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Abstract 
A new recursive algorithm for fast computation of two- 
dimensional discrete cosine transforms (2-D DCT) is derived by 
converting the 2-D data matrices into 1-D vectors and then using 
different partition methods for the time and frequency indices. 
The algorithm first computes the 2-D complex DCT (2-D CCT) 
and then produces two 2-D DCT outputs simultaneously through 
a post-addition step. The decomposed form of the 2-D recursive 
algorithm looks very like a radix-4 FFT algorithm and is in 
particular suitable for VLSI implementation since the common 
entries in each row of the butterfly-like matrix are factored out in 
order to reduce the number of multipliers. A new linear systolic 
architecture is presented which leads to a hardware-efficient 
architectural design requiring only logN multipliers plus 3logN 
adderdsubtractors for the computation of two N x N DCTs. 

1. introduction 
Two-dimensional discrete cosine transform (2-D D o ,  in 
particular the 8x8 DCT, is one of the core operations in current 
standard image and video coding. There are a lot of papers 
discussing the fast implementation of the DCT/IDCT. One 
category of papers decomposes the original 8 x 8  DCT into two 
4x4 matrix-vector multiplications through input data reordering. 
The overall 2-D DCT architectures of these papers consist of I-D 
DCT processors with transpose memory to perform operations 
on the row and column of the input data. Due to the structural 
regularity, many 2-D DCT chips are fabricated using this method 
[4-61. However, the computation complexity of this method is 
usually high. 

Another group of papers has lower computation complexity 
but leads to irregular structures [I-31. These papers present fast 
DCT algorithms and derive the corresponding signal flow graphs 
(SFGs) that look like those for FFT. However, the SFG-like 
architectures require a lot of hardware area and the input/output 
burden is heavy. The irregular global interconnection wiring in 
the SFG-like architecture and the high hardware cost make these 
architectures not very suitable for VLSI implementation. 
Furthermore, as required in the first group of papers, these 2-D 
DCT approaches usually calls for transpose memory for data 
exchange of the intermediate results. 

In this paper, we will present a new recursive algorithm and 
the corresponding linear systolic architecture with very low 
hardware complexity for fast computation of the 2-D DCT. The 
new 2-D DCT architecture requires only 3 complex multipliers 
and 9 complex adders for the computation of two concurrent 2-D 
8x8 DCTs. Furthermore, the developed linear array architecture 
is fully pipelinable and is easily scalable to process 2-D DCT of 
general size N (with N power of 2). 

2. Recursive Algorithm for 2-D DCT 
The 2-D N x N DCT y ( k l , t ? )  of the input signal .v‘(,,~. nZ) is 
defined as 

2 y( & I, k 2 )  = -b(k I)b(k 2) 

where the transform size N will be assumed to be power of 2 in 
the following. Reordering the time indices n, and n, as follows 

x ( i 1 . i ~ )  = x’(2ii.Zi2). 
x(ii. N - i2  - I )  = x‘(Zi i .2 i z  + 1). 
X(N - i t  - 1, i z )  = x’2ii + I.Ziz, 
x ( ~  -it - I .N  - i 2 -  I )  = x‘(Zii+ 1.2izc1) 

i1.i~ = [ O . N / 2 - 1 ]  ’ (2) 

we obtain from the original input signal x ’ ( n i . n z )  the permuted 
input signals x ( n i , n z ) .  Using the reordered input signal x(ni.nz) 

and neglecting the post-scaling factors, Eqn. ( I )  of the 2-D DCT 
becomes 

kl.kZ,nl.n2 = [0, N -I]. & =E 
2 N  ’ 

From now on, we focus on the fast computation of z(ni.nz) with 
the permuted input x(ni .nz) .  First, we define an N x N  2-D 
complex DCT (2-D CCT) as 

U& kI.k2,nt,nZ =[O,N -I]. WN =exp(-j-). 
N 

The relationship between the 2-D DCT of Eqn. (3) and the 2-D 
CCT of Eqn. (4) is 

1 
2 

z ( t i . t 2 )  = -(Re(w(ki.kz)) - Im( w ( ~  -&i.&z))) 

We consider two permuted 2-D signals x l ( n l . n z ) ,  x2(nl.n2) 

and combine them into another 2-D complex signal 
x(nl .n2)  = xl(nl.n2)+ jxz(nl.n2). The 2-D DCTs zl(kl,k2) and 
z 2 ( k l . k ~ )  for xl(nl .n2)  and x2(nI,nZ) respectively can be 

computed from the 2-D CCT w(k l ,k2 )  of the complex 2-D 
signal as follows: 

i lt l ,12)=~[-Im[Y(H.~21]+Im[w(N-kl.N-kZ)] ( 5 )  

4 +Re[~~N-lil.X2)J+Re[u(*l.N-&2)]) 

Thus we can compute the 2-D CCT of the complex composite 
signal x3(nl.n2) = xl(nl,n2) + jx2(nl .n2)  and generate two 2-D 
DCTs r l (k l ,k? )  and z 2 ( k l . k 2 )  simultaneously using the post- 
processing operation characterized by Eqn. (5).  In the following, 
we will focus on the fast computation of the 2-D CCT in Eqn. 
(4). 

The 2-D CCT kernel operation could be split into sixteen 
parts, as shown in Tab. 1 where ( 0 )  denotes (N/2xN/2)  for 
clarity reason. Each of the two time indices nl and nz is 
partitioned into the first and the second half parts, and each of 
the two frequency indices kl and k 2  is partitioned into the 
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(n1.nZ)  

= ( n 1 9 n 2 )  
. ,  

( n l . n 2 )  

1 ni' nz' 

I ni' n2' -+- -+-+- 

Tab. 1: The relationship of the DCT operations for the sixteen 

kl =2rl  kl =2i l  k l = Z i l + l  k l = 2 i 1 + 1  
k2  = :!I2 

CCT(*) CCT(*) CCT(-) CCT(*) 

k2 = 2i2 + I k2 = 2i2 k2 = 2i2 + I 

I ni' n2' -+- -+- I -+-+- 

x w ; / 2 2  x w ; / ;  x w $ / 2 2  2 

I n?' 

CCr(*) -CCT(*) CCT(*) -CCT(-) 

partitioned regions where ( * ) = ( N / 2 x N / 2 ) .  

In order to represent the 2-D CCT kemel into a matrix form, 
we encode the input data samples from a 2-D matrix to a I-D 
vector using the row-major order, as shown in Eqn. (6).  

nIJ2 ( 1 n2 = 0 ... N - 1  
nl r 1 

i = y(,') = RR(N xN)&(") = 
RR(*) RR(m) [ 

N-I.N-I[ J 
where X ( O )  denotes the original 2-D input data matrix and 
- x ( O )  represents the corresponding 1 -D representation. Dividing 

the 2-D matrix X ( O )  into four parts according to the partitioning 
method in Tab. I ,  we obtain another 2-D matrix X ( ' )  

Xp.p= x( nl : [ O . N / 2 -  l ] ,n2  : [O.N 1 2 -  I]) 

Yr.= 1::- 

Xp, r = x(  nl : (0. N 12 - 11,112 : [ N 12. N 1) 
. Xr. p = x( nl : [ N  12. N ] . n 2  : [O.  N / 2 -  I ] )  

X r . r = x ( n l  : [ N / 2 . N ] . n 2 : [ N / 2 . N ] )  
where X p . p ,  X p . r ,  X r . p ,  and X r . r  are the partitioned 
N 1 2 x N 1 2  sub-matrixes. A totally different I-D vector 

representation of X(') is derived by transforming the four 2-D 
sub-matrixes Xp.p , X p , r ,  X r , p ,  and Xr.r  into their 
respective I-D vectors & . p ,  &.r , x r . p  , and x r . r  using 
the similar 2-D-to-I-D representation as in Eqn. (6 ) ,  and 
cascading them together into a I-D vector. 

By repeating s = log2 N times the above partitioning for the 
progressively smaller 2-D submatrices, and converting them into 
the corresponding 1 -D vector representations, we can generate 
the transformed I-D vector X(.') = ,f either from the original 1- 

D vector Xc0)  or from & ( I )  as follows: 

PP(*) D. P 

1 = - X(') = PP(NxN)X(O)  - = I PP(*)  PP(.) I[;;] (7) 

PP(*) ~ 

x"' - 
where the N 2  x N 2  permutation matrix P P ( N x N )  denotes the 
operation of the overall transformation starting from the original 
I-D vector X c O )  of s izeN2,  while t h e N 2 / 4 x N 2 / 4  matrix 
P P ( N  / 2 x  N / 2 )  represents the 2-D to I -D transformation for the 

I-D vector of size N 2 / 4 ,  i.e., X p , p . X P . r . X r , p .  or X r , r .  

Similarly, the recursive even-odd partitioning For the 
frequency index and the corresponding 2-D to I-D conversion 
can be represented as 
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f ( N  1 2 x  N 1 2 )  I RR(N 1 2 x  N I ? ) T ( N  1 2 x  N I 2 ) P P T ( N  1 2 x  N 1 2 )  
which represents the 2-D CCT with input and output indices 
reordered. The three permuted diagonal matrices are defined as 

where j =  1,2,3. Based on Eqn. ( I  I ) ,  we may express the 
recursive formula for the 2-D ( N  x N )  CCT as 
i = ~ ( N x N )  X 

j ( N  I 2  x N 12)  = PP( N I 2  X N 12)C  j (  N 12 x N 12) PPT ( N  I 2  x N 12)  

1 

1 (12) 
where 

I (*)  I(*) I(*) 

BD(NxN)  BB(NxN)  

The N 2 x N 2  matrix B ( N x N ) = B D ( N x N ) B B ( N x N )  looks 
like a radix-4 butterfly operation where BD(N x N )  is a diagonal 
matrix and B B ( N x N )  is a band matrix with seven nonzero 
bands. In the next section, we will show that the operation of 
B D ( N x N )  can be mapped to a single multiplier while the 
operation of B B ( N x N )  can be realized by three adders only. 

3. Systolic Architecture for 2-D CCT 
We will use the example of the 4 x 4 2-D CCT to illustrate the 
mapping from the recursive algorithm of Eqn. (12) for the 
N x N 2-D CCT to the linear systolic architecture consisting of 
log2N stages. By applying the recursion of Eq. (12) two times, 
we could express the 2-D CCT of size 4 x 4 as: 

rB(2x-2)  1 
B ( 2 x 2 )  

B ( 4 x 4 )  2 (13) 
B ( 2  x 2 )  B ( 2 x 2 )  !- Stuge 1 

Stuge 2 
where the two butterfly operations are 

RIJl4x1l D B ( 4 X l I  
1 

I ( 1 X l l  I ( l X 1 )  - I ( l x l )  - I l l x l l  

I ( l X 1 )  I ( l X 1 )  I ( l X 1 )  I ( 1 X l )  

I ( l X l 1  - I ( l x l l  l ( l X l 1  - I ( l x l l  1 C,(( lXl )  I ( l X l 1  - I ( l x l )  - I ( l X l I  I ( 1 X l )  

DRl2X2l 
1 B ( Z X z ) =  C d l X l )  

C 2 ( ( I X I )  

81112r:, 

i“’”” 
i 

The 7-band matrices of B B ( 4 x 4 )  and B B ( 2 x 2 )  contains 
elements of only I ,  -1 or 0. Thus, no multiplier is required in the 
band-matrix-vector multiplication. 

Let us consider the realization of the DG for the first stage of 
the 2-D 4x4 CCT. i.e the multiplication of the 16 x 16 band 
matrix B B ( 4 x 4 ) .  As shown in Fig. I ,  each of the three PES. 
PE(I.1). PE(1.2). and PE(1.3). requires an additional multiplexer 
to select the direct input or the delayed input. The detailed 
operations for the control signals are included in Fig. 1. Due to 
the regularity (with period of 16 cycles), the control signal can 
be generated from the third and fourth bits of a counter. 

The PE(I,O) needs the bit-inversion and the increment (the 
addition of the carry-in bit of one) when the control signal C( I ,0) 
is - I .  We could postpone the increment to the next PE. i.e., 
PE(I.1). if PE(I.1) has control signal of 1 ,  as marked by 1’ .  

However, when the control signals of both PE( 1.0) and PE( I ,  I ) 
are -1. the increment of PE(I,O) must be postponed further to 
PE(1.2) which is marked by C(1,2)=1”’. The control signal is 
also used to select either the left or the right input of the 
multiplexers. Since the control signal of I or -1 in each PE 
might imply different operations, we label them as I ,  1’.  I ” ,  I”’ ,  
or -1, -1’. The detailed operations of all the different control 
signals in each PE are included in Fig. 1. 

I 

Fig. 1: The architecture and the controlling operations of all PES 
for stage I of the 2-D 4x4 CCT. 

The architecture for the second stage of the 4x4 2-D CCT is 
shown in Fig. 2 which includes the detailed operations for the 
control signals. Again the different control signals of 1, I’ ,  1”. 
I”’, and -1. -1’ mark the difference of carry-in bit and the 
selection of the multiplexer input. The control signals repeat 
every four cycles and thus can be generated from the two least 
significant bits of a counter. 

ru1.m w . 1 1  ?UI.1I WlJ> 

An overall architecture for the computation of the 4x4 2-D 
CCT is shown in Fig. 3 which includes two multipliers 
implementing the multiplication of B D ( 4 x 4 )  and B D ( 2 x 2 )  in 
Eqn. (14). In fact, we can save a lot of power by adding some 
control to the multipliers to bypass the input while the multiplied 
coefficients are 1, as can be observed in B D ( 4 x 4 )  and 
B D ( 2 x 2 ) .  The linear systolic architecture is easily scaleable for 
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computation of general N x N  2-D CCT. Fig. 4 shows the 
systolic architecture for the stage i ( i f  log2 N ) except for the last 
stage which is the same as Fig. 3. In general only 31og2 N 

complex adders and logz N complex multipliers are required 
for the computation of an N x N 2-D CCT. 

Fig. 3: The overall systolic architecture for computation of the 
4x4 2-D CCT. 

input 

PE(i.0) PE(i.1) P E W )  PE(i.3) 

Fig. 4 A general architecture for the i-th ( i  # log2 N ) stage of 
a n N x N  2-DCCT 

We have demonstrated a novel architecture for computing 
the 2-D NxN CCT using only 3 log,N complex adders and 
log,N complex multipliers. As mentioned in Sec. 2, two 2-D 
N x N  DCTs can be generated simultaneously from the 
computed 2-D N x N CCT by appending a post-processing unit 
performing the simple post-addition in Eqn. (5 ) .  The 
computation complexity of our proposed 2-D DCT algorithm is 
low because we represent the 2-D DCT of size N x N into a I-D 

DCT with size of N z  , and exploit fully the fast recursive 
algorithm for the I-D DCT problem. 

The time index transformation in Eqn. (7). characterized by 
the permutation matrix P P ( N x N )  , can be combined with the 
input reordering of Eqn. (2). and be implemented by an input 
addressing ROM for fetching input data signals of correct order. 
Similarly, we can merge the frequency index transform 
characterized by the permutation matrix R R ( N x N )  in Eqn. ( S )  
with the output reordering in Eqn. (5 ) .  and furthermore with the 
zigzag operation when applied to the standard video compression. 
Thus, all the output reordering operation can be realized by an 
output addressing ROM for generating computation results of 
desired order. 

Tab. 2 compares our 8xS DCT architecture with a recently 
propose one in [3]. The architecture in [3] fetches 16 input 

signals at a time, and generates 16 outputs simultaneous. Thus it 
requires a lot of input/output pins, making it difficult for VLSI 
implementation. Furthermore, the architecture contains a lot of 
global interconnection routing and several transpose memories 
for exchange of intermediate computing results. In contrast, our 
proposed method has very regular kernel architecture with local 
connection. It takes as input one complex word (two real words) 
and generates one complex word using arithmetic units of only 3 
complex multipliers and 9 complex adders. The regularity and 
the reduced number of arithmetic operators in our architecture 
make it favorable in terms of hardware and power cost. Besides, 
due lo the systolic structure, our architecture is easily pipelined 
and scalable to the 2-D DCT computation of any size without 

Tab. 2: Comparison of two 8x8 2-D DCT architectures. 

4. Conclusion 
This paper presents a new algorithm and the corresponding novel 
architecture for the computation of 2-D DCT. The algorithm 
converts the 2-D transform problem into the I-D case, and 
utilizes the different time and frequency index partition methods 
to reduce the computation complexity. Furthermore, the common 
factors in the decomposed matrix during the algorithm derivation 
are factored out in order to save the number of multipliers. The 
derived linear systolic architecture is very regular and easily 
scalable to any order. 
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