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Abstract F as follows:F(X) = H(G(B),A) where functionss, H, F can
o L o be all multi-output. Set oinput variables X is first partitioned
Finding the minimum column multiplicity for a bound set 5 the set ofoound variables B and the set ofree variables A
of variables is an important problem in Curtis decomposi- (setsA andB can overlap in the so-callédon-disjoint decompo-
tion. To investigate this problem, we compared two graph- sitions”, then setsA andB are formally acoverof setX, we will
coloring programs: one exact, and another one based orkeep the nameartition for uniformity). The set of bound vari-
heuristics which can give, howeveatovably exact results  ables is called theound setand the set of free variables is called
on some types of graphs. These programs were incorporatedhefree set There exist some methods to find set PAR of good par-
into the multi-valued decomposbtVGUD. We proved that  fitionings of sei to setsA; andB; [22], but they are not a subject of
the exact graph coloring is not necessary for high-quality this paper. Then each sg;,Bj) is te§ted for decomposmon. For
functional decomposers. Thus we improved by orders of some of these subséd;, Bj) there exist decompositions, for some

magnitude the speed of th lumn multiolicity problem other there are no Curtis decomposition. Some of the existing de-
. 9 . P . ? colu utip .C. y pro .e ’ compositions are also evaluated as better than others using certain
with very little or no sacrifice of decomposition quality.

; ; ; . cost functions When the setA|, B;) is found that its correspond-
Comparison of our experimental results with competing de- jng decomposition is evaluated as having the smallest cost for all
composers shows that for nearly all benchmarks our solu-subsets of PAR, functiong; andHj; are actually created froff.

tions are best and time is usually not too high. This two-level decomposition process next recursively applied

to new functionsH; and G;, until small functionsG; andH; are
created, that are not further decomposable (such functions are real-
ized by CLBs or standard cells). Thus, the Curtis decomposition is

The decomposition method formulated by Curtis [10] has been multi-level, andeach two-level stage should create the candidates
widely used for multi-level realizations of single-output Boolean for the next level decompositions, that will be as well decompos-
functions and gives better results than factorization. It found many able as possible. Currently there exist no provably exact algorithms
applications in multi-level FPGA synthesis, VLSI design, Machine 10 find sufficiently good sets of pitions that would guarantee that
Learning (ML) and Data Mining. In an innovative approach to Fi- the best two-level decomposition is not lost. Thus, if the presented
nite State Machine design [7, 19, 16], the design starts femm below stages of the two-level decomposition were faster, the algo-
poral logic constraints, from which acanonical representation ~ ithms that generate larger sets PAR of pghs Bi) could be used,

of the non-deterministic machineis automatically created in the ~ thus giving a higher chance of arriving at the minimum cost (i.e.,
form: F = F(x(t),x(t—1),.x(t—r),y(t—1),y(t—2),..y(t—Vv)) best) decomposition. In Curtis decompositions, the primary goal is
(shown here with single input and single outpuy for simpli- typically to minimize, in a number of steps, the total complexity of
fication), wherex(t — 1) is the value of signak in the previous the hierarchical multi-level realization of a given function, relation
clock pulse. The function (relatio) is next hierarchically decom-  ©r (non-deterministic) machine. In our case, by the best decompo-
posed [23, 6] using generalized Curtis decomposition. This relation Sition weunderstand one that minimizes the valueDsiC. DFC

has many inputs, outputs and terms, and is strongly unspecified; the®" Decomposed Function Cardinalityis the total cost of blocks,
problem is thus very complex. where the cost of a (binary) block withinputs andm outputs is

The slow speed of the algorithms is the reason that the 2"+ m, [23] (we use DFC because our research is mostly based on
decomposition-based design methods are not yet as popularly usedecompositions for VLSI layout generation and Machine Learning;
in EDA tools as they deserve, especially for efficient FSM design. MOst authors are interested in FPGAs and use the total number of
Therefore, creating decomposers that are both efficient and effec-L00k-Up table blocks as the cost function; for instance, XC3000
tive is important. Two-level Curtis method decomposes function CLB of Xilinx has a DFC cost of 2= 32).
The two-level Curtis decomposition algorithm can be summa-
rized as follows.
STEP_1. Find, using algorithms not described here, set PAR of
"good pairs” of set$A;, B;) (set PAR is usually large, but still much

1. Generalized Curtis Decompositions



smaller than the total number of partitions, or two-block covers, of
setX).

STEP2. For each pair of setgA;,B;) find decomposition
F(X) = Hi(Gi(Bj), Aj) suchthat the valug of thecolumn multi-
plicity index is (quasi)minimum. The multiplicity index is equal to
the number of values of a multi-valued variale This means that
when a binary encoding with the minimum number of bits is used,
it creates the minimum number of wires from blg@ko blockH.
Minimizing the number of these wires is the heuristic of Curtis de-
composition. If the number of binary signals going out of block
G is not smaller from the number of binary signals going i®o

then it is considered that the Curtis decomposition does not exist.

The multiplicity index is equal to the minimum number of com-
patible groups of columns in a Karnaugh map with cofactors for

bound set variables as columns, and free set variables as rows. A

column is the same as a singtofactor of a bound set a row

is the same as eofactor of the free set The multiplicity index

is usually found as follows. Aimcompatibility graph is created
with initial columns asiodes and their incompatiity relations as
edges. If two columns are incompatible, which means if they can-
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Fig. 1. Example showing howDOM colors a reducible graph

not be combined to one column, there is an edge between the re-

spective nodes. Because columigsand f| are cofactors on the  should be as close to minimum as possiblélere, we want to find
bound set, they can be combined together (i.e., are compatible) if out what is the role of Column Minimization in the overall success
they constitute amcomplete tautology fi = f|. A popular method of a Decomposer; especially, in terms of the calculation time, the
to find the minimum multiplicity index is to find a (quasi)minimum  memory usage, and the quality of results. We want to investigate
coloring of the incompatibility graph using some graph-coloring al- how the answers to these questions depend on the type of data, for
gorithm (graph coloring is an NP-complete problem, and even its instance on the percent of don't cares, or on the density of graphs

provable-quality approximation version is NP-complete [13]). The
multiplicity index p found is equal to the number of different colors
used and it is not smaller than the chromatic numbeart > x.

(u = x for exact coloring). All columns colored with the same
color correspond to a mutually compatible set of cofactors.

If during the creation of the graph it is found that a partial graph al-

in question.

There are basically four methods to find the Columnltidlic-
ity in Functional Decomposition, namelyet Covering, Graph
Coloring, Clique Partitioning and Clique Covering. A rela-
tion between the columns of the Karnaugh map of a function,

ready has a clique with more nodes than the previously found valuefor a given bound and free sets can be represented as a Com-

of y, than the creation is not completed and the nex{&gB;) is
tested (it is obvious that the clique size is the lower bounyg)off
during or after coloring it is found that the current number of colors
or pexceeds the previous minimum value of theltiplicity index
Hopt, it is discarded, and the next 4é%, B;) is tested.

STEP_3. From the set of groups of compatible columns functions
Gi andH; are quickly found, and their DFC is counted. The de-
composition with DFC higher than the minimum previous value of
DFC is discarded.

Observe that the decompositien= H(G(B;),A)) is repeated for
all sets(A;, B;) until the best setA;, B;) is found for which the
decomposition with the smallest DFC cost exists. By minimizing
first thecolumn multiplicity index and nextthéFC, we also pre-

patibility Graph or as an Incompatibility Graph. If represented
as a Compatibility Graphnodes which are connected together
are compatible nodes and can be colored with the same color.
This is called Clique Covering. Even though there has been a
lot of research done in the field of Graph Coloring and Func-
tional Decomposition, nobody, to our knowledge, has compared
these methods, or evaluated the importance of finding minimal so-
lutions to the problem of Column Multiplicity in the Curtis De-
composition. There exist hundreds exact and heuristic graph-
coloring and clique finding algorithms in the literature, to mention
just [1, 2, 3, 4, 5,9, 11, 12, 13, 14, 17, 20] and in the past we
programmed and compared several of them [8, 21, 22, 23, 25]. Al-
though we are not able to study all published papers, we did not

serve, or even increase, the number of don't cares for the successivéind an algorithm similar to our algorithrdOM), which is very

decomposition step3hus, it is of high importance that this step

is as fast as possible and at the same time gives the valuejof
that is close toy.

Becausetwo-level decomptisn stage is repeated very many times
on all second, third, etc.
graph coloring in STER. must be thoroughly designed. They are

fast, and gives good results. It ugksmination coveringsto color

the graph and makes use of the fact that many graphs are colored
with known values ofiopt. (The nameslomination andcovering

are used here with different meanings than in Graph Theory). In

levels, the stages of graph creation andresult, we obtain very high quality decompositions quite quickly,

which positions our decomposer on top f@arly all tested by us

very important to the overall success of a Functional Decomposerbenchark functions, not only from ISCAS and MCNC benchmarks,
program, because a high percentage of the run time of the Func-but also for KDD, Data Mining and ML benchmarks from U.C.

tional Decomposer is spent on the Column Minimization part of
Decomposition [22, 23]. One needs th($) to create the graph
quickly [6], (2) to color the graph quickly, but also the result

Irvine and Wright Labs that have very high percent of don't cares.
(Moreover, our method is for multi-output decompositions, which
allows to use it also for FSMs [7, 19, 16]).



€ that only few non-reducible graphs are created by DOM, this class
is well-colorable by DOM. The number of removals is the upper
bound on the differencg — x.

The following explains howbOM colors areducible graph. [1.]

Fig. 1(a) shows an Incompatibility Graph. Nodes 2 and 7 are cov-
ered by node 1, so in Fig. 1(b) nodes 2 and 7 are removed and it

ot ot . is remembered that they were covered by nodd2l] Next, in
@ ® ) Fig. 1(b) node 5 is removed as it is covered by node 4, and it is
© 3and5 1 © remembered that node 4 covers nod¢3®] After removing node
9‘ ©® pseudo- @ .e 2 . © 7 the resulting graph shown in Fig. 1(d) is a complete grdgh.
@ covering ® c In Fig. 1(e), each node in the Complete Graph is given a unique
© (@ C) color.[5.] In Fig. 1(f) the covered nodes are colored with the same
Fig. 2. Example showing howDOM colors a non-reducible graph color as the covering node. The color assignments are: Color A

{1, 2, 7}, Color B {3}, Color C{4, 5}, Color D{6 }. Fig. 1(e)
shows the completely colored graph. Four colors were used which
is the minimum required for this graphu & x, exact solution was

Definition 1 A node “A” in an incompatifility graph coverssome found).

2. A New Algorithm DOM for Graph Coloring based on
Domination Covering

other node “B” in the graph if all of the following are satisfied: Example showing hovDOM colors anon-reducible graph. [1.]

1) Node “A” and node “B” have no common edge. An incompatibility graph is shown in Fig. 2(a), This graph is not
2) Node “A” has edges with all the nodes that node “B” has edges reducible.[2.] As the first step the graph is checked for coverings,
with. but no coverings are found in this graph, so the first node (random)
3) Node “A” has at least one more edge than node “B”. is removed from the graph, which is node 1, and it is assigned a
When two nodes have a covering then both the nodes can be coloredninimum possible color which in this case is color [8.] This

with the same color. results in a new graph, shown in Fig. 2(b). In this graph node 4

Definition 2 If conditions 1) and 2) for coverings are satisfied and covers node 2 and node 6. So node 2 and node 6 are removed from
node “A” has the same number of edges as node “B”, then it is the graph, and it is remembered that node 4 covers node 2 and node
called apseudo-covering. 6. [4.] On removing node 2 and node 6, in the léag graph

) shown in Fig. 2(c) nodes 3 and 5 have a pseudo-covering so the
Theorem 1 If any node “A”in a graph coversany othernode “B”  first one of these nodes which is node 3 is removed, and then node
in the graph, node “B” can be removed from the graph, and in @ 4 5 and 7 form a complete graph. The complete graph is shown in
pseudo-covering any one of the nodes “A” or “B” can be removed. g 2(d).[5.] Now nodes are colored with the minimum possible
color, and each covered node is given the same color as the node
which covered it. The coloring is shown in Fig. 2(e). Three colors
were used to color the graph, which is the minimum required for
In a complete graph,total_edges= nodesggodes—l_)’ where this graph. The color assignments are: Colof1A 3, 5, Color B
total_edgesis the sum of all the edges in the graph. In a Com- 17}, Color C{2, 4, 6.
plete Graph no coverings or pseudo-coverings can be found and allln the example like this no proof of exact solution can be given
nodes must have unique colors. Fig. 1d shows a complete graphPut only few consecutive graphs (here, only the initial graph) were

Definition 3 A Complete graph is one in which all pairs of vertices
are connected.

with 4 nodes. non-reducible, so the solution is of a good higyghere, u differs
Definition 4 A non-reducible grapls a graph that is not complete by not more than one colorfrom X). We showed experimentally
and has no covered or pseudo-covered node(s). elsewhere that DOM departs from the exact minimum for large ran-

Graphs from Fig. 1a,b,c are reducible. The graph from Fig. 2a is dom graphs, but we will demonstrate experimentally here that it
non-reducible. Graphs from Fig. 2b,c are reducible, and graph from Wwill perform well in most cases on real-life benchmarks from de-
Fig. 2d is complete. composition. One weak point of the algorithm is when no cover-
Theorem 2 If a graph is reducible and can be reduced to a com- ings or pseudo-coverings are found at any stage of the coloring,
plete graph by successive removing of all its covered and pseudo-then a node is selected and assigned a minimum possible color. If
covered nodes, then Algorithm DOM finds the coloring with the the coloring of this node is a bad choice, it will result in a solution
minimum number of colors (the exact coloring). which is not minimal. But experiments show that such complicated
Our approach to the Column Minimization Problem in Functional graphs(worstcase graphs) will rarely, if ever, occur during the Col-
Decomposition is the following: For an arbitrary graph, it is as- umn Minimization steps of decomposition, which is our applica-
sumed that the graph is reducible and the DOM algorithm is used. tion. Wheny is equal or slightly higher than the size of the max-
If it finds a solution by subsequent reduction and arrives at a com- imum clique, which is the case in our graphs, the results are very
plete graph without generating a non-reducible graph, we know thatgood. The strong point ddOM is that it can find the minimum
this solution isexact If a non-reducible graph is generated, we solution without backtracking in all cases when the graph which
color and remove a randomly selected node. The removal makesresults after checking for coverings is a complete graph. Thus this
the graph reducible - in such case we have no proof of optimality, program will be effective in finding the minimum solution in all
but still agood coloring is found if only few non-reducible graphs reducible graphs. Observe that if, for instangee; 7 is found and
were consecutively converted to reducible graphs by the removalthey = 6, then siill only 3 wires (2 > 7) are needed for output of

of nodes. Thus, if the characteristics of graphs of some class isblock G, so the only loss of non-exact coloring is one column of
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Summary of Results of Comparison of the Total Colors
Total Number of Program Runs = 46
DOM CLIP
B=2 B=4 B=5 B=2 B=4 B=5
Ny % [Ny % NY % |Nd % Ny % [Ny %
Exact |46 100 [4§ 97.8 [41] 89.1 (37 66.1 |20 43.5|14 30.5
Errorl |- - |1f 2.1 |3] 6.5 |8]17.4|13 283 [1]] 23.9
Error 2 - - |1[ 21 ]4] 86 |5[10.8]|12 26.1
Error 3 -l - 1] 21 |8[17.4(3] 65
Error 4 1] 21 1] 21 |- - |3] 65
Error 5 - - -] - 2] 43
Error 6 - -] - 1[ 21
able

A Comparison of Total Colors generated byDOM, and CLIP
compared with total colors generated byEXOC on the same graphs for
two, four and five variables in the Bound Set for ML Benchmarks

don't cares, instead of two columns of don't cares in case of exact
coloring withp= x. Let us make a point that in both cases the
number of new wires (functions) created is the minimum and the
same (here, 3).

3. An Evaluation of DOM on the Column Multiplicity
Problem

In this section we will evaluate the importance of an Exact Graph
Coloring in Curtis Decompositions. Our aim is to investigate if an
Exact Graph Coloring is required in Functional Decomposition and

tical function benchmarks. We instantiated three algorithms into
MVGUD, a Greedy Clique PartitioningCLIP), the Dominance
Graph Coloring POM) and the Exact Graph ColoringKOQ.
The decomposer was run with different numbers of variables in
the Bound Set on two kinds of benchmark8CNC benchmarks
for circuits (presented below), and ML Benchmarks (from the
Wright Labs Database) for data from ML, Pattern Recognition and
Knowledge Discovery in Data Bases.

A comparison oDOM andEXOCwas first done on randomly gen-
erated graphs, for varying number of nodes and varying percentage
of edges (not shown because of a lack of space). Conclusions were
reached about how wedOM andEXOCwill perform on the dif-
ferent kinds of graphs. Tests were done to characterize the kind of
graphs that are generated in decomposition with regard to the num-
ber of nodes in the graph and the percentage of edges in the graph
in order to see if the same conclusions hold for the graphs generated
during Functional Decompositidh = H(G(B),A).

Whether the method used b§VGUD to calculateDFC is a good
evaluation of the cost of the decomposed multi-valued blocks is not
discussed here, but since tB¢-C is used for a comparison be-
tween different methods of calculating the Columnlifilicity in
Decomposition, within the same decomposer, the method of calcu-
lation of theDFC does not matter for the purpose of evaluating
algorithms for calculating column multiplicity. What matters is
that the same method is used for all the algorithms that are com-
pared. The goal of the testing is to see if an Exact Graph Coloring
is necessary to calculate the Column Multiplicity in Functional De-
composition, and if th®FC can be improved in case tHeVGUD

is run with EXOGC in comparison to when it is run witbOM or

with CLIP. MVGUDwas tested with 2 - 5, and more variables in the
Bound set (only some results are reported here because of space).
Notations Used in the Tables.The following is an explanation

of the Notations used in the Tables in this sectiBmch : Name

of the Benchmark functioni: Number of inputs of the Bench-
mark; o: Number of outputs of the Benchmark; Number of
cubes in the BenchmarlG: Decomposed function cardinality of
the decomposed functioAj: Name of Algorithm used iMVGUD
(E=EXOC, D=DOM, C=CLIPS))n bl: Number of multi-valued
blocks in the decomposed functiddP: Number of passesr num-

ber of times the function to calculate the column multiplicity was
called;TC: Total Colors iterative sum of colors generated for each
passAC: Average Colors TC/NP;T(s): User time in seconds.

A comparison was first made by runnify/GUD with 2 variables

in the Bound Setfor EXOC DOM andCLIP. Comparisons were
made with respect to the DFC, the number of two-input gates in
the final decomposed function, and the time takeMGUD to
decompose the functio™OM provides a smaller DFC in 6 cases

if it leads to better results on the graphs that are created from prac-andCLIP provides a smaller DFC in 5 cases, wHi¥OCprovides

Sum of Table 1

Total Number of Program Runs = 138

DOM CLIP
[Total NumbefTotal %Total NumbefTotal %
132 95.6 66 47.8
4 2.8 33 23.9
1 0.7 21 15.2
12 8.7
4 2.8
2 1.4
1 0.7

Exact
Error 1
Error 2
Error 3
Error 4
Error 5
Error 6

1 0.7

—Table 3
A Summary showing the Addition of the Total Colors obtained in
Table 2

a tie with the best solution in 6 of the cases. HeBE¥®Cdoes not
provide any real improvement, on the other hand it is much slower
thanCLIP andDOM, which is to be expected. The reason for this
kind of results is that since in this experiment there are 2 variables in
the Bound Set, in most cases the size of the IncomiigtiGraph

at different levels of the decomposition is 4, which is a small graph,
and it is known that for small graphs bo@iLIP andDOM usually
generate the best solution as well. Hence we conclude that for two
variables in the Bound Set it is not worthwhile having an Exact
Graph Coloring to calculate the Column Multiplicity MVGUD,



and a good heuristic algorithm to calculate the Columitidiicity T o T e e VI e e o
H A I5xpl 7/10 496 384 292 | 288(9) | 288(9) [ 320(20) | 336(21)| 236 11.0
is sufficient. 9§§m 9/1 | 640 | 984 | 400 22457; 16055; ¢ ¢ 104 26.4
Table 1 shows the result for 4 variables in the Bound Saw. okez | 25120 | 601 | 2436 | 2990 paseciod s | 1150
0, - 5| 8/63 3720 | 1560 2104 208.0
E% was calculated to see how dense or sparse the graphs gen- % | %\ ., | S50 50) o priall By
erated during the decomposition are. This was calculated in the risect | 87 | 472 | 208 | 224 72;;((2&2) ss2(11) 304(19)| 26818)| 229 | 86
. . Imisex 392 .
following way: For any graph with number of nodesnrs the isexs | 14114 9816 | 4204 | 3025 1744 | 13160
. . . rd53 5/3 120 96 84 60 1.8
total_possibleedgesfor this graph( 100% edges ) will be equal rd73 73 | 320 | 352 | 256 | 160(5) | 160(5) 13 | 131
B . . d84 8/4 508 672 320 | 256(8) | 224(7 171 32.6
to n* (n— 1)/2. Hence if the number of edges in the graphis equal [ | 1o | 1o | o1 | se8 | crainy| caot) wr | i
to e, then theedgepercent= (ex 100)/total_possibleedgesThis oot | e Lossapeaeaonaosanny | 0
1 T H T lu4 14/8 3455 1326
will give the edgepercentin a graph withn nodes ance edges. B | o 41603 | st216s5s(11ds24(114
Since the decomposer calls the function to calculate the Column  kie 915 plea 467 | 53

Multiplicity a number of times, thé&v E%was calculated by adding
theedgepercentfor a graph each time the function to find Column
Multiplicity was called, and then dividing this total by the num-
ber of times the function to calculate the Column Multiplicity was
called. EXOQE), DOM(D) and CLIP (C) generate the same re-
sults in all the cases in terms of DFC and number of CLB’s. The

reason for the slow times &1VVGUD with EXOCcan be explained composable; thus their graphs have smalin contrast, only 1%

as follows: wherMVGUD is run with 5 variables (not shown) in .
of randomly generated functions are decomposable). The result

the Bound set, in most cases the average number of nodes in the‘hat random graphs are much more difficult than graphs originating
graphis 32 and the edge percentage s always high with the hlghesgrom real-life problem is known from other EDA areas [9], but was

being 77% and the lowest being 46.1% This means that the graphsnot known for functional decomposition
generated during decomposition were nearly always (since this is . . ' .

an average) dense graphs. It was found experimentally on randomAS found in experiment&XOCwas unable to provide a betFC
graphs that for dense grapEXOCtakes a long time to find the Ex- for the ML Benchmarks. In order to see the total numbers of c_olors
act solution, hence we have such slow timesEXOC Whenever generated bypOM, EXOCandCLIP on the same graphs, which

DOM does not generate an exact solution, it is usually 1 or 2 colors mirioﬁgxﬁfatig (il;irﬂgntth\f/azmier?;rrﬂfeEj\r/lgg B?,{,:Sefnoan;gotzmon'
away from the Exact solution and rarely more than that, and this 9 exp P )

being on randomly generated graphs. Now considering that there™" with al thre(_e a}lgorlthmEXOC CLIP, andDOM calculating
were 5 variables in the Bound Set, then the Incomagitgraph the Column Multiplicity, and only the results ofor_le of themwas ac-
will have 32 nodes, and for a Curtis decomigios to exist, if a col- cepted and the results from the other two was discarded. The count
oring of the graph with 16 colors or less is found then one exists. _Of the colors was kept for all three Algorlt_hms, thus demonstrat-
In a Table for 5 variables in the column for Average colaGwe ing how EXOG CLIP, andDOM compare with respect to the total

would find that the largest average color is 7.65 for the benchmarknumber of colors generated on the same graphs_, only now these
sa02 But this means that these graphs generated during decompo-graphs have been generated from practical function Benchmarks.
sition, had low chromatic numbers, which were much less than 16. Table 2 is a summary of the re_sults of 46 program runs. It _ShOWS
So even ifDOM or CLIP generate a solution that is 2 or 3 colors howDOM andCLIP compare with respect to the number of times
away, the solution will be accepted as a Curtis Decoritioasbe- that the total number of colors generatedD®M andCLIP are
cause it will still be less than 16. The same reasoning applies to the same as the total number of colors generatdeliyC, and the
Table 1 where a comparison is made with 4 variables in the Bound number of times the total colors generatediyM andCLIP were

Set. Hence we conclude that for 4 or 5 or greater number of vari- not exact and by how muclfl.] In Table 2, the rowExactstands
ables in the Bound Set an Exact Graph Coloring does not producefor the case when the total numbers of colors generate@y!
better Curtis Decompositions, and having a good heuristic algo- andCLIP was the same as the total colors generate@KpC

rithm to find the Column Multiplicity or even a greedy algorithm to Error 1 stands for the case in which the total numbers of colors
find the Column Multiplicity isgood enough. generated bypOM andCLIP were one color away from the total

g . numbers of colors generated BXOGC and so on, tilError 6. Cor-
By the results of the testing we can definitely say that we have . . ;
S k ) responding to these rows, the coluMuagives the number of times,
proved that an Exact Graph Coloring is not required to find the

Col Multiolici here Curtis D i idered and columrb is equal toNu/ TotalNumbero f ProgramRurg.00.
olumn Multiplicity where Curtis Decompositions are considered. [2.] As can be seen from the Table ROM performs extremely
Exact Graph Colorings only take up more time and fails to pro-
o . . . well, andCLIP does not perform so welDOM thus proves to be a
duce any significant change in the results. This is true with respect

to both Circuit Benchmarks and ML Benchmarks (not presented ¥ery good heuristic algorithn{3.] Table 3 is a total of the rows of
: X . able 2 forDOM andCLIP.
here). Also the results shown raise the question that in cases where
CLIP did not generate the same total numbers of cololEXSG
why did the DFC not improve when we useBXOC? The only 4. General Comparison of MVGUD with other Decom-
possible answer to this question is that the decompositions gener- posers and Conclusions
ated byCLIP were stillacceptable decompitisns, even if they use
non minimum numbers of colors which in turn means that these Table 4 shows the result of comparisol¥GUD and other de-
graphs generated during the decomposition process must be haveomposers on some benchmarks (recall that in contrast to others,

ing low chromatic numbers. This provides a very valuable insight we do not have a fixed number of inputs to a block). Observe that

Comparison of Decomposers on selected binary benchmarks

into the kinds of graphs that are generated during the decomposi-
tion process: the graphs generated during the decomposition pro-
cess are definitely of a different nature than random graphs. This
is because it is known [24] that 98% of real-life functions is de-
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