadlock Detection
Algorithm and Architecture," 9th International Workshop on
Hardware/Software Codesign (CODES'01), pp. 30-36, April 2001.

Q1

P1 P2

Q2 Q3

P3

**

20 © 2004 Georgia Institute of Technology

Abstraction of DDU
Check the reducibility of an allocation matrixCheck the reducibility of an allocation matrix

Remove all terminal edges currently revealed at each step in matRemove all terminal edges currently revealed at each step in matrix rix MM
If If ∃(either R(either R’’s or G) in column i (s or G) in column i (terminal columnterminal column))
⇒ remove all entries in column i
If If ∃(either R(either R’’s or Gs or G’’s) in row j (s) in row j (terminal rowterminal row))
⇒ Remove all entries in row j

Iterate until Iterate until ¬¬(reducible) or empty(reducible) or empty
Determine deadlockDetermine deadlock

If empty (no edges), no deadlockIf empty (no edges), no deadlock
If If ¬¬(empty), deadlock(empty), deadlock

Terminal
edges

Iterations DeadlockNot empty

21 © 2004 Georgia Institute of Technology

Prior Work in Deadlock Avoidance
Traditional MethodsTraditional Methods

Require some knowledge of future requestsRequire some knowledge of future requests
Declare maximum claims (each process)Declare maximum claims (each process)
Give a grant only if remaining in a safe stateGive a grant only if remaining in a safe state

AdvantagesAdvantages
No deadlockNo deadlock
No preemptionNo preemption

DisadvantagesDisadvantages
Low resource utilizationLow resource utilization

Worse for single unit resourcesWorse for single unit resources
Performance degradationPerformance degradation

Due to dynamic avoidance decisionDue to dynamic avoidance decision
Practical issues Practical issues –– long software runlong software run--timetime

22 © 2004 Georgia Institute of Technology

Prior Work in Deadlock Avoidance
DijkstraDijkstra: Banker: Banker’’s Algorithm (1968)s Algorithm (1968)

For a single multipleFor a single multiple--instance resourceinstance resource
Maximum claims strategyMaximum claims strategy

HabermannHabermann: O(nm: O(nm22) (1969)) (1969)
For multipleFor multiple--instance multiple resourcesinstance multiple resources
Livelock problemLivelock problem

Holt: Holt: O(mnO(mn) (1972)) (1972)
Solved livelock problem using waitSolved livelock problem using wait--time counterstime counters
For general resource systemsFor general resource systems

BelikBelik (1990)(1990)
Path matrix representationPath matrix representation

Resource allocation Resource allocation
CChanging an acyclic digraph while keeping it acyclichanging an acyclic digraph while keeping it acyclic

For multiple singleFor multiple single--instance resourcesinstance resources
O(mnO(mn) in general, O(1) in the best case) in general, O(1) in the best case

No prior work in hardware implementation of a deadlock avoidanceNo prior work in hardware implementation of a deadlock avoidance
approachapproach

Q2

P1

P2

Q1

23 © 2004 Georgia Institute of Technology

Outline

Motivation and ObjectiveMotivation and Objective
Background and Prior WorkBackground and Prior Work
Proofs about Deadlock Detection UnitProofs about Deadlock Detection Unit
Deadlock Avoidance UnitDeadlock Avoidance Unit
Parallel BankerParallel Banker’’s Algorithm Units Algorithm Unit
Integration into Integration into δδ hardware/software RTOS hardware/software RTOS
frameworkframework
ConclusionConclusion

24 © 2004 Georgia Institute of Technology

Proofs of the Correctness of and
run-time complexity of DDU

Why do proofs matter?Why do proofs matter?
AuthenticityAuthenticity

No false alarmNo false alarm
To avoid any damages or liabilityTo avoid any damages or liability

To ensure timeliness in a realTo ensure timeliness in a real--time SoCtime SoC
Within a certain amount of time for a Within a certain amount of time for a
robot not to fall over in a deadlockrobot not to fall over in a deadlock

* Additional details can be found in a journal submission and a technical report [3, 7]

25 © 2004 Georgia Institute of Technology

Proof of the Correctness of DDU

Deadlock vs. Cycle RelationDeadlock vs. Cycle Relation
Deadlock Deadlock ⇒ ∃ Cycle(s) in an RAG
Cycle(s) ⇒ ∃ Deadlock

Q1

P1 P2

Q2 Q3

P3

Q2

P1

P2

Q1

DDU detects deadlock DDU detects deadlock iffiff there exists a cycle there exists a cycle
in an RAGin an RAG

26 © 2004 Georgia Institute of Technology

Remove edges in columns and rows with only G’s or only R’s
Operations performed in parallel throughout the matrix at each
iteration

A cycle: a circular pairs of R-G edges in rows and in columns

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5

Iterations No deadlockCompletely reducible

Proof of the Correctness of DDU
- Intuition behind proofs

27 © 2004 Georgia Institute of Technology

Proof of the Run-time Complexity of
DDU

An upper bound on the number of edges in a An upper bound on the number of edges in a
path (not a cycle or RAG) = 2*path (not a cycle or RAG) = 2*min(m,nmin(m,n))

Due to the bipartite propertyDue to the bipartite property

DDU, implemented in hardware, completes its DDU, implemented in hardware, completes its
computation in at most 2*computation in at most 2*min(m,nmin(m,n)) -- 3 steps 3 steps

O(min(m,nO(min(m,n))))

Q1

P1 P2

Q2 Q3

P3 P4 P5 P6

2*min(6,3)=6

* Additional details in a journal submission and a technical report [3, 7]

Q2

P1

P2

Q1

28 © 2004 Georgia Institute of Technology

Outline

Motivation and ObjectiveMotivation and Objective
Background and Prior WorkBackground and Prior Work
Proofs about Deadlock Detection UnitProofs about Deadlock Detection Unit
Deadlock Avoidance UnitDeadlock Avoidance Unit
Parallel BankerParallel Banker’’s Algorithm Units Algorithm Unit
Integration into Integration into δδ hardware/software RTOS hardware/software RTOS
frameworkframework
ConclusionConclusion

29 © 2004 Georgia Institute of Technology

No declaration of maximum claimsNo declaration of maximum claims
No restriction on resource usageNo restriction on resource usage
AdvantagesAdvantages

Higher resource utilizationHigher resource utilization
Fast avoidance due to hardware implementationFast avoidance due to hardware implementation

DisadvantagesDisadvantages
Somewhat unfairness on a special occasion Somewhat unfairness on a special occasion

When avoiding GWhen avoiding G--dl dl
(a lower priority process could proceed before a higher (a lower priority process could proceed before a higher
priority process, which would end up in deadlock)priority process, which would end up in deadlock)
---- Similar concept to priority inheritanceSimilar concept to priority inheritance
But, resulting in higher resource utilizationBut, resulting in higher resource utilization

Possibility of resource preemption Possibility of resource preemption
When avoiding RWhen avoiding R--dldl

Assumption: all resources singleAssumption: all resources single--instanceinstance

Deadlock Avoidance Unit (DAU)

30 © 2004 Georgia Institute of Technology

Deadlock Avoidance Algorithm (DAA)
AAn event of a requestn event of a request

Is the resource available?Is the resource available?

Grant it toGrant it to
tthe requesterhe requester

WWould cause Rould cause R--dl?dl?

Mark the Mark the
rrequest equest
pendingpending

returnreturn

YY

NN

NN

YY

Priority of requester >Priority of requester >
Priority of ownerPriority of owner

Mark the Mark the rrequest pendingequest pending
Ask the current owner Ask the current owner
to release the resourceto release the resource

Ask the requester to Ask the requester to
give up give up resource(sresource(s))

YY

NN

Resolve
livelock

as well as
deadlock

* No deadlock here* No deadlock here

31 © 2004 Georgia Institute of Technology

Deadlock Avoidance Algorithm (DAA)

AAn event of a releasen event of a release

AAny process is waiting?ny process is waiting?

Mark the resource Mark the resource
availableavailable

Granting it to the highest priority Granting it to the highest priority
process process causes Gcauses G--dl?dl?

Grant it to theGrant it to the
highest priorityhighest priority
process waitingprocess waiting

returnreturn

YY

NN

NN

YY

Grant it to a process Grant it to a process
causing no deadlockcausing no deadlock

after finding such a processafter finding such a process

Improve
resource
utilization

32 © 2004 Georgia Institute of Technology

Proof of the Correctness of DAA

Proof with lemmas and theoremsProof with lemmas and theorems
Theorem 1 (R-dl case)

Denying the request in the case of R-dl results in
livelock unless a process involved in the deadlock
releases a resource involved in the deadlock

Theorem 2 (G-dl case)
For a given system, not currently deadlocked,
where a grant of a resource occurs, there must
exist at least one process to which the resource
can be granted without deadlock

* Additional details in a technical report

33 © 2004 Georgia Institute of Technology

Architecture of the DAU

DDU
(matrix)

Start

Reset

Done

Deadlock

DAA
Logic

w/ FSM

Address
decoder

Command
registers

Status
registers

Cell access

Address
control

Data

DDU: Deadlock Detection Unit DDU: Deadlock Detection Unit
FSM: finite state machineFSM: finite state machine

34 © 2004 Georgia Institute of Technology

State Transition Diagram
- DAA Logic FSM

idleidle

waiting?waiting?
releaserelease

available?available?

requestrequest

RR--dl?dl?

grantgrant

yy

nn
nn

makemake
pendingpending

searchsearch
nextnext

pendingpending
GG--dl?dl?

temporarytemporary
grantgrant

grantgrant

comparecompare
prioritiespriorities

yy

requesterrequester
ggive upive up

ownerowner
ggive upive up

yy nn

yy

nn

R>OR>O O>RO>R

FSM: finite state machineFSM: finite state machine
find find

ownerowner

35 © 2004 Georgia Institute of Technology

DAU Experimentation
- Target System-on-a-Chip

Four MPC755Four MPC755’’ss
Each CPU has 32KB IEach CPU has 32KB I--Cache Cache
and 32KB Dand 32KB D--CacheCache
100MHz external clock, 100MHz external clock,
16MB shared memory16MB shared memory

HW
SW

RTOS

Four resourcesFour resources
Q1: Video Interface (VI)Q1: Video Interface (VI)
Q2: Inverse Discrete Cosine Transform (IDCT)Q2: Inverse Discrete Cosine Transform (IDCT)
Q3: Fast Fourier Transform (FFT)Q3: Fast Fourier Transform (FFT)
Q4: Network Interface (NI)Q4: Network Interface (NI)

36 © 2004 Georgia Institute of Technology

DAU Experimentation
- RTOS, Application, Environment
AtalantaAtalanta RTOS 0.3RTOS 0.3

By Sun, Blough and Mooney at Georgia TechBy Sun, Blough and Mooney at Georgia Tech

Each process requires two resources except P4Each process requires two resources except P4
P1: processing a video stream (needs VI + IDCT)P1: processing a video stream (needs VI + IDCT)
P2: separating/enhancing frames (needs IDCT + FFT)P2: separating/enhancing frames (needs IDCT + FFT)
P3: extracting special images (needs FFT + VI)P3: extracting special images (needs FFT + VI)
P4: transferring images (needs NI)P4: transferring images (needs NI)
One active process for each processing element (PE)One active process for each processing element (PE)

Seamless CVE from Mentor GraphicsSeamless CVE from Mentor Graphics
Instruction accurate simulationInstruction accurate simulation
VCS (VCS (SynopsysSynopsys) and XRAY (Mentor)) and XRAY (Mentor)

37 © 2004 Georgia Institute of Technology

Experimental Results of DAU

GG--dldl avoidance simulation: Two kindsavoidance simulation: Two kinds
DAU: DAU: SynopsysSynopsys VCS runs compiled Verilog codeVCS runs compiled Verilog code
DAADAA in software: in software: MPC755 runs compiled C code in Seamless CVEMPC755 runs compiled C code in Seamless CVE
Example application invokes deadlock avoidance 12 timesExample application invokes deadlock avoidance 12 times

Q1

P1 P2

Q2 Q3

P3

Q1

P1 P2

Q2 Q3

P3

t1 t2t3 t4
t5

38 © 2004 Georgia Institute of Technology

Experimental Results of DAU
(cont’d)
GG--dldl avoidance simulation resultavoidance simulation result
Time line with resource usageTime line with resource usage

PP11

PP22

PP33

tt11=801=801

tt22=4903=4903

tt33=8977=8977

tt44=16801=16801

tt55=16804=16804

tt66=16809=16809 tt66=24885=24885

tt77=24888=24888 tt88=34791=34791

QQ11 and Qand Q22

QQ22 and Qand Q33

QQ22 and Qand Q33

bus clock cyclesbus clock cycles

39 © 2004 Georgia Institute of Technology

Experimental Results of DAU
(cont’d)
GG--dldl avoidance simulation resultavoidance simulation result
Performance improvementPerformance improvement

99% algorithm execution time reduction99% algorithm execution time reduction
37% reduction37% reduction in an application execution timein an application execution time

312X312X

1X1X

Normalized Normalized
Exe. TimeExe. Time

2188 (average)2188 (average)

7 (average)7 (average)

Algorithm Exe.Algorithm Exe.
Time (cycles)Time (cycles)

4770447704DAA in SoftwareDAA in Software

3479134791DAU HardwareDAU Hardware

Application Exe. Application Exe.
Time (cycles)Time (cycles)

Method of Deadlock Method of Deadlock
AvoidanceAvoidance

40 © 2004 Georgia Institute of Technology

Experimental Results of DAU
(cont’d)
RR--dldl avoidance simulation: Two kindsavoidance simulation: Two kinds

DAU: DAU: SynopsysSynopsys VCS runs compiled Verilog codeVCS runs compiled Verilog code
DAADAA in software: in software: MPC755 runs compiled C code in Seamless CVEMPC755 runs compiled C code in Seamless CVE
Example application invokes deadlock avoidance 14 timesExample application invokes deadlock avoidance 14 times

Q1

P1 P2

Q2 Q3

P3

Q1

P1 P2

Q2 Q3

P3

t1 t2 t3

t5
t4

t6

41 © 2004 Georgia Institute of Technology

Experimental Results of DAU
(cont’d)
RR--dldl avoidance simulation resultavoidance simulation result
Performance improvementPerformance improvement

99% algorithm execution time reduction99% algorithm execution time reduction
44% reduction44% reduction in an application execution timein an application execution time

294X294X

1X1X

Normalized Normalized
Exe. TimeExe. Time

5562755627

3850838508

Application Exe. Application Exe.
Time (cycles)Time (cycles)

2102 (average)2102 (average)

7.13 (average)7.13 (average)

Algorithm Exe.Algorithm Exe.
Time (cycles)Time (cycles)

DAA in SoftwareDAA in Software

DAU HardwareDAU Hardware

Method of Deadlock Method of Deadlock
AvoidanceAvoidance

42 © 2004 Georgia Institute of Technology

Synthesis Results of DAU
SynopsysSynopsys Design CompilerDesign Compiler
TSMC .25TSMC .25µµm technology library from m technology library from QualcoreQualcore LogicLogic
0.05% of the total SoC area with four 0.05% of the total SoC area with four PEsPEs and memoryand memory

Clock period used: 4 ns

TSMC: Taiwan Semiconductor Manufacturing Company
PE: Processing Element

943943152471524720x2020x20

--40 Million40 MillionMPSoCMPSoC

7537538868886815x1515x15
6126124309430910x1010x10

24292429
15971597

Total Area in terms of Total Area in terms of
twotwo--input NAND gatesinput NAND gates

5525527x77x7
523523DAU 5x5DAU 5x5

Lines of Verilog Lines of Verilog
HDL CodeHDL CodeModule NameModule Name

Q2

P1

P2

Q1

43 © 2004 Georgia Institute of Technology

Outline

Motivation and ObjectiveMotivation and Objective
Background and Prior WorkBackground and Prior Work
Proofs about Deadlock Detection UnitProofs about Deadlock Detection Unit
Deadlock Avoidance UnitDeadlock Avoidance Unit
Parallel BankerParallel Banker’’s Algorithm Units Algorithm Unit
Integration into Integration into δδ hardware/software RTOS hardware/software RTOS
frameworkframework
ConclusionConclusion

44 © 2004 Georgia Institute of Technology

Parallelized Version of the BankerParallelized Version of the Banker’’s Algorithms Algorithm
For multipleFor multiple--instance resourcesinstance resources

AdvantagesAdvantages
Guarantee deadlock avoidanceGuarantee deadlock avoidance
Support multiple instance resourcesSupport multiple instance resources
Provide Provide O(nO(n) run) run--time complexity time complexity

Reduced from the original O(mnReduced from the original O(mn22))
O(1) in the best caseO(1) in the best case

DisadvantagesDisadvantages
Require hardwareRequire hardware
Require maximum claim declarationRequire maximum claim declaration
May underMay under--utilize resourcesutilize resources

Parallel Banker’s Algorithm (PBA)

45 © 2004 Georgia Institute of Technology

PBAU Architecture (3x3)

46 © 2004 Georgia Institute of Technology

Are the resources available?Are the resources available?

Parallel Banker’s Algorithm (PBA)
AAn event of a requestn event of a request

Is the request valid?Is the request valid?

Pretend allocationPretend allocation

Deny the requestDeny the request
Grant itGrant it

returnreturn

YY

NN

Safe?Safe?

YY

YY

NN

NN

Safe check (next slide)Safe check (next slide)

Undo Undo allocalloc

47 © 2004 Georgia Institute of Technology

Parallel Banker’s Algorithm (PBA)

Safety checkSafety check

returnreturn

Does any such Does any such
process still exist?process still exist? YY

NN

Work[jWork[j]:=]:=Available[jAvailable[j] for all j] for all j
Finish[iFinish[i] := false for all i] := false for all i

Find all Find all ableable--toto--finishfinish processes i in parallelprocesses i in parallel
(i.e., (i.e., Finish[iFinish[i] == false and] == false and Need[i][jNeed[i][j]] ≤≤ Work[jWork[j] for all j)] for all j)

For all such For all such ableable--toto--finishfinish processes iprocesses i {{
Finish[iFinish[i] := true] := true
Work[jWork[j] =] = Work[jWork[j] +] + Allocation[i][jAllocation[i][j] for all j] for all j

}}

DecisionDecision

48 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

pp22

instancesinstances

needneed

allocatedallocated

for processesfor processes

Initial stateInitial state

(Legend)(Legend)

allocatedallocated

availableavailable

for resourcesfor resources

49 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

pp22

needneed

allocatedallocated

instancesinstances

for processesfor processes

Current safe stateCurrent safe state

allocatedallocated

availableavailable

for resourcesfor resources

50 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

instancesinstances

needneed

allocatedallocated
pp22

for processesfor processes

Current safe stateCurrent safe state

allocatedallocated

availableavailable

for resourcesfor resources

51 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

instancesinstances

needneed

allocatedallocated
pp22

for processesfor processes

Next state, safe?Next state, safe?

allocatedallocated

availableavailable

for resourcesfor resources

52 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated
pp22

for processesfor processes

allocatedallocated

availableavailable

for resourcesfor resources

53 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated
pp22

for processesfor processes

allocatedallocated

availableavailable

for resourcesfor resources

54 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated
pp22

for processesfor processes

allocatedallocated

availableavailable

for resourcesfor resources

55 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated
pp22

for processesfor processes

allocatedallocated

availableavailable

for resourcesfor resources

56 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated
pp22

AA safe sequence: psafe sequence: p2 2 pp11 pp33

for processesfor processes

allocatedallocated

availableavailable

for resourcesfor resources

57 © 2004 Georgia Institute of Technology

Resource Allocation by PBA

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated
pp22

for processesfor processes

A safe sequence: pA safe sequence: p2 2 pp11 pp33, 3 steps, i.e., , 3 steps, i.e., O(nO(n))

allocatedallocated

availableavailable

for resourcesfor resources

58 © 2004 Georgia Institute of Technology

Resource Allocation by PBA
An example of O(1) run-time

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated

for processesfor processes

allocatedallocated

availableavailable

for resourcesfor resources

pp22

59 © 2004 Georgia Institute of Technology

Resource Allocation by PBA
An example of O(1) run-time

resourcesresources qq22qq11

pp11

pp33

FinishFinish

instancesinstances

needneed

allocatedallocated

for processesfor processes

A safe sequence: any combinationA safe sequence: any combination

allocatedallocated

availableavailable

for resourcesfor resources

pp22

60 © 2004 Georgia Institute of Technology

PBAU Experimentation
- System and Application

Five processorsFive processors
Four resourcesFour resources

Q1: Multiple Q1: Multiple DSPsDSPs
Q2: Hardware semaphoresQ2: Hardware semaphores
Q3: I/O buffersQ3: I/O buffers
Q4: A memory Q4: A memory allocatorallocator

PBAU 5x5PBAU 5x5
A robotic applicationA robotic application

Five processesFive processes
Requires multiple instancesRequires multiple instances
22 times of service requests to 22 times of service requests to
PBAUPBAU

Requests, releases and Requests, releases and
claim settingsclaim settings

HW
SW

RTOS

61 © 2004 Georgia Institute of Technology

Experimental Results of PBAU

Performance improvementPerformance improvement
99% algorithm execution time reduction99% algorithm execution time reduction
19% reduction19% reduction in an application execution in an application execution
timetime

1625X1625X

1X1X

Normalized Normalized
Exe. TimeExe. Time

5398 (average)5398 (average)

3.32 (average)3.32 (average)

Algorithm Exe.Algorithm Exe.
Time (cycles)Time (cycles)

221259221259BA in SoftwareBA in Software

185716185716PBAU HardwarePBAU Hardware

Application Exe. Application Exe.
Time (cycles)Time (cycles)

Method of Deadlock Method of Deadlock
AvoidanceAvoidance

62 © 2004 Georgia Institute of Technology

Synthesis Results of PBAU
SynopsysSynopsys Design CompilerDesign Compiler
TSMC .25TSMC .25µµm technology library from m technology library from QualcoreQualcore LogicLogic
0.05% of the total SoC area with five 0.05% of the total SoC area with five PEsPEs and memoryand memory
All All PBAUsPBAUs able to handle up to 16 instances for each resourceable to handle up to 16 instances for each resource

13501350197531975320x2020x20

--42 Million42 MillionMPSoCMPSoC

10001000111581115815x1515x15
7707705030503010x1010x10

32433243
13031303

Total Area in terms of Total Area in terms of
twotwo--input NAND gatesinput NAND gates

7007008x88x8
600600PBAU 5x5PBAU 5x5

Lines of Verilog Lines of Verilog
HDL CodeHDL CodeModule NameModule Name

Clock period used: 4 ns

TSMC: Taiwan Semiconductor Manufacturing Company
PE: Processing Element

Q2

P1

P2

Q1

63 © 2004 Georgia Institute of Technology

Outline

Motivation and ObjectiveMotivation and Objective
Background and Prior WorkBackground and Prior Work
Proofs about Deadlock Detection UnitProofs about Deadlock Detection Unit
Deadlock Avoidance UnitDeadlock Avoidance Unit
Parallel BankerParallel Banker’’s Algorithm Units Algorithm Unit
Integration into the Integration into the δδ hardware/software hardware/software
RTOS frameworkRTOS framework
ConclusionConclusion

64 © 2004 Georgia Institute of Technology

δ framework

Hardware/Software RTOS/MPSoC Configuration
Framework

Enables automatic generation of different mixes of the
HW/SW RTOS
Can be generalized to instantiate additional HW or SW
RTOS components
Integrates parameterized IP Generators such as DDU,
DAU and PBAU generators

Designed by Mooney and Lee
RTOS Components: designed by B. Akgul, P. Kuarchroen,
J. Lee, K. Ryu, M. Shalan and E. Shin

65 © 2004 Georgia Institute of Technology

δ framework
- Methodology
δ Framework

HW
RTOS
Info.

Makefile

User.h

Top.v

Hardware
Description

Library

GUI Tool

SW
RTOS
Info.

SW
Compile

HW
Compile

User
Input

Result
and

Feedback

Application SW
Library

Compiled
Hardware

Library

Executable
HW

Simulation
in

Seamless
CVE

Executable
SW

XRAY

Modelsim

HW
Library

DDUDDU

DAUDAU

PBAUPBAU

66 © 2004 Georgia Institute of Technology

δ framework
- Methodology

GUI

SoCLC: designed
by B.Akgul

SoCDMMU: designed
by M. Shalan

Bus: designed
by K. Ryu

67 © 2004 Georgia Institute of Technology

δ framework
- Methodology
GUIs for a custom bus generation

68 © 2004 Georgia Institute of Technology

Deadlock IP generator

GUI

69 © 2004 Georgia Institute of Technology

δ framework
- Implementation

Verilog top file generation example

Desc PBAU
~~~

enddesc

IP Library• Start with PBAU description clock clock_gen (SYSCLK);

cpu_mpc750 cpu1 (…);

bpau pbau5x5 (addr, data,…);

arbiter arb (br_bar, bg_bar…);

(i)
Generate 

code
• Generate instantiation code

multiple instantiation code 
if needed (e.g., PEs)

(ii) Add wires 
and initial states

wire addr;
wire data;
wire br_bar;
wire bg_bar;
wire SYSCLK;
…

initial begin … end;

• Add wires and initial 
statements (iii)

After 
Instan-
tiation

PEs 1,2,3,…

Memory 
1,2,…

PBAU

Arbiter

Clock



70 © 2004 Georgia Institute of Technology

Conclusion with Contribution

Proofs of Deadlock Detection Unit (DDU)Proofs of Deadlock Detection Unit (DDU)
Correctness and runCorrectness and run--time complexitytime complexity

Deadlock Avoidance Unit (DAU)Deadlock Avoidance Unit (DAU)
Faster Deadlock Avoidance (312X)Faster Deadlock Avoidance (312X)

No prior knowledge about resource requirementsNo prior knowledge about resource requirements
No restrictions on resource usageNo restrictions on resource usage
Higher resource utilizationHigher resource utilization
Solution to livelockSolution to livelock

Parallel BankerParallel Banker’’s Algorithm Unit (PBAU)s Algorithm Unit (PBAU)
Faster deadlock avoidance for multiple instance multiple Faster deadlock avoidance for multiple instance multiple 
resource systems (1600X)resource systems (1600X)
Small area (less than 0.1% in our example SoC)Small area (less than 0.1% in our example SoC)

δδ Hardware/Software RTOS partitioning frameworkHardware/Software RTOS partitioning framework
With custom deadlock IP generator for a specific targetWith custom deadlock IP generator for a specific target



71 © 2004 Georgia Institute of Technology

Publications
[1[1] J. Lee and V. Mooney ] J. Lee and V. Mooney ““An An O(nO(n)) Parallel BankerParallel Banker’’s Algorithm for Systems Algorithm for System--onon--aa--Chip,Chip,”” submitted to submitted to Design, Design, 

Automation and Test in Europe (Automation and Test in Europe (DATEDATE’’0505)),, under reviewunder review..

[2[2] J. Lee and V. Mooney ] J. Lee and V. Mooney ““Hardware/Software Partitioning of Operating Systems: Focus on DeHardware/Software Partitioning of Operating Systems: Focus on Deadlock Detection and adlock Detection and 
AvoidanceAvoidance,,”” to be appeared in to be appeared in IEE Computer & Digital Techniques IEE Computer & Digital Techniques ((IEE CDTIEE CDT)),, January 2005January 2005..

[3[3] J. Lee and V. Mooney ] J. Lee and V. Mooney ““An An O(min(m,nO(min(m,n)) Parallel)) Parallel Deadlock Detection Algorithm,Deadlock Detection Algorithm,”” resubmitted to resubmitted to ACM TransactionsACM Transactions
on Design Automation of Electronic Systemson Design Automation of Electronic Systems ((TODAESTODAES)) on September 2004,on September 2004, under review.under review.

[4[4] J. Lee and V. Mooney ] J. Lee and V. Mooney ““A Novel DeadlocA Novel Deadlock Avoidance Algorithm and Its Hardware Implementation,k Avoidance Algorithm and Its Hardware Implementation,”” International International 
Conference on Hardware/Software Conference on Hardware/Software CodesignCodesign and System Synthesis and System Synthesis ((CODESCODES’’0404)), pp. 200, pp. 200--205, September205, September 2004.2004.

[5] J. Lee, V. Mooney, A. [5] J. Lee, V. Mooney, A. DalebyDaleby, K. , K. IngstromIngstrom, T. , T. KlevinKlevin and L. and L. LindhLindh, , ““A comparison of the RTU hardware RTOS with aA comparison of the RTU hardware RTOS with a
Hardware/Software RTOS,Hardware/Software RTOS,”” Proceedings of the Asia South PacificProceedings of the Asia South Pacific Design Automation Conference (Design Automation Conference (ASPDAC 2003ASPDAC 2003),),
pp. 683pp. 683--688, January 2003.688, January 2003. Best Paper Award Candidate (one of 12 nominees; not selected forBest Paper Award Candidate (one of 12 nominees; not selected for Best Paper).Best Paper).

[6[6]] J. Lee, K. J. Lee, K. RyuRyu and V. Mooney, and V. Mooney, ““A framework forA framework for automatic generation of configuration files for a custom RTOS,automatic generation of configuration files for a custom RTOS,””
Proceedings of the Engineering of Reconfigurable Systems andProceedings of the Engineering of Reconfigurable Systems and Algorithms (Algorithms (ERSAERSA 20022002),), pp. 31pp. 31--37, June 2002.37, June 2002.

[7[7] J. Lee and V. Mooney ] J. Lee and V. Mooney ““An An O(min(m,nO(min(m,n)) Parallel)) Parallel Deadlock Detection Algorithm,Deadlock Detection Algorithm,”” Tech. Rep.Tech. Rep. GITGIT--CCCC--0303--41,41, College College 
of Computing, Georgia Institute of Technology, Atlanta,of Computing, Georgia Institute of Technology, Atlanta, GA. September 2003.GA. September 2003.

[8[8] B. ] B. AkgulAkgul, J. Lee and V. Mooney, , J. Lee and V. Mooney, ““AA SystemSystem--onon--aa--Chip Lock Cache with Task Preemption SupportChip Lock Cache with Task Preemption Support,,”” Proceedings of Proceedings of 
the International Conference on Compilers,the International Conference on Compilers, Architecture and Synthesis for Embedded Systems (Architecture and Synthesis for Embedded Systems (CASES 2001CASES 2001),), pp. pp. 
149149--157, November 2001.157, November 2001.



72 © 2004 Georgia Institute of Technology

Thank you!Thank you!

Q & A



73 © 2004 Georgia Institute of Technology

Deadlock Avoidance Algorithm (DAA)

More about R-dl avoidance

Q2

P1

P2

Q1

IIf P1>P2f P1>P2

Q2

P1

P2

Q1

IIf P2>P1f P2>P1

Ask P2 to release Q2Ask P2 to release Q2
Q2 can be granted to P1Q2 can be granted to P1

Ask P1 to release Q1Ask P1 to release Q1
Q1 can be granted to P2Q1 can be granted to P2



74 © 2004 Georgia Institute of Technology

Proof of the Correctness of 
DDU Algorithm

CorrectnessCorrectness
Not Not empty empty ⇒ ∃ cycle(s) ⇒ deadlockdeadlock
Empty Empty ⇒ ∃ no cycle(s) ⇒ no deadlockdeadlock

Proof withProof with
5 Lemmas
4 Theorems

* Additional detail can be found in a journal submission and a technical report [3, 7]



75 © 2004 Georgia Institute of Technology

Proof of the Correctness of 
DDU Algorithm (cont’d)

5 Lemmas5 Lemmas
Removing terminal edges will not alter any cycleRemoving terminal edges will not alter any cycle
If a RAG can be completely reduced, the system If a RAG can be completely reduced, the system 
does not have a deadlockdoes not have a deadlock
If no cycles in a RAG, the RAG can be completely If no cycles in a RAG, the RAG can be completely 
reduced.reduced.
A process that is making progress is not involved in A process that is making progress is not involved in 
deadlockdeadlock
If a system does not have a deadlock, all processes If a system does not have a deadlock, all processes 
can make progress within a finite timecan make progress within a finite time



76 © 2004 Georgia Institute of Technology

Proof of the Correctness of 
DDU Algorithm (cont’d)

4 Theorems4 Theorems
If a RAG contains any cycle, the RAG cannot be If a RAG contains any cycle, the RAG cannot be 
completely reducedcompletely reduced
If a RAG cannot be completely reduced, the RAG If a RAG cannot be completely reduced, the RAG 
contains at least a cyclecontains at least a cycle
A cycle is a necessary and sufficient condition for A cycle is a necessary and sufficient condition for 
deadlockdeadlock
DDU Algorithm detects deadlock DDU Algorithm detects deadlock iffiff there exists a there exists a 
cycle in a RAGcycle in a RAG



77 © 2004 Georgia Institute of Technology

Proof of Run-Time Complexity of DDU

Q: Q: How many steps 
does DDU need to 
detect deadlock in 
parallel hardware?

Proof withProof with
2 Corollaries
1 Lemma
1 Theorem

* Additional detail can be found in a journal submission and a technical report [3, 7]



78 © 2004 Georgia Institute of Technology

Proof of Run-Time Complexity of DDU 
(cont'd)

2 Corollaries2 Corollaries
The total number of nodes in the smallest The total number of nodes in the smallest 
possible cycle = 4possible cycle = 4
The number of edges in any path (not cycle) The number of edges in any path (not cycle) 
using all nodes in the smallest possible cycle using all nodes in the smallest possible cycle 
= 3= 3

Q1

P1 P2

Q2 Q1

P1 P2

Q2



79 © 2004 Georgia Institute of Technology

Comparison: DDU and DAU

18301830

1.31.3

Detection Time     Detection Time     
((average average cycles)cycles)

1X1XDDUDDU
1408X1408XDDU in DDU in softwaresoftware

Normalized  Normalized  
Detection TimeDetection Time

Method of Deadlock Method of Deadlock 
DetectionDetection

21882188

77

AvoidanceAvoidance Time  Time  
(average cycles)(average cycles)

312X312XSoftwareSoftware

1X1XHardwareHardware

Normalized Normalized 
Avoidance TimeAvoidance Time

Method of Deadlock Method of Deadlock 
AvoidanceAvoidance


