
This article proposes using symbol-
ic learning methods based on multiple-valued
(MV) logic and implemented in reconfig-
urable hardware. In the part one, we discussed
why symbolic learning is useful in some appli-
cations, such as robotics. We presented an
architecture for a massively parallel reconfig-
urable processor that enables speeding up logic
operations performed in learning hardware.

Rather than learning using evolutionary
and neural network methods in hardware,
our approach uses combinatorial synthesis
methods developed in the framework of the
logic synthesis approach in digital-circuit-
design automation. In contrast to previous
approaches to evolvable hardware that so far
have dominated the learning in reconfig-
urable systems, here the learning takes place
on the level of constraint acquisition and
quasioptimal logic synthesis rather than on
the lower level of programming binary
switches based on (close to random) decisions
of evolutionary programming methods. Our
learning strategy is based on the principle of
Occam’s Razor, which facilitates generaliza-
tion, discovery, and strong learning methods.
We realize directly in reconfigurable hardware
such MV cube-algebra operators as intersec-
tion, supercube, sharp, and crosslink, and

such algorithms as disjunctive normal form
(DNF) minimization, Ashenhurst/Curtis
decomposition, satisfiability, and decision
tree generation. Part two of our article pre-
sents cube calculus in more detail as well as
various aspects of realizing cube calculus
operations in hardware. We also evaluate two
variants of our experimental designs.

Cube calculus
Let’s consider discrete variables (attributes)

X1, X2, ... , Xn, such that each variable Xi can
take values from a certain finite discrete set Vi

(Vi can be any finite set of symbols). A literal Xi
Si

of variable Xi represents a characteristic func-
tion of subset Si of Vi, that is, the literal’s value
is 1 for symbols from this subset. For example,

• for binary logic, X 1 = X, and X 0 = X ′ are
two literals; and

• for four-valued logic Vi = {0, 1, 2, 3}: Y{0, 2}

equals 1 if Y ∈ {0, 2} or 0 if Y ∈ {1, 3} is a
literal.

A cube on X1, X2, … , Xn is an ordered set of
literals on X1, X2, … , Xn, that is, X1

S1X2
S2 … Xn

Sn.
A cube represents a subspace in the n-

dimensional discrete MV space, as Figure 1
shows. Usually, traditional switching algebra

Marek Perkowski
David Foote

Qihong Chen
Anas Al-Rabadi

Portland State University

Lech Jozwiak
Eindhoven University of

Technology

A MASSIVELY PARALLEL RECONFIGURABLE PROCESSOR SPEEDS UP LOGIC OPERATORS

PERFORMED IN LEARNING HARDWARE. THE APPROACH USES COMBINATORIAL

SYNTHESIS METHODS DEVELOPED WITHIN THE FRAMEWORK OF THE LOGIC SYNTHESIS

APPROACH IN DIGITAL-CIRCUIT-DESIGN AUTOMATION.

LEARNING HARDWARE USING
MULTIPLE-VALUED LOGIC

Part 2: Cube Calculus and Architecture

52 0272-1732/02/$17.00  2002 IEEE

interprets a cube as a product of literals. Here
we also interpret it as a sum of literals or an
XOR of literals. In general, a cube can repre-
sent any ordered set of subsets of certain dis-
crete sets Vi, i = 1, ... , n (that is, a Cartesian
product of the subsets).

Cube calculus is a system of

• a set of all cubes on a certain ordered set
of discrete variables X1, X2, ... , Xn that
also contains an empty cube and a full
cube (full discrete space defined by X1,
X2, … , Xn); and

• a set of operations on sets of cubes.

There are several types of cube operations:

• Cube operators result is a list of 0 to n
cubes.

• Cube predicates result is the logic values
0 or 1.

• Counting operations result is a number
(for instance, the Hamming distance of
two cubes).

Positional notation represents literals in the
cube calculus machine (CCM). Positional
notation uses a separate bit to represent each
possible value of each literal. If the literal is
true for a specific value, the corresponding bit
is set to 1. For example, assuming that each
of the variables X1, X2, and X3 is a three-val-
ued variable, and the values are {0, 1, 2}, the
cube X1

{0,2}X2
{1,2}X3

{2} will be denoted by [101
011 001]. The base K of a logic machine is
the number of bits required to represent a
simple symbol in this machine.

For example, K = 2 realizes all logic opera-
tions in MV logic with no more than 22 = 4
values. Every operator can be represented by
its map. The four simple symbols are 0 for a
negated variable, 1 for a positive variable, X
for don’t care, and ε for contradiction. We
encode these symbols in positional notation
as follows: 0 = 10, 1 = 01, X = 11, and ε = 00.
With this encoding, cube bcd′ (X110) on the
ordered set of discrete variables (a, b, c, and
d) is represented by [11 01 01 10].

When we realize MV logic using binary sig-
nals, K binary signals represent each simple
symbol from the set of 2K symbols, as Figure 2a
(next page) shows. A simple symbol expressed
in base K is a fundamental idea of our machine.

A symbol of base K = 1 is sufficient to realize
the binary logic, set theory, and binary arith-
metic. A K of 2 is necessary for binary cube cal-
culus and some MV systems (shown in Figure
2b). Figure 2c shows programmability matrix
for three binary arguments and K = 2. For more
operations on MV systems, K must be greater
than 2. A W-input, base K universal cell is a
logic block with W inputs and one output, each
input and output being a base-K signal (Figure
2d). A big enough K can realize any operator,
and this is why we call this the universal cell
realizing operations of universal logic.

The iterative cell (IT) processes each simple
symbol in a CCM, since the IT is an elemen-
tary processor. A K-base symbol requires a K-
base IT cell, shown in Figure 3 for K = 2. In a
CCM of base K, each variable can have an arbi-
trary, but divisible by K, number of values. R
cooperating ITs process a complex variable
with R × K values (a complex symbol). Thus,
CCMs introduce simple and complex symbols
as an intermediate level between bits and vari-
ables, enabling a flexible number of values in
literals. They also permit the use of, for exam-
ple, a 2-bit IT cell to represent part of an MV
literal for an arbitrary number of values.

The main concepts behind hardware imple-
mentation of the cube calculus data are

53MAY–JUNE 2002

1011

0101

0010

0011

01110001

0110

1110

11010100

1001

1000

0000

1100

1010

1111

Figure 1. A 3D cube (XXX1) in a 4D space (XXXX). Symbol X
represents a value 0 or 1. Thus cube XXX1 denotes a cube
variable X4 and XXXX denotes value 0 or 1 for each of four
variables, thus the entire 4D space.

• a cube,
• a list (array) of cubes (clist), and
• a list of lists of cubes (cclist).

Hence, MV cube calculus (MVCC) is a set of
cubes of a certain discrete space and a set of
operations on the cubes, clists, and cclists.

Computation patterns
There are many (two-argument) operators

on cubes, but fortunately they expose certain
common computation patterns, which we can
subdivide into three classes:

• simple combinational operations (such
as intersection),

• complex (conditional) combinational
operations (such as prime), and

• sequential operations (such as nondis-
joint sharp).

Operations of each class have the same
computation pattern, and the pattern of a
simpler class is a special case of a more com-
plex class; Table 1 shows these patterns. The
common computation pattern enables the
design of certain dedicated-hardware archi-
tectures for cube operations. We implement
each particular operation using a particular
instantiation of the general architecture, real-
ized by appropriately programming the field-

IEEE MICRO

0

ε

X

1

0

ε
X

1

K

W

0 εX1

0 εX1

0

ε

X

1

W = 2

22 = 4

K = 2

W = 2
K = 2

 Binary-realized
universal cell
of the CCM

(a)

(b)

(d)

(c)

K
K

K

W

K

K

Universal cell

Figure 2. W-input, K-base universal cells: universal cell with
two 2K-valued inputs that realizes all matrices of base 2K (a).
The matrix represents all operations for K = 2 and two argu-
ments; it uses the four symbols of binary cube calculus.
Filling the cells in all possible ways with symbols 0, 1,
X, and ε creates new operations (b). We can build a
similar programmability matrix for three binary argu-
ments (c) and a universal cell for all K-output Boolean
functions of K × W input variable (d).

OPERATION

STATE

READY

COUNT

RELATION

BEF[0:3]
ACT[0:3]
AFT[0:3]

C0i

C1i

A0i

A1i

B0i

B1i

AND_OR

REL[0:3]

CLEAR
REQ

NEXTi

CNTi [0:4]
CNTi +1[0:4]

READYi

NEXTi +1

VAR
i

STATE1

STATE0

Iterative cell

Figure 3. Iterative cell that operates on 2 bits. It is a single
finite state machine in a cellular automaton. We explain the
meaning of the most important signals—BEF, ACT, or
AFT—in the text. These signals program each operation
executed in phases of the cube calculation according to the
internal state of machine STATE. AND_OR selects the type
of relations checked on data, COUNT executes counting
operations, STATE records the internal states of the data
path that correspond to operations BEF, ACT, and AFT.

54

LEARNING HARDWARE

programmable gate array (FPGA) structures.

Simple combinational operations

• produce a single cube as a result and
• are position-by-position operations, that

is, they use the same operation for each
position.

Complex (conditional) combinational
operations

• produce a single cube as a result,
• are position-by-position (bit-by-bit)

operations,
• calculate the literals of the resulting cube

from the corresponding literals of the
argument (operand) cubes by condition-
al operations on the literals of the argu-
ment cubes.

Sequential operations can

• produce more than one resulting cube,
that is, one cube per active literal (active
position);

• have from 0 to n potentially active posi-
tions i that satisfy a certain relation
REL(Ai, Bi);

• execute operations on the active position
with a certain simple combinational
operation;

• execute operations before and after the
active position (in general) with certain
simple combinational operations, although
these often consist of just copying Ai or Bi;

• simultaneously compute potentially
active positions; and

• sequentially create the resulting cubes
starting from the leftmost potentially
active position.

Simple combinational operation example
The following is an intersection (product)

operation on cubes A and B:

A ∩ B =

Complex combinational operation example

The following is a prime operation:
A prime B =

where Ai ∪ Bi are computed only for those
variables Xi for which Ai ∩ Bi ≠ ∅ is satisfied
(such positions are called active positions).

Sequential operation example
The following is a nondisjoint sharp

A#basicB = {XA1
1 XA2

2 …XAi−1
i−1 X¬Ai∩Bj

i XAi+1
i+1 …XAn

n 
for such i = 1, … , n that ¬ (Ai ⊆ Bi)}. For
instance, XXX1 # 111X = {0XX1, X0X1,
XX01}.

It is important to observe that the same gen-
eral pattern given below can describe every
sequential operation:

A B
A when A B

when A B
A B otherwisebasic

#
#

∩ = ∅
∅ ⊆







 X X X X X Xi i i n

n
i i i i

1 2 1 1
1 2 1 1

A A A A B A A
K K−

∪
+

− +

 if A B = for some
A B A B A B otherwise
∅ ∩ ∅

∩ ∩ ∩





i i

i i n n

i
, , ,2 2 K

55MAY–JUNE 2002

Table 1. Computational patterns for REL, BEF, ACT, and AFT.

 Relation (REL) Output operation

Before Active After

Function REL and/or (BEF) (ACT) (AFT)

Intersection 1 and Ai ∩ Bi — —
Supercube 1 and Ai ∪ Bi — —
Prime Ai ∩ Bi ≠ ∅ and Ai Ai ∪ Bi
Crosslink Ai ∩ Bi = ∅ and Ai Ai ∪ Bi Bi
Sharp (Bi ⊇ Ai) or Ai Bi ∩ Ai Ai
Disjoint sharp (Bi ⊇ Ai) or Ai Bi ∩ Ai Ai ∩ Bi
Symmetric consensus 1 and Ai ∩ Bi Ai ∪ Bi Ai ∩ Bi
Asymmetric consensus (Bi ⊇ Ai) or Ai ∩ Bi Ai ∪ Bi Ai ∩ Bi

A operation B = {Xaft(A1,B1)
1 …Xaft(Ai − 1,Bi − 1)

i − 1

Xact(Ai,Bi)
i X bef(Ai + 1,Bi + 1)

1 …X bef(An,Bi − 1)
i − 1 }| for

such i = 1, … , n that REL(Ai, Bi) is satisfied.
Functions REL, BEF, AFT, and ACT can

thus specify every operation. Table 1 shows
that for simple and complex combinational
operations, only those columns that specify
this operation are filled.

Patterns of combinational operations are
special cases of this general pattern. Thus, sim-
ple combinational operations are a special case
of the complex combinational operations, and
all combinational operations are a special case
of the sequential operations. For different
operations, we select different functions for
REL, BEF, ACT, and AFT.

Compare the previous operation examples
and Table 1. Functions REL, BEF, ACT, and
AFT are K-wise functions. If, for example, K
= 2, then each 2 bits of resulting cube C that
represent a simple symbol depend only on the
corresponding 2 bits of argument cubes A and
B, that is, CiCi + 1 depend only on AiAi + 1 and
BiBi + 1. A complex symbol that represents a
value of variable C that has length R × K(IT)
is a composition of R simple symbols and rep-
resents the results computed in all ITs repre-
senting this variable. The ITs form the R
K(IT)-sliced CCM chips. Example applica-
tions of these operations include intersection,
the most common operation in standard bina-
ry logic, rough set, and decomposition calcu-
lations; supercube, used in DNF
minimization and ESOP synthesis; prime,
used in XOR-based synthesis; nondisjoint
sharp, used in tautology, satisfiability, cover-
ing, and DNF algorithms; disjoint sharp, used
in representation transformations; and con-
sensus, used in automatic theorem proving
(Prolog’s subset implementation) and DNF
minimization.

CCM architecture
Software implementation of each cube

operation uses a single loop that runs through
all cube variables. The following two crucial
ideas form the basis for the CCM:

• Execution of the lowest-level loop of the
cube operation algorithms—the variable
loop—occurs in hardware using a linear,
iterative array of cellular automata (finite
state machines). Information flows

between the FSMs from left to right and
from right to left. Every FSM can be in
internal states BEF, ACT, and AFT. This
state selects the corresponding BEF, ACT,
or AFT function programmed to an iter-
ative logic unit (ILU).

• Reconfiguration of logic functions of the
cellular automata is achieved by their
implementation with FPGAs.

The CCM system architecture involves

• a host processor, since it is a traditional
general-purpose computer; and

• the massively parallel array of the CCM
processors, which forms a coprocessor
(application-specific reconfigurable hard-
ware accelerator) of the host processor.

A single CCM processor1 consists of

• an ILU, which is a horizontal linear array
of R K(IT)-sliced CCM processors, each
composed of R ITs, as Figure 4 shows;

• a control unit that controls ILU operation
and executes cube calculus operations;

• a register file to store auxiliary and con-
trol registers that aid in operations; and

• a bus-interface unit (BIU) to control inter-
nal and external flow of cube array data
among processors, host, and memories.

The lowest-level loop—usually the variable
loop—is implemented inside the CCM
processors by horizontal communication
between the ITs, or, with a few CCM proces-
sors, which are connected horizontally. The
CCM processors’ vertical linear array
(pipeline) implements the second lowest level
loop—usually the cube loop. This enables 2D-
data movement: horizontal (inside or among
CCM processors) and vertical (among CCM
processors). RAM memories connected to ITs
realize the third dimension of data movements.
Figure 1 of Part 1 (see page 48) gives some pos-
sible data flows in structures built from CCM
building blocks.

The implementation of predicates, count-
ing operations, and combinational operators
in CCMs is similar to their implementation in
a traditional arithmetic processor. Sequential-
operator implementation requires more dis-
cussion: First, literals at position i must satisfy

IEEE MICRO56

LEARNING HARDWARE

relation REL(Ai, Bi) to activate this position
and create a resultant cube. Observe that
CCM computes all potentially active posi-
tions in parallel during evaluating REL(Ai, Bi)
for all i in all ITs. However, the CCM then
activates the corresponding literals (positions)
sequentially, and sequentially creates exactly
one resultant cube for each literal (position)
active at a certain time, by executing

• a certain operation ACT (Ai, Bi) at the active
literal (for example, ¬Ai ∩ Bi for sharp),

• a certain operation BEF (Ai, Bi) at all
positions before (or to the right of) the
active literal (for example, copying the
literals for sharp), and

• a certain operation AFT (Ai, Bi) at all
positions after (or to the left of) the active
literal (for example, copying the literals
for sharp).

Each cube is created in only one clock pulse.
The literals are activated starting from the left-
most potentially active position. After per-

57MAY–JUNE 2002

Host computer

Input FIFO buffer

Bus interface unit
(BIU)

Accu

IBus 32

18

18
18

Output FIFO buffer

OTag OBus2

30
ABus

EnlFIFOA

18 30

30

DBusA

DBusB

30
EnlFIFOD

AddrR

EQ

AddrEQ
(to BIU)

AddrBAddrA

1
0

1
010

EnAddrA EnAddrB

MemBRW

CmpSrc

addr

data

MEM_B

MemARW

addr

data

MEM_A

OSrc

ASrc

Data
30

Water Iterative
logic
unit

(ILU)

CU

15

Right
15

Inst
18

PRPO
24

EnILUA EnILUB

Figure 4. Simplified CCM processor. The figure shows two memory banks, various buses, a
bus control unit, a control unit, and registers. The Right and Water registers determine
ranges of multivalued variables composed of IT units and help to propagate values through
ITs not used while cubes are shorter.

forming the previously described computa-
tions for a certain active literal, the CCM acti-
vates the literal corresponding to the next to
the right potentially active position and creates
the corresponding resultant cube. When pro-
ducing a particular resultant cube, all literals
on positions to the left of the active literal are
of the after type, and all literals on positions
to the right from the active literal are of the
before type. The iterative network of small,
fast FSMs (ITs) executes all of these opera-
tions in hardware—using fast communication
between the FSMs. This type of controlled
cellular automata used as a data path of a gen-
eral-purpose processor is a new concept in
computer architecture.

The number of all possible operations pro-
grammed in this way is extremely large. The
operations that are possible to program are a
multidimensional space created by a Cartesian
product of basic programmable features like
those shown in Table 1: REL, BEF, ACT, AFT,
composition, and pipelining. Every realizable
operation is a point in this space. Selection of
the operation occurs without reconfiguring the
entire data path or control. We consider CCM
a prototype symbol-processing computer with
a sort of data path microprogramming, in con-
trast to the control path microprogramming
of traditional arithmetic computers.

Advantages
CCMs can greatly speed up many applica-

tions. They efficiently implement (multilevel)
logic operations unlike a conventional com-
puter’s ALU. For instance, to calculate the con-
sensus of two cubes, an ALU must execute a
long series of shifts and ANDs. Also, some
resultant cubes are empty and require removal,
making the generation of resultant cubes irreg-
ular and inefficient. The CCM can execute
each MVCC operation in a single clock pulse
or a few clock pulses; this execution requires
only one CCM instruction per operation. The
CCM does not generate empty resultant
cubes, so resultant-cube generation is regular.
The time needed to generate the cubes
depends solely on the number of nonempty
resultant cubes of the particular operation.

Designers tune traditional, general-purpose
information processors (Turing-machine
equivalents) for arithmetic computations. In
contrast, the CCM, although also a general-

purpose processor, is tuned to symbolic com-
putations. The result of a single development
process, the CCM can efficiently manage a
broad range of applications. It is reprogram-
mable, which enables implementation of only
the operations actually required for a certain
algorithm’s execution during a certain time
slot. It allows a customized instruction set,
which programmers can optimize for each
application. Moreover, the reconfiguring pro-
gram on a host computer can reconfigure
SRAM-based FPGAs even while host pro-
gram that uses CCMs is in full operation.

Furthermore, in a conventional computer,
a program stored in RAM provides the con-
trol. This strategy results in considerable con-
trol overhead, because the instructions must
be fetched from RAM. If an algorithm con-
tains loops, the processor will read the same
instructions many times. This repeated work
causes bottlenecks in the memory interface of
conventional computer architecture, espe-
cially when the memory bus is not as fast as
the internal processor bus. In the CCM archi-
tecture, the CCM data path itself implements
most of the control. Once a complex MVCC
instruction is loaded into the CCM, the host
computer only needs to write data cubes to
the CCM and read the resultant cubes from
the CCM. The host processor can process the
resultant values from the CCM while loading
them; meanwhile, the CCM awaits the next
clock pulse to send another cube.

Additionally, in most commonly used com-
puter architectures, parallel processing is very
limited, even in modern RISC or Pentium
processors. Parallel processing has also proven
difficult for compilers. In the CCM architec-
ture, a single CCM instruction can replace
parts of an existing program for a traditional
computer. Hardware specifically designed for
this particular instruction can then execute it,
allowing microparallelism in the CCM.

Another limitation of conventional comput-
er architectures is the ALU’s bandwidth. The
CCM suffers from this problem to a much less-
er extent because the FPGA implementation
flexibly adopts ALU bandwidth for each appli-
cation. The only limiting factor is the capacity
and speed of the FPGAs in the hardware.

Furthermore, the CCM architecture is reg-
ular and scalable, and lets designers build mas-
sively parallel computers from many CCM

IEEE MICRO58

LEARNING HARDWARE

processors. Other CCMs—and ultimately,
the host computer—control these CCM
processors. Thus, it’s possible to realize true
massively parallel processing. Mapping these
architectures onto the FPGAs requires con-
siderable time, but once compiled, these new
architectures are instantly loadable into the
FPGA board.

The question arises as to whether the
speedup of a certain application justifies the
development or purchase of a costly FPGA
board. However, we can spread the cost of
FPGA hardware among various applications,
not only those involving symbolic computa-
tions. Moreover, the essence of the CCM is
not the FPGA board, but the architecture pro-
grammed into the FPGAs. Because the essence
of the CCM is its architecture, which involves
reprogrammable, basic logic operations of the
ILU for REL, BEF, ACT, and AFT, it’s not nec-
essary to implement the CCM on a classical
FPGA board. Limiting reprogrammability to
only REL, BEF, ACT, and AFT; and/or imple-
menting most of the CCM processor in clas-
sical, hardwired hardware can provide faster
execution for one of CCM’s variant imple-
mentations. In this way, designers can imple-
ment a CCM processor as a very fast classical
VLSI hardware chip with a few small, repro-
grammable lookup tables in its ILU.

First prototype evaluation
We have designed, simulated, and imple-

mented a CCM prototype for a word length of
16 binary, eight 4-valued, or four 8-valued
variables; or any combination of binary, 4-, or
8-valued variables for a total of 32 bits. Our
prototype implementation used two Xilinx
FPGA XC-3090-50 PP175C chips with 175
pins and running at 50 MHz. Eight iterative
cells of the prototype consumed approximate-
ly 48 percent of the available configurable logic
blocks (CLBs). We simulated and tested the
prototype implementation on many data
examples for each operation. We also per-
formed timing analysis: The greatest delay was
145.8 ns. The sharp operation speedup on six
variable terms was approximately 25 times that
of the software implementation. The speedup
of the algorithm for the satisfiability problem
was approximately 14 times that of its software
implementation. We achieved these speedups
on a single CCM processor having an ILU

with a short word composed of eight IT cells.
Since speedups grow with the number of IT

cells in a single CCM processor and with the
number of CCM processors in various mas-
sively parallel architectures, computation speed
enhancement in the full-scale massively parallel
implementation should be much higher. To
develop an idea of the possible speed enhance-
ment, we performed several simulation experi-
ments with a tree of pipelined CCM processors
used for computation of the generalized Petrick
function (this function, being a product of sums
of literals, solves the unate covering problem).
Among others, we considered a small tree with
three levels and seven CCM processors. We
assumed a host processor clock rate of 100
MHz. Because the host processor must fetch all
four leaf nodes of the CCM processor tree in
every execution cycle, it limits the clock rate of
the tree to a slow 2.5 MHz. With these assump-
tions, the considered (small) parallel processing
structure solves a generalized Petrick function
with 1,000 sums within 0.7 ms. To solve this
problem with the same algorithm implement-
ed in C, a traditional host computer (PC) oper-
ating at 100 MHz requires 7.08 seconds. Thus,
application of an appropriate parallel structure
of the CCM processors, even with a small num-
ber of processors, resulted in an approximately
10,000 times speedup.

Second prototype evaluation
For the second evaluation we used the DEC-

PERLE-1 board.2 This has a central computa-
tional matrix composed of 16 Xilinx XC3090
logic cell arrays, surrounded by four 1-Mbyte
RAM banks. It includes seven other LCAs to
implement switching and controlling func-
tions. To compare the DEC-PERLE-1 CCM’s
performance with that of the software
approach, we used a C program that executes
the disjoint-sharp operation on two arrays of
cubes. We also used this program on the CCM
to solve all minterms with three, four, and five
binary variables. We compiled the C program
on a GNU C compiler v.2.7.2 and ran it on a
Sun Ultra5 workstation with a 64-Mbyte RAM
memory. For the CCM, we used a 1.33-MHz
clock (with a 750-ns clock period). Table 2
(next page) shows the results of this experiment.

Table 2 (next page) shows that the software
approach takes about one-fourth the time of the
DEC-PERLE-1 CCM. But the Sun Ultra5

59MAY–JUNE 2002

workstation’s CPU clock is 270 MHz— 206
times faster than the CCM’s clock. Therefore,
although the CCM design is slower than the
software implementation, we can still state that
it is very efficient for cube calculus operations.
Table 2 also shows that the more variables the
input cubes have, the more efficient the CCM.
This is because the software approach must iter-
ate through one loop for each variable present
in the input cubes. However, the clock period
of 750 ns is too slow. The BIU state diagram
shows that delays from an empty carry path and
a counter carry path only occur in a few states.
Thus, if we can give a little more time to these
states—an easily achievable situation—we
could speedup the clock of the entire CCM. For
example, if state P2 of the BIU needs more time
for the delay of counter carry path, we can add
two more states in series between states P2 and
P3. These two extra states do nothing but give
the CCM two more clock periods to evaluate
signal prel_res, which means that the CCM has
three clock periods to evaluate signal prel_res in
state P2 after adding two more delay states. After
making similar modifications to all these states,
the CCM can run with a 4-MHz clock fre-
quency (clock period of 250 ns). Table 2 shows
these results. It is difficult to increase the clock
frequency again with this mapping because
other paths, like memory paths, have delays
greater than 150 ns. Table 2 illustrates a real
need for human intelligence combined with the
EDA tools to optimize the FPGA architectures.

From this comparison, we can conclude that
it is not efficient to map a CCM design with a
complex control unit and complex data path
to a board such as the DEC-PERLE-1. Because
our CCM mapping sends many signals
through multiple FPGA chips, the signal delays
are large. For instance, if we directly connect
the memory banks and registers, the memory
path has a delay of only 35 ns. But the DEC-
PERLE-1 memory path has a delay of 160 ns.

Another issue is that the XC3090 FPGA is
now outdated technology, so it’s at a disad-
vantage when compared with more modern
microprocessors. The latest FPGAs from Xil-
inx, Altera, or other vendors have more pow-
erful CLBs and more routing resources, and
greater speed because of deep-submicron
processes. This direction in FPGA technolo-
gy will continue, providing an advantage to
their use in massively parallel accelerators.

For instance, if we map the entire CCM
onto a single modern FPGA chip or a special
connection pattern of modern FPGAs, we can
speedup the CCM multiple times because of
the following factors:

• The signals do not need to go through
multiple chips, reducing routing delay.

• The new FPGA chips provide more pow-
erful CLBs and routing resources, allow-
ing denser CCM mapping. This also
reduces the routing delays.

• Implementation of new FPGA chips in
deep-submicron technology reduces
CLB and routing wire delays. For exam-
ple, CLB delay on an XC3090A is 4.5 ns,
while delay on a Virtex II is 2.5 ns for a
much more powerful cell.

We expect that with the new FPGAs and the
corresponding FPGA-based boards, new ver-
sions of CCMs will become a true competitor
to software—in terms of speed—for robotics
applications.

To our knowledge, CCM is the first logic
machine for MV logic, universal logic,

and cube representation. It generalizes the pre-
vious machines of T. Sasao,3 Ulug and Bowen,
Zakrevskij, and others.4

The results of our experiments indicate that
future CCM processors could provide signif-
icant speedups for many applications. The

IEEE MICRO

Table 2. Comparison of CCM prototypes with a software approach.

Execution time, Speedup for

No. of Execution time, 1.33-MHz 1.33-MHz Execution time, Speedup for

variables Sun Ultra5 (µs) CCM time (µs) CCM (µs) 4-MHz CCM (µs) 4-MHz CCM (µs)

3 111 546 × 0.75 = 409.5 0.27 611 × 0.25 = 152.75 0.72
4 268 1,285 × 0.75 = 963.75 0.28 1,486 × 0.25 = 371.5 0.72
5 812 3,405 × 0.75 = 2,553.75 0.32 4,078 × 0.25 = 1,019.5 0.80

60

LEARNING HARDWARE

CCM architecture is geometrically regular and
scalable, an important advantage for its imple-
mentation with FPGAs. Designers can also
implement CCM processors as VLSI ASIC
chips by using a mostly fixed architecture and
only small reprogrammable lookup tables.
This implementation will result in much
higher speedups. MICRO

References
1. Q. Chen, Realization of a Universal Cube Cal-

culus Machine in DECPeRLe-1 FPGA Emu-
lator, master’s thesis, Dept. of Electrical and
Computer Eng., Portland State Univ., Ore.,
1998.

2. J. Vuillemin et al., “Programmable Active
Memories: Reconfigurable Systems Come
of Age,” IEEE Trans. VLSI Systems, vol. 4,
no. 1, 1996, pp. 56-69.

3. T. Sasao, “HART: A Hardware for Logic Min-
imization and Verification,” Proc. IEEE Int’l
Conf. Computer Design (ICCD), IEEE CS
Press, Los Alamitos, Calif., 1985, pp. 713-718.

4. M.A. Perkowski, “A Universal Logic
Machine,” Proc. 22nd IEEE Int’l Symp. Mul-
tiple Valued Logic (ISMVL), IEEE CS Press,
Los Alamitos, Calif., 1992, pp. 262-271.

Marek Perkowski is a professor of Electrical
and Computer Engineering in the ECE
Department at Portland State University, Ore-
gon. His research interests include multiple-
valued logic, logic synthesis, testing and
verification, reversible and quantum comput-
ing, intelligent robotics, walking robots, robot
soccer, machine vision, and VLSI design.
Perkowski received a PhD in automatic con-
trol from the Warsaw University of Technolo-
gy, Poland. He is a member of the IEEE
Computer Society and vice-chair of technical
activities of its Technical Committee on Multi-
Valued Logic. He is an editorial board mem-
ber of the Soft Computing Journal and an
academic advisor of the PSU student chapter of
the IEEE Robotics and Automation Society.

David Foote works at Intel. His research inter-
ests include computer hardware and system
design and networking. Foote received a BS
in physics from Linfield College in
McMinville, Oregon, and an MS in electrical
and computer engineering from Portland
State University, Oregon.

Qihong Chen is a senior software engineer at
the Portland Development Center of Oracle
Corporation. His research interests include
database systems, software engineering, soft-
ware-hardware integration, and FPGA design.
Chen received a BS in electronics and infor-
mation technology from the Ocean Univer-
sity of Qingdao, China, and an MS in
electrical and computer engineering from
Portland State University, Oregon.

Anas Al-Rabadi is a PhD candidate at Portland
State University. His research interests include
logic synthesis, signal processing, image pro-
cessing, regular structures, intelligent robotics,
machine learning, system architectures, logic
decomposition, reconstructability analysis,
logic factorization, spectral methods, XOR
logic, reversible logic, quantum logic, and logic
testing. He is a member of the IEEE, the ACM,
Eta Kappa Nu, Tau Beta Pi, Sigma Xi, and the
Robotics and Automation Society of the IEEE.

Lech Jozwiak is an associate professor at the
Faculty of Electrical Engineering of the Eind-
hoven University of Technology, Netherlands.
His research interests include system and circuit
theory and technology, design technology
including EDA tools, artificial intelligence, mul-
tiple-valued logic, VLSI circuit and system syn-
thesis, application-specific processors,
embedded systems, programmable hardware,
and reconfigurable computing. Jozwiak received
a PhD in technological sciences (in the field of
automatic control and computer engineering)
from the Faculty of Electronics, Warsaw Uni-
versity of Technology, Poland. He is a member
of the IEEE, the EDAA, and the Euromicro
board of directors. He is cofounder and steering
committee chairman of the Euromicro Sym-
posium on Digital System Design, and an edi-
tor of the Journal of Systems Architecture and the
Journal of Computer Research.

Direct questions and comments about this
article to Marek Perkowski, Portland State
Univ., Dept. of Electrical and Computer
Engineering, Portland, OR 97207;
mperkows@ece.pdx.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

61MAY–JUNE 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

