TI Standard for Writing Algorithms

ELG6163 Report

Geoffrey Green
Carleton #100350275
geoffgreen@ieee.org
March 17, 2006

For: Dr. Miodrag Bolic

Abstract

As the complexity of DSP systems increases and the required time-to-market
window shrinks, the task of systems integration is becoming more and more
important. It is less common for all algorithms to be developed “in-house” as
designers choose instead to use third party algorithms in their designs. In order
to ensure that components from multiple vendors work together and
concurrently in the overall system, a standard interface is required for DSP
algorithms. Texas Instruments (TI) launched the eXpressDSP Algorithm Standard
Interface (XDAIS) in 1999 to fill this need. This report provides the reader with
an introduction to XDAIS - it explains the motivation for this specification, and
provides a high-level description of the standard’s rules and guidelines. It also
describes the design tools provided by TI to assist in the development of
compliant algorithms, and concludes with an overview of the compliance process.

1.0 Introduction and Motivation for DSP Algorithm Standards

In the product development or research environment in which DSP engineers
find themselves today, they are faced with several challenges that must be
overcome to ensure success in their endeavours. In commercial systems
(especially consumer electronics) that have a limited product lifetime, reducing
the time-to-market is crucial. Increased complexity in DSP systems is a fact of
life which manifests itself in many ways. Among these include evolving
communications standards, more sophisticated algorithms emerging from R&D
labs, the need to support more interfaces, the requirement to increase
throughput speed, the trend towards increased product “density” (e.g. cell
phones that also act as cameras, organizers and MP3 players), and the presence
of multi-processor systems.

In this environment, it has become virtually impossible for engineers to
implement completely “home-grown” DSP systems while still maintaining market
relevance. Increasingly, it is necessary for design teams to outsource various
portions of an overall implementation, allowing the group to focus on the
development of core functionalities that differentiate their products. As an
example, consider a small startup company that develops thermal cameras based
on a certain technology for which they hold a patent. The expertise in this
company is best directed towards endeavours related to thermal imaging, for
example, increasing temperature resolution. Though important for their success
in the marketplace, writing JPEG encoders and USB interface code is probably
not a wise use of this company’s limited resources. These necessary components
can be acquired externally (be it in the form of other vendors’ IP products, or

open source offerings) and then incorporated into the final design. These
“canned” routines are known as commercial off-the-shelf (COTS) software [1].

Clearly, the role of systems integration becomes very important to a DSP design
team in this setting. A systems integrator is responsible for interfacing all of the
various software components (from both in-house teams and third-party
sources) and making sure that they function properly in the overall design.
Without standards to govern interoperability between components, the systems
integrator must spend significant time and effort writing “glueware” to ensure
that various COTS components from different sources (each with a proprietary
interface in possibly C or assembler) work together. From a company’s
perspective, that is likely no more desirable than having that person writing the
outsourced algorithm’s functionality in the first place.

The preceding discussion motivates the use of a standard interface for DSP
algorithms — a common set of rules and conventions that these algorithms must
follow in order to “plug in” to a larger system. Ensuring that the standards are
adhered to is done with an accompanying compliance process. The benefits of
this standards framework are obvious [2]:

o for the systems integrator, the task becomes the simpler one of
incorporating an algorithm that is written to that standard into the overall
design, confident in the knowledge that it will function appropriately.

o for the algorithm developer, incorporating a standardized interface into
the delivered algorithm ensures that they can market their code to the
maximum number of clients without having to support multiple interfaces

e decreased time-to-market, as resources are not tied up writing “glueware”

¢ algorithm quality improvement (as deployment increases, creators will
receive feedback from users)

o free up skilled resources for algorithm development/creativity/innovation

¢ simplifies the evaluation of algorithms from multiple vendors with the
ability to quickly plug out and plug in various algorithms to compare (size,
speed, etc.) or upgrade components

¢ instils confidence in the product since algorithm has been verified by
independent compliance process

2.0 Texas Instruments XDAIS Algorithm Standard

2.1 History and Related Components

Recognizing these advantages and seeking to promote a rich industry of COTS
DSP algorithms, TI launched its eXpressDSP Algorithm Interface Standard
(XDAIS) in 1999 and has maintained it since then. XDAIS is just one of several

components of TI's eXpressDSP program which is designed to help DSP
engineers work more effectively. Other key components of eXpressDSP include:
e Code Composer Studio, an integrated development environment
e DSP/BIOS, a real-time operating system kernel, and
e Reference Frameworks, basic DSP software structures ready for
refinement by a specific application

Figure 1 clarifies how these components fit together — the XDAIS standard
provides the specification for the “sockets” and “plugs” that help to incorporate
an algorithm into the overall system framework [1].

Application/Duveloper Kits
Reference Frameworks
I Compliant 2] £ plication
[Algorithm fweare
TMIS220™ DSP Algorithm Stanar]

fmmliall l:mpliall:
Algarithm Algorithm

Code Composer Studio™ Dev. Toals

]

&) 3
Compliamt © Compliant
Plug-in Plug-in

Program Program Real-Time
Build Debug Analysis DSP/EINS™ Drivers

XDS560™ Emulator : Embetided Emulation Components
Host Computer ' TMS320™DSP

Figure 1 — Relationship between eXpressDSP components and XDAIS

An algorithm that meets the standard can be certified as eXpressDSP-compliant
and are allowed to display the logo shown in Figure 2.

TEXAS INSTRUMENTS

Figure 2 —eXpressDSP Compliant Logo

2.2 XDAIS Standard Details
2.2.1 Guiding Principles

The following were deemed to be the most important requirements during the
development of the standard [2]:

e algorithms that originate from multiple vendors should be able to
interoperate in the same system
¢ algorithms should be “framework-agnostic” — in other words, a given
algorithm can be re-used in different applications
¢ algorithm use should be possible in both static and dynamic environments
e algorithms can be delivered in binary form, which safeguards the vendor’s
IP, and eliminates the user’s need to re-compile
¢ integrating the algorithm into the system should not require recompilation
of the client application (reconfiguration and relinking may be required)
The XDAIS standard rules and guidelines (described below) are a direct result of
these requirements.

2.2.2 Omissions

The following are not included in the current version of the standard but are
considered best practices and may be incorporated in the future [2]:
e version control for published algorithms
¢ licensing, encryption, and IP protection support (e.g. evaluation copies)
¢ installation and verification (e.g. digital signatures)
e documentation and online help (and installation into CCS)

2.2.3 Structure and Content

Note: It is impossible in a report of this length to provide details on each rule
and guideline - the interested reader is referred to the standard itself for more
information [2].

1. Rules and Guidelines (TI document SPRU352)

The XDAIS standard consists of a set of ru/es and a set of guidelines, each of
which is defined at various algorithmic levels of abstraction (shown in Figure 3).
A summary of these is provided in Appendix A. An algorithm must obey all of the
rules in order to be eXpressDSP compliant. It is recommended that the algorithm
also adhere to all guidelines but this is not required.

Level 1 General Programming Guidelines
+ C callable + Reentrant
+ Mo hard coded addresses + gfc
Level 2 Algorithm Component Model
* Modules +* Packaging
+ Generic interfaces + eto.
Rules for TMS320C2x Rules for TMS320C5x Rules for TMS320C6x
el * Intermupt usage * Intermupt usage = Interrupt usage
* Nemory usage * Memory usage = Memory usage
* Register usage * Reqgister usage = Register usage
« gic. « gfc. = gt
Telecomn Imiaging Audio Automotive Other
Level 4 + vocoders + JPEG + coders + efe.
+ echo cancel + gfc. L -
« efe.

Figure 3 — Basis of XDAIS standard

The rules and guidelines at level 1 are very high level and cover all application
areas. Level 2 specifies an abstraction layer between the algorithm itself and the
processor’s resources (such as memory, I/0O, etc.). This ensures that multiple
algorithms (or instances of the same algorithm) can co-exist on the DSP without
“trampling” each other’s resources. Level 3 deals with specific vendors’ DSP
families (e.g. TMS320C6000) - while consensus does not exist today, the
guidelines in the standard at least provide a starting point. If a vendor deviates
from this, it will be easy to draw attention to this in documentation. Level 4 is
specific to application domains and is not covered in the XDAIS standard. A DSP
algorithm that meets the rules defined in levels 1-3 is considered eXpressDSP-
compliant.

2. Application Programming Interfaces (APIs) (TI document
SPRU360)

Several rules and guidelines in the XDAIS standard specify the use of various
APIs that should be used to wrap DSP algorithm code in an application, such as
[3]:

e IALG API (algorithm instance interface) — responsible for creating an
algorithm instance at run-time ensuring safe operation in any environment
(static/dynamic or pre-emptive/non pre-emptive). The most critical role
performed here is that of memory management. All memory references in
an algorithm must be directed through this API — no explicit memory
references should exist in the code. An eXpressDSP compliant algorithm is
required to use this API.

o IDMA2/ACPY2 APIs (direct memory access (DMA) interface) —
responsible for handling the DMA resource. Though not required, any
eXpressDSP compliant algorithm that wants to use DMA must implement
this interface, as well as the ACPY2 interface to request DMA services'.

e IRTC API (real-time trace control interface)

e Supplementary APIs — these are user-supplied APIs that call the algorithm
code (should be similar to TI demonstration applications) and are
optional. They are intended to increase the usability of XDAIS algorithms
in applications, and sit a layer above the required IALG API.

3.0 Tools for developing XDAIS compliant DSP code

TI provides several tools to assist in the implementation of eXpressDSP-
compliant algorithms.

3.1 Documentation

Table 1 gives a list of the main TI documents related to the XDAIS standard.

TI document number Title (with comments

SPRU352 TMS320 DSP Algorithm Standard Rules and Guidelines

SPRU360 TMS320 DSP Algorithm Standard API Reference

SPRA581 White Paper — The TMS320 DSP Algorithm Standard
(general overview)

SPRA810 A Consumer’s Guide to Using eXpressDSP-Compliant
Algorithms (for algorithm users)

SPRU424 TMS320 DSP Algorithm Development Guide (for
algorithm producers)

SPRU361 TMS320 DSP Algorithm Standard Demo Application

Table 1 — XDAIS standard documentation
3.2 Developer’s Kit

The XDAIS Developer’s Kit is a software package written by TI that acts as a
plug-in to Code Composer Studio IDE [4]. It is designed to facilitate the writing,
integration and testing of XDAIS algorithms. It includes:
e Files required for XDAIS standard — these include header files, algorithm
APIs and libraries, as well as example algorithms and applications.

! IDMA2 and ACPY2 APIs replace and deprecate the IDMA and ACPY interfaces
that were defined in the earlier revisions of the TMS320 DSP Algorithm Standard Rules and
Guidelines (SPRU352) and TMS320 DSP Algorithm Standard API Reference (SPRU360).

o eXpressDSP Component Wizard — helps the designer automatically
generate generic code for an algorithm interface. The files are then
modified for a specific application, a process in which the algorithm code
itself is added. This is the TI recommended way of writing compliant code,
since it allows designers focus on their code and not the XDAIS inner
workings.

e QualiTI algorithm validation tool — enables DSP engineers to automate the
testing of their algorithm.

3.3 Compliance Testing

The responsibility to ensure that the conditions for eXpressDSP compliance are
met lies with the algorithm writer. The QualiTI tool (see above) is also used for
XDAIS compliance self-testing. The writer, after successfully passing QualiTI
testing and examining the detailed report that is generated, submits the test
result to TI (along with other relevant information such as processor platform,
application area, etc.). Upon review by TI, the algorithm is then certified as
eXpressDSP compliant and qualifies to use the logo in Figure 2 [2].

It is interesting to note that at present, there exists a large choice of over 700
eXpressDSP compliant algorithms from roughly 100 third party participants [5].

4.0 Conclusion

This report presents an overview of the TI XDAIS DSP algorithm standard. The
motivation and reasons for the standard’s development is explained. While not
presenting excessive detail on standard specifics, an overview of the key areas
covered is presented, along with a discussion of the development tools provided
by TI to assist in compliance.

5.0 References

[1] Texas Instruments, “"White Paper — The TMS320 DSP Algorithm Standard”, TI
documentation number SPRA581, http://www.ti.com

[2] Texas Instruments, “TMS320 DSP Algorithm Standard Rules and Guidelines”,
TI documentation humber SPRU352, http://www.ti.com

[3] Texas Instruments, “TMS320 DSP Algorithm Standard API Reference”, TI
documentation number SPRU360, http://www.ti.com

[4] https://www-a.ti.com/downloads/sds support/targetcontent/XDAIS/index.html

[5] Texas Instruments, “"Complete Listing of eXpressDSP-Compliant Third Party
Algorithms”, TI documentation number SPRM088, http://www.ti.com

[6] Texas Instruments, “"A Consumer’s Guide to Using eXpressDSP-Compliant
Algorithms”, TI documentation number SPRA810, http://www.ti.com

[7] Texas Instruments, "TMS320 DSP Algorithm Development Guide”, TI
documentation number SPRU424, http://www.ti.com

Appendix A
List of Rules and Guidelines in XDAIS Standard

General Rules

Rule 1 All algorithms must follow the run-time conventions imposed by TI's
implementation of the C programming language.

Rule 2 All algorithms must be re-entrant within a pre-emptive environment
(including time-sliced pre-emption).

Rule 3 All algorithm data references must be fully relocatable (subject to
alignment requirements). That is, there must be no “hard coded” data memory
locations.

Rule 4 All algorithm code must be fully relocatable. That is, there can be no
hardcoded program memory locations.

Rule 5 Algorithms must characterize their ROM-ability; i.e., state whether they
are ROM-able or not.

Rule 6 Algorithms must never directly access any peripheral device. This
includes but is not limited to on-chip DMAs, timers, I/O devices, and cache
control registers. Note, however, algorithms can utilize the DMA resource by
implementing the IDMA2 interface.

Rule 7 All header files must support multiple inclusions within a single source
file.

Rule 8 All external definitions must be either API identifiers or API and vendor
prefixed.

Rule 9 All undefined references must refer either to the operations specified in
Appendix B (a subset of C runtime support library functions and a subset of the
DSP/BIOS HWI API functions) or TI's DSPLIB or IMGLIB functions, or other
eXpressDSP-compliant modules.

Rule 10 All modules must follow the eXpressDSP-compliant haming conventions
for those external declarations disclosed to the client.

Rule 11 All modules must supply an initialization and finalization method

Rule 12 All algorithms must implement the IALG interface.

Rule 13 Each of the IALG methods implemented by an algorithm must be
independently relocatable.

Rule 14 All abstract algorithm interfaces must derive from the IALG interface.
Rule 15 Each eXpressDSP-compliant algorithm must be packaged in an archive
which has a name that follows a uniform naming convention.

Rule 16 Each eXpressDSP-compliant algorithm header must follow a uniform
naming convention.

Rule 17 Different versions of an eXpressDSP-compliant algorithm from the same
vendor must follow a uniform naming convention.

Rule 18 If a module’s header includes definitions specific to a “debug” variant, it
must use the symbol _DEBUG to select the appropriate definitions; _DEBUG is
defined for debug compilations and only for debug compilations.

Rule 25 All Céx algorithms must be supplied in little-endian format

Rule 26 All Céx algorithms must access all static and global data as far data.
Rule 27 C6x algorithms must never assume placement in on-chip program
memory; i.e., they must properly operate with program memory operated in
cache mode.

Rule 28 On processors that support large program model compilation, all
function accesses to independently relocatable object modules must be far
references. For example, intersection function references within algorithm and
external function references to other eXpressDSP-compliant modules must be far
on the C54x; i.e., the calling function must push both the XPC and the current
PC.

Rule 29 On processors that support large program model compilation, all
independently relocatable object module functions must be declared as far
functions; for example, on the C54x, callers must push both the XPC and the
current PC and the algorithm functions must perform a far return.

Rule 30 On processors that support an extended program address space (paged
memory), the code size of any independently relocatable object module

should never exceed the code space available on a page when overlays are
enabled.

Rule 31 All C55x algorithms must document the content of the stack
configuration register that they follow.

Rule 32 All C55x algorithms must access all static and global data as far data;
also the algorithms should be instantiable in a large memory model.

Rule 33 C55x algorithms must never assume placement in on-chip program
memory; i.e., they must properly operate with program memory operated in
instruction cache mode.

Rule 34 All C55x algorithms that access data by B-bus must document: the
instance number of the IALG_MemRec structure that is accessed by the B-bus
(heapdata), and the data-section name that is accessed by the B-bus (static-
data).

Rule 35 All TMX320C28x algorithms must access all static and global data as far
data; also, the algorithm should be instantiable in a large memory model.

Performance Characterization Rules

Rule 19 All algorithms must characterize their worst-case heap data memory
requirements (including alignment).

Rule 20 All algorithms must characterize their worst-case stack space memory
requirements (including alignment).

Rule 21 Algorithms must characterize their static data memory requirements.
Rule 22 All algorithms must characterize their program memory requirements.

Rule 23 All algorithms must characterize their worst-case interrupt latency for
every operation.

Rule 24 All algorithms must characterize the typical period and worst-case
execution time for each operation.

DMA Rules

DMA Rule 1 All data transfer must be completed before return to caller.

DMA Rule 2 All algorithms using the DMA resource must implement the IDMA2
interface.

DMA Rule 3 Each of the IDMA2 methods implemented by an algorithm must be
independently relocateable.

DMA Rule 4 All algorithms must state the maximum number of concurrent DMA
transfers for each logical channel.

DMA Rule 5 All algorithms must characterize the average and maximum size of
the data transfers per logical channel for each operation. Also, all algorithms
must characterize the average and maximum frequency of data transfers per
logical channel for each operation.

DMA Rule 6 C6000 algorithms must not issue any CPU read/writes to buffers in
external memory that are involved in DMA transfers. This also applies to the
input buffers passed to the algorithm through its algorithm interface.

DMA Rule 7 If a C6000 algorithm has implemented the IDMA2 interface, all
input and output buffers residing in external memory and passed to this
algorithm through its function calls, should be allocated on a cache line boundary
and be a multiple of the cache line length in size. The application must also clean
the cache entries for these buffers before passing them to the algorithm.

DMA Rule 8 For C6000 algorithms, all buffers residing in external memory
involved in a DMA transfer should be allocated on a cache line boundary and be
a multiple of the cache line length in size.

DMA Rule 9 C6000 Algorithms should not use stack allocated buffers as the
source or destination of any DMA transfer.

DMA Rule 10 C55x algorithms must request all data buffers in external memory
with 32-bit alignment and sizes in multiples of 4 (bytes).

DMA Rule 11 C55x algorithms must use the same data types, access modes
and DMA transfer settings when reading from or writing to data stored in
external memory, or in application-passed data buffers.

General Guidelines

Guideline 1 Algorithms should minimize their persistent data memory
requirements in favour of scratch memory.

Guideline 2 Each initialization and finalization function should be defined in a
separate object module; these modules must not contain any other code.

Guideline 3 All modules that support object creation should support design-time
object creation.

Guideline 4 All modules that support object creation should support run-time
object creation.

Guideline 5 Algorithms should keep stack size requirements to a minimum.
Guideline 6 Algorithms should minimize their static memory requirements.
Guideline 7 Algorithms should never have any scratch static memory.
Guideline 8 Algorithm code should be partitioned into distinct sections and each
section should be characterized by the average number of instructions executed
per input sample.

Guideline 9 Interrupt latency should never exceed 10 ps.

Guideline 10 Algorithms should avoid the use of global registers.

Guideline 11 Algorithms should avoid the use of the float data type.

Guideline 12 All Céx algorithms should be supplied in both little- and big-endian
formats.

Guideline 13 On processors that support large program model compilations, a
version of the algorithm should be supplied that accesses all core run-time
support functions as near functions and all algorithms as far functions (mixed
model).

Guideline 14 All C55x algorithms should not assume any specific stack
configuration and should work under all the three stack modes.

DMA Guidelines

Guideline 1 The data transfer should complete before the CPU operations
executing in parallel (DMA guideline).

Guideline 2 All algorithms should minimize channel (re)configuration overhead
by requesting a dedicated logical DMA channel for each distinct type of DMA
transfer it issues, and avoid calling ACPY2 configure and preferring the new fast
configuration APIs where possible.

Guideline 3 To ensure correctness, All C6000 algorithms that implement IDMA2
need to be supplied with the internal memory they request from the client
application using algAlloc().

Guideline 4 To facilitate high performance, C55x algorithms should request
DMA transfers with source and destinations aligned on 32-bit byte addresses.
Guideline 5 C55x algorithms should minimize channel configuration overhead
by requesting a separate logical channel for each different transfer type. They
should also call ACPY2_configure when the source or destination addresses
belong in a different type of memory (SARAM, DARAM, External) as compared
with that of the most recent transfer.

