
Control gates as building blocks

for reversible computers

A. De Vos1, B. Desoete2, F. Janiak3, and A. Nogawski3

1 Universiteit Gent and Imec v.z.w., B-9000 Gent, Belgium
2 Universiteit Gent, B-9000 Gent, Belgium

3 Politechnika Lódzka, PL-90-924 Lódź, Poland

Abstract. In principle, any reversible logic circuit can be built by using
a single building block (having three logic inputs and three logic outputs).
We demonstrate that, for a flexible design, it is more advantageous to use
a broad class of reversible gates, called control gates. They form a gen-
eralization of Feynman’s three gates (i.e. the NOT, the CONTROLLED NOT,
and the CONTROLLED CONTROLLED NOT). As an illustration, two reversible
4-bit carry-look-ahead adders in 0.8 µm c-MOS have been built.

1 Introduction

Classical computing machines using logically irreversible gates unavoidably gen-
erate heat. This is due to the fact that each loss of one bit of information is
accompanied by an increase of the environment’s entropy by an amount k log(2),
where k is Boltzmann’s constant. This means that an amount of thermal energy
equal to kT log(2) is transferred to the environment (at temperature T). Accord-
ing to Landauer’s principle [1] [2] [3], it is possible to construct a computer that
dissipates an arbitrarily small amount of heat. A necessary condition is that no
information is thrown away. Therefore, logical reversibility is a necessary (al-
though not sufficient) condition for physical reversibility.

Fredkin and Toffoli [4] [5] have shown that a logically reversible basic building
block should have three binary inputs (sayA, B, and C) and three binary outputs
(say P , Q, and R). An arbitrary boolean function can be implemented using
exclusively such gate. Storme et al. [6] have shown that not less than 38,976
different logic gates (all with three inputs and three outputs) are candidates to
play the role of universal reversible building block. Instead of working with a
single block, one can equally well use a set of building blocks. Feynman [7] [8]
has proposed the use of three fundamental gates (See Table 1):

– the NOT gate,
– the CONTROLLED NOT gate, and
– the CONTROLLED CONTROLLED NOT gate.

In the present paper, we develop a design strategy that uses even more than
three building units. We call the new reversible units control gates.

Control gates for reversible computers 9.2.2

Table 1. Feynman’s three basic truth tables: (a) NOT, (b) CONTROLLED NOT,
(c) CONTROLLED CONTROLLED NOT

A P

0 1
1 0

(a)

AB PQ

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(b)

ABC PQR

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(c)

2 Simple control gates

2.1 Definition

A gate with k inputs (A1, A2, ..., Ak) and k outputs (P1, P2, ..., Pk), satisfying

Pi = Ai for all i ∈ {1, 2, ..., k − 1}
Pk = f(A1, A2, ..., Ak−1) XOR Ak ,

with f an arbitrary boolean function of k − 1 boolean arguments, is called a
simple control gate. The number k is called the width of the gate. The logic
inputs A1, A2, ..., Ak−1 are named the controlling bits, whereas the input Ak is
the controlled bit. Finally, the function f is called the control function.

2.2 Properties

We first demonstrate that any simple control gate is reversible. For this purpose,
we cascade two identical simple control gates, yielding

Pk = [f(A1, A2, ..., Ak−1) XOR f(A1, A2, ..., Ak−1)] XOR Ak ,

and thus Pi = Ai for all i, because of the two boolean identities X XOR X = 0
and 0 XOR Y = Y . The result is thus the k-bit follower. In other words: any
simple control gate is its own inverse, and thus is necessarily reversible.

Cascading two arbitrary simple control gates (one with control function f ′

and one with control function f ′′) results in a new simple control gate, with con-
trol function f ′ XOR f ′′. Therefore the simple control gates of width k together

with the operation cascading form a group. The group has 22k−1

elements. It is
abelian, because of the boolean identity X XOR Y = Y XOR X . We note that

– the NOT gate is a simple control gate with k = 1 and f a function with zero
arguments: f(.) = 1;

– the CONTROLLED NOT is a simple control gate with k = 2 and f(A1) = A1;
– the CONTROLLED CONTROLLED NOT is a simple control gate with k = 3 and
f(A1, A2) = A1 AND A2.

9.2.3 A. De Vos et al.

2.3 Implementation

The function

Pk = f(A1, A2, ..., Ak−1) XOR Ak

is equivalent with

Pk = NOT Ak if f(A1, A2, ..., Ak−1) = 1

Ak if NOT f(A1, A2, ..., Ak−1) = 1

and thus can be built into a square geometry, provided we use dual line electron-
ics, i.e. any signal X is accompanied by its counterpart NOT X . Fig. 1 shows Pk
is connected to Ak if f = 0 but is connected to Ak (short notation for NOT Ak)
if f = 1. Because a boolean function f(A1, A2, ..., Ak−1) can always be written

– either as an ‘OR of ANDs’ (often referred to as ‘sum of minterms’)

– or as an ‘AND of ORs’ (often referred to as ‘product of maxterms’),

we can implement Pk = f(A1, A2, ..., Ak−1) XOR Ak in the square, using

– either four parallel connections of series connections of switches

– or four series connections of parallel connections of switches

– or a combination of both.

Each switch is composed of one n-MOS transistor in parallel with one p-MOS
transistor (forming together a transmission gate). This leads to a reversible elec-
tronic implementation in dual-line pass-transistor logic: so-called r-MOS tech-
nology [9]. Such logic is naturally suited for adiabatic addressing [10] [11] [12].
All energy supplied to the outputs Pk and Pk comes from the inputs Ak and Ak,
i.e. not from separate power lines.

Fig. 1. Implementation of the function f XOR Ak, with the help of four switches

Control gates for reversible computers 9.2.4

Table 2. Truth table: (a) original (irreversible) table, (b) reversible version

A B C S

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

(a)

A B C D P Q R S

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 1
0 1 1 1 0 1 1 0
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0

(b)

As an example, suppose we have to implement truth Table 2a: a function
S(A,B,C) of three arguments. The appropriate control gate has a total of k = 4
inputs, k − 1 = 3 of which are control bits (A,B,C) controlling the k th = 4 th
input bit D. We extend Table 2a into Table 2b, where we have P = A, Q = B,
R = C, and where the fourth output bit S satisfies

S = ((A AND B AND C) OR (A AND B AND C) OR (A AND B AND C)) XOR D ,

indeed realizing (after presetting D = 0) truth Table 2a. Fig. 2a displays an
optimized implementation of the example, making use of

S = ((A OR C) AND B) XOR D ,

needing only 12 switches.

An alternative approach makes use of standard cells, where the particular
function f(A,B,C), to be XORed with D, is hardwired by the vias between the
Metal1 and Metal2 layers of the chip. These vias are displayed as small black
squares in Fig. 2b. The programmable gate however needs 2k+1−4 = 28 switches.

9.2.5 A. De Vos et al.

Fig. 2. Implementation of boolean Table 2 using (a) 12 switches, (b) 28 switches

Control gates for reversible computers 9.2.6

3 Control gates

3.1 Definition

When we cascade k simple control gates (one of width k, one of width k − 1,
..., and one of width 1), in the way of Fig. 3, we have a new gate of width k.
Because each output is only one boolean function f away from the inputs, its
logic depth is only 1. We call such gates control gates, as each output Pi is either
equal to the controlled bit Ai or to its inverse Ai, depending on the value of its
i− 1 controlling inputs A1, A2, ..., Ai−1.

Fig. 3. Decomposition of a control gate into simple control gates

We thus come to the definition of a control gate: a logic gate with k inputs
(A1, A2, ..., Ak) and k outputs (P1, P2, ..., Pk), satisfying

Pi = fi(A1, A2, ..., Ai−1) XOR Ai for all i ∈ {1, 2, ..., k},

with fi arbitrary boolean functions of (i−1) arguments, is called a control gate.

Note that a control gate with width k has (k − 1) controlling bits (A1, A2,
..., Ak−1) as well as (k − 1) controlled bits (A2, A3, ..., Ak).

We remark that the above definition is somewhat more general than the
preliminary definition presented at Patmos 2000 [12].

9.2.7 A. De Vos et al.

3.2 Properties

As any control gate is composed of simple control gates and any simple control
gate is reversible, the control gate is thus also reversible. The inverse of a simple
control gate is equal to itself. This is not the case with an arbitrary control
gate. The inverse of the control gate of Fig. 3 consists of first putting the simple
control gate f1, then the simple control gate f2, etc. Now the cascading of two
simple control gates of different width is not commutative. Thus an arbitrary
control gate and its reverse are not necessarily equal, the simple building blocks
appearing in opposite order.

Two control gates (one with control functions f ′i and one with control func-
tions f ′′i), when cascaded, form a new control gate, with control functions

fi(A1, A2, ..., Ai−1) = f ′i(A1, A2, ..., Ai−1) XOR

f ′′i (f ′1(.) XOR A1, f
′
2(A1) XOR A2, ..., f

′
i−1(A1, A2, ..., Ai−2) XOR Ai−1) .

Thus, the control gates of width k, together with the cascading operation, form

a group. This group has 22k−1 elements and is solvable, but not abelian.

4 Carry-look-ahead adder

To demonstrate the flexibility of using control gates, we present here, as an
example, a 4-bit carry-look-ahead adder, as an alternative to the classical, i.e.
ripple adder. An n-bit ripple adder consists of 2n gates of type CONTROLLED

NOT and 2n gates of the CONTROLLED CONTROLLED NOT type [12]. Its logic depth
increases with increasing n. In order to make the calculation less deep, and thus
faster, we replace the ripple adder by a carry-look-ahead adder.

For the carry-look-ahead (or c.l.a.) [13], we first need to implement the calcu-
lation of the n generator bits Gi and the n propagator bits Pi from the n addend
bits Ai and the n augend bits Bi:

Gi = Ai AND Bi

Pi = Ai XOR Bi .

Next we need to calculate the n carry-out bits Ci from the single carry-in
bit C0, the n generator bits, and the n propagator bits. In its simplest form, the
4-bit carry-look-ahead adder implements the following equations:

C1 = G0 OR (P0 AND C0)

C2 = G1 OR (P1 AND (G0 OR (P0 AND C0)))

C3 = G2 OR (P2 AND (G1 OR (P1 AND (G0 OR (P0 AND C0)))))

C4 = G3 OR (P3 AND (G2 OR (P2 AND (G1 OR (P1 AND (G0 OR (P0 AND C0))))))) .

This can be performed by a control gate with 2n + 1 bits controlling n other
bits (i.e. k = 3n + 1). The electronic implementation of this gate consists of
n squares, counting 8n(n+ 2) transistors.

In the third and final step, the adder calculates the n sum bits:

Si = Pi XOR Ci .

Control gates for reversible computers 9.2.8

5 Results

Putting the three parts (calculation of (Gi, Pi), of Ci+1, and of Si) together, we
see that the logic depth d of the resulting n-bit c.l.a. adder is 3, independent
of n. Note that we consider the NOT as a gate of zero depth. Indeed, in dual line
hardware, the NOT gate is merely an interchange of the two lines and thus costs
neither silicon area, nor time delay, nor power dissipation.

Fig. 4 shows the 4-bit c.l.a. adder. For sake of clarity, the 8 preset input
lines and the 12 garbage output lines are not shown, nor are the inverters (i.e.
the NOT gates). Each logic gate has an equal number of logic inputs and logic
outputs, a number we call the width w of the gate. The full circuit has depth
d = 3, width w = 17, and transistor count t = 320. For an arbitrary n, we have
d = 3, w = 4n + 1 and t = 8n(n + 6). For comparison: the ripple adder has
d = n + 1, w = 3n + 1 and t = 48n. Thus for any number n > 2, the c.l.a.
adder is less deep (and thus faster) than its ripple counterpart. At the other
side, for any number n, the c.l.a. circuit is more complex than the ripple circuit,
the hardware overhead becoming quite substantial for large n.

Fig. 5 shows the 4-bit implementation in the 0.8 µm c-MOS n-well technology
CYE of Austria Mikro Systeme. The n-MOS transistors have length L equal to
0.8 µm and width W equal to 2 µm. The p-MOS transistors have L = 0.8 µm
and W = 6 µm. The threshold voltages are 0.85 volt (n-MOS) and − 0.75 volt
(p-MOS). The whole chip (bonding pads included) measures 1.9 mm × 1.2 mm.
The chip has been tested successfully, with power supply voltage Vdd = −Vss
ranging from 1 volt to 3 volts. Fig. 6a shows the experimental transient output
C4 for augend B = 1101 and addend A changing quasi-adiabatically from 0010
to 0011 with charging time τ = 50 µs. Fig. 6b shows the power dissipation
estimated by Spectre simulations (including parasitics) for Vdd = −Vss = 2 V,
as a function of τ .

A c.l.a. chip, applying hardware-programmed control gates, is designed. It
contains as many as t = 64

3 (4n + 3n − 1) = 5696 transistors and measures
2.5 mm × 2.0 mm.

In the recent literature, other 4-bit c.l.a. adders [14] [15], and even an 8-
bit [16] c.l.a. adder with adiabatic/reversible gates have been presented. Our
design should not at all be considered as just one more such a circuit. Our c.l.a.
adders should be regarded as specific examples of the design philosophy we have
developed: reversible control gate logic.

Acknowledgement

The authors thank the Invomec division of Imec v.z.w. (Leuven, Belgium) and
the Europractice organisation, for processing the chips at Austria Mikro Systeme.

9.2.9 A. De Vos et al.

Fig. 4. Schematic diagram of reversible carry-look-ahead four-bit adder

Fig. 5. Microscope photograph of c-MOS reversible carry-look-ahead four-bit adder

Control gates for reversible computers 9.2.10

 1

 10

 100

 1 10 100 1000 10000 100000

en
er

gy
 (

pJ
)

tau (ns)
(a) (b) .

Fig. 6. Oscilloscope curve and Spectre simulation of carry-look-ahead four-bit adder

References

1. R. Landauer: Irreversibility and heat generation in the computing process. I.B.M.
Journal of Research and Development 5 (1961) 183–191

2. C. Bennett and R. Landauer: The fundamental physical limits of computation. Sc.
American 253 (July 1985) 38–46

3. R. Landauer: Information is physical. Physics Today 44 (May 1991) 23–29
4. T. Toffoli: Reversible computing. In: J. De Bakker and J. Van Leeuwen (eds.): 7 th

Colloquium on Automata, Languages and Programming, Springer, Berlin (1980)
632–644

5. E. Fredkin and T. Toffoli: Conservative logic. Int. Journal of Theoretical Physics
21 (1982) 219–253

6. L. Storme, A. De Vos, and G. Jacobs: Group theoretical aspects of reversible logic
gates. Journal of Universal Computer Science 5 (1999) 307–321

7. R. Feynman: Quantum mechanical computers. Optics News 11 (1985) 11–20
8. R. Feynman: Feynman lectures on computation (A. Hey and R. Allen, eds.).

Addison-Wesley, Reading (1996)
9. A. De Vos: Reversible computing. Progress in Quantum Electronics 23 (1999) 1–49

10. B. Desoete and A. De Vos: Optimal charging of capacitors. In: A. Trullemans and
J. Sparsø (eds.): Proc. 8 th Int. Workshop Patmos, Lyngby (Oct. 1998) 335–344

11. A. De Vos and B. Desoete: Equipartition principles in finite-time thermodynamics.
Journal of Non-Equilibrium Thermodynamics 25 (2000) 1–13

12. A. De Vos, B. Desoete, A. Adamski, P. Pietrzak, M. Sibiński, and T. Widerski:
Design of reversible logic circuits by means of control gates. In: D. Soudris, P.
Pirsch, and E. Barke (eds.): Proc. 10 th Int. Workshop Patmos, Göttingen (Sept.
2000) 255–264

13. H. Taub: Digital circuits and microprocessors. Mc Graw Hill, Auckland (1982)
14. S. Kim and M. Papaefthymiou: True single-phase energy-recovering logic for low-

power, high-speed VLSI. In: Proc. 1998 Int. Symposium on Low Power Electronics
& Design, Monterey (August 1998) 167–172

15. S. Kim and M. Papaefthymiou: Pipelined DSP design with true single-phase
energy-recovering logic style. In: Proc. I.E.E.E. Alessandro Volta Memorial Work-
shop on Low Power Design, Como (March 1999) 135–143

16. S. Kim and M. Papaefthymiou: Low-energy adder design with a single-phase
source-coupled adiabatic logic. In: J. Sparsø and D. Soudris (eds.): Proc. 9 th
Int. Workshop Patmos, Kos (Oct. 1999) 93–102

