
Many robotics, multimedia, and
other types of tasks require fast, real-time real-
ization of certain algorithms to solve problems
presented by a human’s or robot’s environ-
ment. This need is most common in comput-
er vision and speech recognition areas, where
specialized hardware accelerators are built to
satisfy speed, power, size, or cost requirements.
So far, most of these hardware systems solve
polynomial problems. However, in test gener-
ation1 and combinatorial optimization areas,
reconfigurable, field-programmable-gate-array
(FPGA)-based processors can solve some non-
deterministic polynomial time (NP)-hard
problems, such as satisfiability,2 tautology or
binate covering,3 and so on. 

Hanyu et al. describe a robot vision coproces-
sor that performs matching by solving the NP-
hard maximum-clique problem.4 Software
solutions are adequate for many other NP-hard
problems in computer vision, robot navigation
and manipulation, speech recognition, and so
on. Although these software solutions are too
slow to be applied in real time, require too
many parallel processors to put on a robot, or
are too approximate to produce useful solu-

tions. Building intelligent robots will ultimately
require developing real-time hardware realiza-
tions of exact or high-quality approximate algo-
rithms for NP combinatorial problems. We
propose a new approach that combines hard-
ware realization of such algorithms with learn-
ing in reconfigurable hardware.

Observe recent rapid progress in soft com-
puting, that is, artificial neural networks
(ANNs), fuzzy logic, rough sets, genetic algo-
rithms, and genetic and evolutionary pro-
gramming. In different ways, these approaches
try to solve complex and poorly defined prob-
lems that previously developed analytic mod-
els could not efficiently tackle. All of these
approaches offer a method of automatic learn-
ing. These methods teach the computer system
by examples and evaluations of the system’s
behavior rather than completely programming
the system. This philosophy also dominates
approaches to artificial life, problem solving
using analogies to nature, decision making,
knowledge acquisition, and intelligent robotics.
Machine learning has become a general para-
digm for software system design, unifying all
these previously disconnected areas. With the
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invention of evolvable hardware,5-7 machine
learning becomes a new hardware construction
paradigm as well. Several circuit applications
evolved directly in hardware and were realized
in reconfigurable FPGAs.6,8

The term evolvable hardware originally
designated the realization of genetic algo-
rithms in reconfigurable hardware but now
extends to other evolutionary algorithms
such as genetic programming. The evolvable-
hardware approach to computing has raised
considerable interest and enthusiasm among
some researchers, but it has also raised severe
skepticism among others. Currently, the
evolvable-hardware approach dominates
learning in reconfigurable hardware (with
some exceptions.9,10).

While agreeing with the importance of
learning algorithms realized in hardware and
particularly in reconfigurable hardware, we
might ask: Why use evolutionary algorithms?
Practical experiences in the past 10 years
prompt us to question the usefulness of evo-
lutionary algorithms as a sole learning method
to reconfigure binary FPGAs. Instead, we pro-
pose the learning-hardware paradigm,10 which
uses feedback from the environment (for
instance, positive and negative examples from
the human supervisor) to create a classical,
sequential, binary network, directly realizable
in standard FPGAs. Our universal logic
machine approach11-14 proposes developing
learning machines based on logic principles—
in particular, temporal logic,10 constructive
induction,15-18 and rough-set theory.19 Algo-
rithms for the previously discussed applica-
tion areas require fast operations on complex
logic expressions and solving NP problems
such as satisfiability, graph coloring, or set cov-
ering. These algorithms should therefore be
realized directly in hardware to obtain the
speedups necessary for the real-time operation
execution. We present a subset of the learn-
ing-hardware model that reduces the learning
process to the automatic induction of a com-
binational network from a set of examples.

The genetic algorithm is a simple and non-
informed problem-solving mechanism. Its
main operations of crossover and chromosome
mutation are easily realizable in hardware using
registers that represent chromosomes and some
partially random register-transfer operations
on the contents of these registers. Hardware

implementation of the fitness function com-
putation that evaluates the offspring from
crossover and mutation can be very difficult.

Theoretical analysis and our past experience
suggest that evolutionary mechanisms alone
cannot efficiently produce sufficiently good
results for problems of interest. This is espe-
cially true within the constraints of real-time
operation; the algorithms are often not con-
vergent for real-life data. In contrast, logic-
based algorithms that draw upon human
knowledge are near optimal and mathemati-
cally sophisticated. They lead to high-quality
learning results that have no overfitting and
small learning errors, or those that lead to
knowledge generalization or discovery.20-26

However, the software realizations of these algo-
rithms use complex data structures (such as
binary decision diagrams26) and controls that
are difficult to directly realize in hardware. For
instance, recursion and decision diagrams are
difficult to parallelize or pipeline and, in gen-
eral, to implement in hardware structures.
Thus, implementations should take a different
approach to the speedup of these algorithms.

In this article, when referring to learning
hardware, we define the term learning as any
mechanism that leads to an improvement of
operation. Such a definition therefore includes
evolution-based learning as a special case of
learning hardware. Although specific learning
concepts and their formalisms differ from one
learning approach to another, each approach
creates a network design from examples. The
algorithm constructs this network—which
might be combinational or sequential; binary,
fuzzy, continuous, or multiple valued; syn-
chronous or asynchronous—to represent, for
future use, the knowledge acquired in the learn-
ing phase. The learned-knowledge network
then performs computations on old and new
data. These computations are very fast because
they only evaluate the network on some of its
input values, which is done combinationally,
that is, without involving memory. Network
responses can be correct or erroneous. The
algorithm then evaluates the network’s behav-
ior again—using some fitness (cost) function—
and the learning and running phases alternate.
This model is very general and covers neural
networks, cellular automata, binary logic used
in computational learning theory, and several
other learning approaches.17,18,27-29
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Problem solving
The problem-solving process in the learn-

ing-hardware model consists of learning, con-
struction and tuning of a knowledge network,
and execution, which uses the learned-knowl-
edge method for computations. These phas-
es are either implemented by separate physical
units or as various virtual hardware processes
run on the same physical, time-multiplexed,
reconfigurable processor. The execution phase
uses knowledge, which means that the con-
structed network processes some new exam-
ples (also called objects, minterms, or input
vectors). Compared to designing, building,
and using a PC, the learning phase is similar
to the entire process of conceptualizing,
designing, and optimizing PC hardware and
software, and the execution phase to using this
computer to perform calculations.

It is not likely that the evolutionary methods
will be used to evolve the entire PCs in the near
future; large teams of highly qualified humans
now design them using sophisticated algo-
rithms, including combinatorial algorithms
for logic and physical design. If so, why use the
evolutionary hardware approach in robot
learning or speech recognition systems? The
combination of the evolutionary and mathe-
matical approaches can provide effective and
efficient solutions to problems or tasks in
robotics and the other previously mentioned
areas. Our learning hardware is the first
attempt to combine evolutionary and mathe-
matical approaches. It integrates the strength
of learning and the sophisticated human-devel-
oped combinatorial optimization/decision
algorithms. The user cannot redesign a stan-
dard computer’s processor chip. But the learn-
ing-hardware approach redesigns its hardware
execution part automatically, using new exam-
ples provided to the learning-hardware unit.

Logic-based learning
Logic synthesis researchers and engineers in

design automation for digital circuits develop
efficient logic network synthesis algorithms.
For example, they might need to synthesize a
disjunctive normal form (DNF) with the min-
imum number of terms from a set of exam-
ples. Researchers in the constructive induction
approach to machine learning also indepen-
dently develop similar algorithms. Michie
makes a distinction between black-box and

knowledge-oriented concept-learning systems
by introducing concepts of weak and strong
learning criteria.30 The system satisfies a weak
criterion if it uses sample data to generate an
updated basis for improved performance on
the subsequent data. It satisfies a strong crite-
rion when the system communicates concepts
learned by it in a symbolic form.18

Observe that ANNs, fuzzy logic, genetic
algorithms, or similar approaches satisfy only
the weak criterion, while the logic approach
satisfies the strong criterion. To understand
why this is so, consider that humans can
understand synthesized logical formulas—be
they a rule, a Prolog program, or a logic net-
work—which are all symbolic representations,
as required to satisfy a strong criterion.

The results of the learning process, and even
of the process itself, should be rational. Learn-
ing in hardware should include approaches
similar to those for teaching humans—that
is, those based on symbolic logic rather than
the (nearly random) methods that emulate
nature. Human thinking involves the abstract
use of symbols, rather than assigning numer-
ic weights to neurons or randomly connect-
ing them. So our learning-hardware approach
operates at higher and more natural symbol-
ic-representation levels. The built-in mathe-
matical optimization techniques (such as
graph coloring or satisfiability) support the
principle of Occam’s Razor, offering solutions
that are provably good in the sense of com-
putational learning theory.20,25 Moreover, it
could be dangerous to have a robot that learns
from examples and cannot logically analyze
what it has learned; the user would not be able
to predict the robot’s behavior. Thus, learn-
ing at a symbolic (symbol manipulation) level
is the first main point of our approach.

In past research, we have used and compared
(using software) various network structures for
learning: two-level AND/OR (sum-of-prod-
ucts or DNFs),31 decision trees (using C4.5
software and multilevel decomposition struc-
tures.21-23,32,33 We have also studied various logic,
nonlogic, and mixed optimization methods,
for example, search,13 rule-based, set-covering,
maximum clique, graph coloring, genetic algo-
rithm (including mixtures of logic and genet-
ic algorithm approaches),34,35 genetic
programming,36 ANNs, and simulated anneal-
ing. We compared the resulting complexity of
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our networks (using an approach based on
Occam’s Razor), as well as various ways of con-
trolling the number of errors in the learning
process.21-24 Because of their strong theoreti-
cally proven properties, the decomposed func-
tion cardinality and its extensions for
multiple-valued (MV) logic20-22,33 work well as
common measures of network complexity.22,25

Our conclusion, based on these investiga-
tions, is that logic approaches (especially the
MV-decomposition techniques) combined
with smart heuristic strategies and good data
representations usually provide superior
results compared to other approaches. This is
because of their lower network complexity
and fewer learning errors. Other researchers
have made these types of comparisons and
reached similar conclusions. 

In our experiments, evolutionary approach-
es provided especially poor results.6,21,35,36

Genetic algorithms might perform well in
other applications (such as analog circuit
design or specific, isolated subproblems in dig-
ital circuit design). But our experience and the
literature did not identify a single problem in
which a genetic algorithm-based approach was
superior to using a handcrafted heuristic algo-
rithm for the design of complete binary or
MV-logic networks. This is perhaps the result
of the vast experience researchers have in cre-
ating efficient logic-synthesis algorithms (for
example, more papers have been written on
DNF minimization than perhaps on any
other engineering topic). Our approach uses
this accumulated human experience, rather
than reinventing efficient circuits and design
algorithms using the evolutionary methods of
a standard evolvable-hardware approach.5-8

Learning-hardware approach
Developers of evolvable and learning systems

have found that the learning and/or the execu-
tion phases realized with current software—or
even parallel-programming technologies—are
too slow for real-life problems, and especially
real-time problems. The situation is essentially
the same regardless of whether the developer
uses an exhaustive combinatorial search, simu-
lated annealing, or evolutionary algorithms that
involve millions of populations. Thus, some
researchers proposed to speedup parts of the
learning and/or execution phases by migrating
them from software to hardware. Researchers

have proposed many ambitious projects based
on ANNs, cellular logic, DNA, simulated evo-
lution, and biologically motivated hardware that
remain quite impractical today. These
approaches might be successful in the future,
when realized on molecular or quantum levels. 

Most approaches to evolvable hardware use
binary FPGAs, because they are the only
mass-scale reconfigurable (reprogrammable)
hardware technology currently available.
FPGAs are also relatively inexpensive and
widely available. (Although researchers are
developing evolvable hardware for field-pro-
grammable analog arrays, they are still quite
immature.) In binary FPGAs, implementa-
tions realize all system functionality at the level
of binary-logic lookup tables, flip-flops, and
memory cells; the learning process should
occur at this level as well. Performing the
learning on a lower level of individual layout
switches, but evaluating the designs on a high-
er level of neural networks, leads to gross inef-
ficiencies caused by several levels of
interpretation—from neural network to cel-
lular automata and finally to FPGA binary
switches.5-6 Evolvable-hardware researchers
have reported these inefficiencies. Thus, learn-
ing on the level of logic gates and flip-flops is
the second main point of our approach.

In our opinion, the learning level of sequen-
tial logic nets is more natural than that at the
higher level of ANN or fuzzy-logic function
arithmetic operations or the lower level of
routing FPGA connection paths. First, the
network of logic subfunctions represents, in
a natural way, the network of knowledge
(logic) concepts; this ensures learning stabili-
ty and enables human explanation. Second,
once researchers realize a network using the
logic-level resources in FPGA, they should
apply efficient logic-design algorithms and
realize them in hardware for speedup. 

All high-quality design methods in the
VLSI/FPGA design area and, especially, pow-
erful electronic design automation (EDA)
tools, can and should be used to go from
examples to final FPGA chip programming.
This is certainly preferable to duplicating
them using low-quality, low-level evolutionary
algorithms that attempt to combine, in a naive
way, high-level logic and physical design phas-
es. Researchers and engineers have spent many
years developing EDA tools, including those
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for state machines and combinational logic
synthesis, technology mapping, placement
and routing, partitioning, timing analysis and
optimization, and so on. Using these tools to
build learning hardware will greatly facilitate
the field’s goals. Researchers should also use
the principle of Occam’s Razor; applying it in
one form or another makes possible mean-
ingful discoveries and explainable results.
Although Occam’s Razor is the basis of com-
putational learning theory, it has been large-
ly ignored by evolvable-hardware researchers. 

We do not believe that the purist strategies of
evolutionary hardware are acceptable for any
practical digital design application. Therefore,
we propose the concept of learning hardware
based on human problem-solving experience
and the application of mathematical algo-
rithms, problem-solving strategies, and exist-
ing high-quality design methods and tools,
rather than on ANNs and genetic algorithms
(today’s two basic evolvable-hardware meth-
ods). Evolution can remain one of the main
principles of building next-generation hard-
ware, but researchers should restrict its use to
higher abstraction levels, rather than to the low-
est level of FPGA resources, or to solving some
subproblems. Design tools should also help
evaluate and select the most promising design
variants before mapping to low-level field-pro-
grammable resources. Using genetic algorithms
on the switch level leads to very long chromo-
somes and nonconvergent learning processes. 

On the other hand, the idea of realizing
probabilistic methods in hardware is promis-
ing. The incorporation of probabilistic meth-
ods to design automation tools leads to
synergistic effects when applied with logic opti-
mization methods that account for some types
of constraints, or when combined with deter-
ministic use of some available information.37

Ashenhurst decomposition is one general
synthesis method for multilevel logic, both
binary and MV. This basic decomposition par-
titions functionality into predecessor and suc-
cessor blocks. One wire connects the two
blocks. The method partitions the original
function’s input variables into two sets: a bound
set that must go to the predecessor block and a
free set that goes directly to the successor block.
This decomposition works on smaller and
smaller blocks until one FPGA-configurable
logic block (CLB), standard cell, or if-then-else

decision rule realizes each block. In nondisjoint
decomposition, free and bound sets overlap; a
disjoint decomposition has no overlap. Every
multivalued function or relation is nondis-
jointly decomposable.32 The Curtis decompo-
sition is a generalization of Ashenhurst
decomposition in which more than one wire
connects predecessor and successor blocks. 

These methods have little bias because they
do not try to fit functions into any preconceived
elements. However, they require massive repe-
tition of graph coloring, set covering, or similar
techniques to find and evaluate good sets of
bound and free variables in every level. Thus,
these types of algorithms require speedup. Each
of the synthesis or decision algorithms requires
solving of an NP problem, such as unate or
binate covering. Solving these problems leads
to the same form—the product of the sums of
literals—as in the well-known satisfiability prob-
lem. But these optimization problems are more
difficult because they not only check that the
formula is satisfied, but must also find the best
method to satisfy the formula—by, for instance,
assigning a minimum number of non-negated
literals to a formula. There are some well-known
functions of this type, for example, a product
of positive literals called Petrick Function used
for binate covering (DNF minimization). Other
examples of decision functions are a generalized
Petrick function in the form of a product of the
sums of products of arbitrary literals and a Hel-
liwell function used in exclusive-OR sum-of-
products (ESOP) minimization. Thus, efficient
solving and minimizing decision functions in
hardware would be useful in a variety of
applications.

We use MV logic rather than binary logic in
our approach because of its natural represen-
tation of multivalued and symbolic con-
cepts.17,29,32,33,38,39 MV logic algorithms also
have high descriptive power and efficiency, as
displayed in their use by the newest general-
purpose logic synthesis system, MVSIS, from
the University of California, Berkeley.40

But, ultimately, our approach’s goal is to
always represent the designed MV network as a
binary network implemented in standard bina-
ry FPGAs using standard EDA tools. In this
way of thinking, binary logic is processed by the
system as a special case of MV logic. Moreover,
our hardware machine allows for dynamic
reprogramming from binary to MV literals with
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an arbitrary number of values. This strategy pre-
serves the power of binary logic in applications
that need it, and, if necessary, can freely mix
binary and MV logic in the same expressions.

Stages
Our approach to learning hardware consists

of four stages.

Network construction. A set of positive and neg-
ative examples specifies a problem—for exam-
ple, a certain robot behavior. We consider this
set of examples (or cares) as specification of an
incompletely specified mapping (in general, a
function or a relation). We then select a type
of network structure to synthesize, and the sys-
tem selects an adequate synthesis algorithm.
This structure can be a tree, DNF, multilevel
decomposed network, or other structure. All
available examples feed into the hardware sys-
tem as MV-input product terms with true or
false output values. A virtual-hardware proces-
sor now synthesizes a combinational network.
This process leads to a generalization of the pre-
sented set of examples. Thus, in the synthesis
process, from the point of view of an input-
output mapping, the initially specified map-
ping’s don’t cares become cares in the
synthesized network. The don’t cares (also
called don’t knows, which are input combina-
tions not given as examples) are replaced with
values 0 or 1. Extrapolating don’t cares to cares
corresponds to learning, generalization, or pre-
diction, depending on the example data. This
generalization process has a certain bias,
because of the network structure selection and
gate type selection in this structure. The bias is
small for functional (Ashenhurst) decomposi-
tion, because this method does not make any
assumption on the structure or gate types. In
standard logic synthesis for VLSI circuits, the
percent of don’t cares is low, however, the prac-
tical data in logic synthesis for learning often
have more than 99 percent of the don’t cares. So
algorithms that are efficient for VLSI EDA
tools are not always the best ones for learning. 

Instead, we can apply several logic synthe-
sis methods—such as the DNF,31 ESOP,33 or
hierarchical and iterative Ashenhurst/Curtis
decomposition,24,32,41,42 implemented in a
hardware/software reconfigurable system.

Network hardware compilation. This stage

maps the quasioptimally constructed network
from the first stage to a placed and routed net-
work of standard FPGA CLBs. We designed
this network using standard partitioning,
placement, and routing algorithms realized in
EDA software tools from Xilinx or other com-
panies. These tools run in software, and there-
fore the problem instances given to them
should always be regular and small. Other-
wise, the software’s slow speed would make
physical design a bottleneck of the entire hier-
archical learning/design approach.

FPGA reconfiguration. By this stage, the knowl-
edge gained by the system is in a set of net-
works—knowledge circuits—corresponding to
various behaviors. This knowledge represen-
tation is similar to that in subsumption archi-
tectures,43 but in our case, the circuit’s
knowledge is acquired automatically. This
knowledge is stored in binary memory patterns
representing virtual circuits. Under the soft-
ware program’s supervision, the hardware can
switch between several synthesized circuits (for
example, between different robot behaviors). 

Execution and network resynthesis. As the sys-
tem solves new problems—that is, evaluates
its knowledge circuits on new minterms—it
accumulates the new data sets and training
decisions, and the systematic procedures
repeatedly redesign the network. In this sce-
nario, an old network can serve as a redesign
plan for a new network. For instance, while a
procedure synthesizes a multilevel network of
CLBs using Ashenhurst decomposition, it can
store the sets of bound and free variables for
every decomposition level for reuse. In anoth-
er approach for problems with many new
examples, the procedures redesign the network
from scratch. This can be done from time to
time, to avoid the bias of learning history.

It follows then, that we can replace the
evolvable-hardware model of creating high-
level behaviors by evolving low-level hardware
resources with the learning model at a high
level of logic and then compiling the learned
logic network to low-level hardware, using
standard FPGA-targeted tools. The same phys-
ical FPGA resources can be multiplexed to
implement the virtual human-designed learn-
ing hardware and the automatically designed
learned-data hardware (knowledge circuits).
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Although we can design the learning hardware
once and not change it, the learning-hardware
approach can modify the data hardware indef-
initely as the environment changes.

Logic operation speedup
Learning hardware development seeks to

express a class of important combinatorial
problems by operations of the MV cube cal-
culus (MVCC). We then want to efficiently
implement the MVCC operations in a spe-
cialized hardware processor and compute solu-
tions for these problems with parallel
structures of the specialized processors.

The MV-input, binary-output, cube calcu-
lus12,28,38,44-46 could act as a general data repre-
sentation and calculus for low-level data in
several areas, including propositional logic,
logic synthesis, logic programming, logic sim-
ulation, machine learning, decision making,
image processing, databases,47 set logic, rough
sets, partition theory and applications,48 and
a few other areas of problem solving and arti-
ficial intelligence19,29,44,49-51 that represent dis-
crete functions and relations. These functions
and relations can be binary, MV, or symbol-
ic. It’s possible to develop a general-purpose
symbolic processor for efficient computation
in all these fields with a large subset of MV-
logic operations implemented in hardware.
But such a processor would be very complex
and expensive, because the number of possi-
ble MV-logic operations grows as the number
of logic values increases. Moreover, executing
each algorithm would use only a small specif-
ic subset of all the implemented operations.

Fortunately, modern FPGA technology
allows for 

• fast and relatively inexpensive realization
of specialized programmable processors
for arbitrary operations, and 

• reuse of the same FPGA hardware to
implement various specialized application-
specific processors (reprogrammability).

Moreover, FPGA implementations are espe-
cially efficient for regular and scalable archi-
tectures. 

Therefore, we designed and implemented
a broad-spectrum reconfigurable hardware
accelerator for MV-logic operations. This
MVCC processor is also called a cube calcu-

lus machine (CCM). CCMs, which we dis-
cuss in Part 2 of this article, run very efficiently
on FPGAs, because their architecture is high-
ly regular and scalable. A CCM is suitable as
an accelerator for a standard PC or a robot
microcontroller. It’s a hardware accelerator
that users can reconfigure to execute a specif-
ic algorithm that is required at a certain time.
When executing a certain algorithm, the
CCM hardware is programmed for only the
MVCC operations actually used in the algo-
rithm. Reprogrammability is crucial for effec-
tive and efficient implementation of the
MVCC to address MVCC logic operation
growth but the CCM uses only a small spe-
cific subset of all operations for a particular
algorithm. Moreover, different MVCC oper-
ations have the same general computation pat-
tern. Identifying this pattern let us develop a
general processor architecture for all MVCC
operations, each involving a different combi-
nation of elementary logic operations. Only
these elementary logic operations need repro-
gramming each time the operation type or the
number of logic values changes.

The CCM’s heart is a bit-sliced data path
representing a one-dimensional iterative net-
work of electrically programmable and exter-
nally controlled cellular automata. The data
path is thus not combinational, but sequen-
tial. The internal states of the iterative data
path correspond to stages of calculating the
resultant cubes. Each sequential MVCC oper-
ation generates several words as its result. Fig-
ure 1a (next page) shows this most basic type
of CCM. 

We can realize further speedup by using
hardware implementations of typical and
repeatedly performed operations, and by
implementing appropriate parallelism. Algo-
rithms typically perform operations on a large
amount of data. In particular, an algorithm’s
lowest-level loop—the variable loop—might
involve a lot of binary or MV variables. 

From the viewpoint of computation speed,
it’s best to implement computations for all loop
variables in parallel by making the word of a
single CCM processor at least as long as
required by all problem variables. However,
each particular algorithm might require differ-
ent word lengths, which might also vary for a
particular execution on particular data. There-
fore, the CCM architecture is fully scalable.49
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Moreover, to overcome the limitations on
physical dimensions for FPGAs and boards
with FPGAs, the CCM’s design—in particu-
lar the iterative cell (IT) and control unit
design49—lets the horizontal connection of any
required number of CCM processors imple-
ment long words that exceed the word length
of a single CCM, as Figure 1b shows. For each
pair of CCM processors in the horizontal
chain, the control unit enables direct connec-
tion of the rightmost IT of the left processor
with the leftmost IT of the right-hand proces-
sor of the pair, without using the bus interface
unit (BIU). These two CCM architecture fea-
tures implement microparallelism at the subin-
struction level.

We can further enhance the computation
speed by using a CCM-processor vertical lin-
ear array (pipeline) to implement the algo-
rithm’s second-lowest-level loop—usually the
cube loop or instruction loop. The CCM’s
BIU design enables communication vertical-
ly among CCM processors and among CCM
processors and the host processor.49 The BIU
also enables bidirectional pipelining of CCMs
and ping-pong communications between any
CCM processor and RAM; these processes
aid some computations involving cubes. For

example, the architecture involving both the
two-directional pipelining and ping-ponging
can compute the morphological Hough
transform, which some robots use to find
shapes and their locations. Figure 1c shows a
pipelined, vertical array of CCMs.

Besides these massively parallel CCM struc-
tures, other possible structures include the tree
of pipelined CCMs, which is useful for many
computations—for example, computing the
generalized Petrick function for solving the
unate covering problem.28 Such flexibility lets
CCM virtual processors realize 3D massively
parallel processing architectures with 3D data
movements. Figure 1d shows one such 3D
configuration.

CCMs present opportunities for imple-
menting massively parallel structures with

reprogrammable FPGAs, which leads to a high
degree of flexibility. The same reprogrammable
FPGA hardware can implement various mas-
sively parallel structures made up of differently
programmed CCM processors, and also vari-
ous other coprocessors or accelerators. More-
over, the number of possible-to-program CCM
operations is high. These operations include all
MVCC operations, MV multioutput relations

IEEE MICRO

CCM CCM CCM

CCM

CCM

CCM

CCM

CCM

(b)

(a)

(c) (d)

Cellular communication

Long word

Pipelining

Ping-pong

RAM

Bidirectional pipelining

Cellular communication

Figure 1. Sample data flows in various structures built from CCM building blocks: a single
processor with cellular automata architecture to process standard cubes (a), a long word of
several horizontally connected processors to process long cubes (b), pipelining in vertically
connected processors to perform 2D array computations (c), and 3D processing using
memories (d).
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operations, simplified calculus operations in
decomposition, another simplified calculus used
in rough-set theory and rough partitions, sym-
bolic predicates, and so on. Moreover, in vari-
ous CCM processors or a single CCM’s various
iterative logic units, users can concurrently pro-
gram different MVCC operations for MV vari-
ables with different numbers of values. Part 2
of this article, starting on page 52, gives an intro-
duction to cube calculus and describes the sim-
plified CCM architecture. MICRO
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