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Abstract— The paper presents two hierarchies of canonical AND/EXOR trees, forms and decision diagrams.
The first hierarchy generalizes the Kronecker and Generalized Kronecker representations by introducing new
canonical AND/EXOR forms. We propose to call all these new forms and future AND/EXOR forms including
KRO and GRM, the Zhegalkin forms [42] to honor the Russian scientist who in 1927 discovered the forms
now attributed to Reed and Muller and invented by them in 1954. The new Zhegalkin representations and
forms can be used for synthesis of quasi-minimum ESOP circuits and the new diagrams can represent large
functions and can be used for optimal synthesis of highly testable multilevel circuits in several technologies,
especially in Fine Grain Field Programmable Gate Arrays. The second hierarchy generalizes and extends the
Universal Akers Array to expansions other than Shannon and neighborhoods other then 2-inputs, 2-outputs.
These diagrams are called Zhegalkin Lattice Diagrams.

I. INTRODUCTION

In recent years Decision Diagrams (DDs) have revolutionised the representation and processing of binary logic
functions. Because of the processing speed and relatively small memory requirements, the DDs are widely used in logic
synthesis, verification and simulation. Many modern design automation systems use Binary Decision Diagrams (BDDs)
as the main internal representation of functions, on which all meaningful operations are executed. DDs originate from
binary decision trees (binary expansion trees, Shannon trees), which in turn are based on the fundamental expansion
theorem of Shannon that is applied in every node of a tree. Every node is related to one input variable of the function.
The well-known diagrams are "reduced”, and they are "ordered”, which means that the variables of nodes in the tree
are ordered in the same way in all branches.

BDDs [2] have an important disadvantage - some very large functions of practical interest cannot be represented
by them, because the number of nodes of the tree becomes too large. Therefore, very early, the research on the
representation of Boolean functions consisted in generalising the concept of a binary tree, and we will follow this
approach below.

There exists a hierarchy of AND/EXOR representations investigated previously in [10, 16, 33]. We will call it the
Green/Sasao hierarchy, because while the original paper of Green investigated only two-level forms, the paper of Sasao
interlinked forms with corresponding trees and diagrams. All these representations can be used in the first stage of
logic synthesis - the ”technology independent, EXOR synthesis” phase, which is next followed by the » EXOR-related
technology mapping” [34, 12, 40, 37].

The hierarchy is based on three expansions:

f(ml, L2y eeny mn) = Elfo(mz, aeey mn) D mlfl(mz, ceey :l:n)
in short f = Z1fo ® z1f1, called Shannon, (1.1)
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in short f = fo @ 21 fs, called Positive Davio, (1.2)



f(z1,22,.y2n) = 1- fi(z2,..y2n) © Z1f2(22, ..y Zn)
in short f = fi @ Ty f2, called Negative Davio, (1.3)

where fo is f with z; replaced by 0 (negative cofactor of variable z;), f1 is f with z; replaced by 1 (positive cofactor
of variable 1), and fo = fo @ fi.

By applying recursively expansions (1.1) - (1.3) (or any subset of them) to the function, next to its cofactors with
respect to the first level variable of the function, then to second level variable cofactors, to third level cofactors, and so
on, various types of binary decision trees can be created [33]. Sasao characterized those representations in an uniform
way that we will use here in our generalizations. The concepts of Shannon Trees, Positive Davio Trees, Negative
Davio Trees, Kronecker Trees, Reed-Muller Trees, Pseudo-Kronecker Trees, and Pseudo Reed-Muller
Trees, as well as of the corresponding decision diagrams and flattened (two-level) canonical forms are discussed in
[33, 7, 14, 15, 32, 38]. In addition, the Free Kronecker Trees that use S, pD and nD nodes disregarding any order
of variables and expansions are discussed in [11]. At every tree level, different variables and expansions can occur.
Thus, the order of variables in every branch can be different, and such diagrams are also called non-ordered. Similarly,
one can also define Free Binary Decision Trees (leading to Free BDDs) and Free Positive Davio Trees (leading to Free
FDDs). Free Kronecker Trees lead to Free KFDDs (FKFDDs) defined and investigated in [11].

The Kronecker DDs have been further generalised to more general data structures, K¥BMDs [9]. These diagrams
use arithmetic operations of addition and multiplication instead of binary logic operations. K*BMD diagrams find
applications in verification of digital systems, and for solving general problems in discrete mathematics.

Below, we will propose another approach to the generalization of Kronecker diagrams: our generalization, however,
still uses binary operators, so it is useful for logic synthesis.

In [24] the Generalized Kronecker Trees, Forms and Decision Diagrams that unify Kronecker and Generalized Reed
Muller representations have been proposed. These representations are better then the previously proposed because
the previous representations did not allow to create GRM forms after flattening. Here, further generalizations of
the representations from [24] are proposed, creating thus an enhanced Green/Sasao hierarchy. The flattened forms
are used to design the minimized Exclusive Sum of Products (ESOP) circuits, and the multi-level representations
are used to design multi-level AND/EXOR circuits, that next through the ?EXOR-related technology mapping” are
adjusted to AND/OR/EXOR custom VLSI, standard cell, or FPGA technologies. Because of the superioriority of
new representations, the circuits obtained as above are also never worse than the AND/EXOR circuits obtained from
the previously known representations, (including the GKTs [24]).

In section II various kinds of trees with multi-variable nodes are introduced. We review the concept of the Generalized
Kronecker Trees and introduce the Generalized Kronecker Diagrams and their ” pseudo”-like generalizations along the
same lines, as the Pseudo Kronecker representations were created to extend the Kronecker representations. In section
ITI two extended Green/Sasao hierarchies of representations are presented. Section IV presents the Zhegalkin Lattice
Diagrams hierarchy. These diagrams map logic functions to regular grid on two-dimensional space and allow to
efficiently realize some kinds of functions, especially totally symmetrical, partially symmetrical or nearly symmetrical
multi-output functions, functions with many don’t cares, and multi-output Boolean relations. Section V concludes
the paper.

II. THE FAMILY OF GENERALIZED KRONECKER TREES, CANONICAL FORMS, AND DECISION
DIAGRAMS

Definition 1. The Generalised Kronecker Tree is a multi-branch tree created as follows:

1) The set of all n input variables is partitioned into disjoint and nonempty subsets S; such that the union of all
these subsets forms the initial set. (If each subset includes just a single variable, the tree reduces to the special case of
a KRO tree. If there is only one subset that includes all variables, the tree corresponds to the special case of a GRM.)

2) The sets are ordered, each of them corresponds to a level of the tree.

3) For every level, either S, nD, or pD expansion is selected for its nodes if the set involves a single variable, or the
expansion (2.2) below with the same polarity for all variables from S; is applied to all nodes of the level if the set is
multi-variable,

4) The formula for expansion (2.2) introduced for the first time in [24] generalizes the following formula (2.1) for a
Generalized Reed-Muller expansion:

( f()zl, ey l‘.n) = a0 D alizl D (1,252‘.2 D...D alnin D alzili‘.z D 0,13’33112‘.3 D...D an_17ni‘.n_1€in D...D alz___nii‘.lii‘.zﬁg e :in
2.1

where a;’s are either 0 or 1, and Z denotes variable z or its negation, . Thus by assigning a variable or a negation
of a variable to each of the &; in (2.1) we create 272" 7" different expansion formulas. Each of them is called a polarity
ezpansion, i.e., an expansion of a certain polarity.
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Figure 1: Ezample of Pseudo Generalized Kronecker Tree

The expansion formula (2.2) for function f(z1, #2, ..., Zm, ..., Z») is the same as GRM expansion, (2.1), with respect
to variables 1, ..., &, and coeflicients a; replaced with subfunctions SF; of remaining variables &, 41, ...2x:

flz1, 22, s By ooy Bn) = SFo(Brni1y -or Zn) DE1SF1(Zmt1y - Zn)DZ2SFo(Bmi1, o1 En) Do . O Em SFmn(Zmt1y -es n)

@ﬁ1ﬁ25F12($m+1, ceey mn)@i1ﬁ35F13($m+1, ceny mn) D... ﬁm—lﬁmSFm—l,m(mm+1, ceey mn)
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where the so-called Data Functions SF; are calculated as coordinates of a vector CV = M~! x FV, in which:

FV(zm+1,---, Zn) is a vector of cofactors of F with respect to variables from the set {z1, ..., Zm}.

A 2™ x 2™ nomnsingular matrix M has as its columns all the products of literals #; that have been used in one
m—1 . . . . . . .
of 2m? particular polarity expansion forms specified by (2.2). The columns of the matrix are linearly independent
with respect to the bit-by-bit exoring operation (for an example see [24]).

Definition 2. The Pseudo Generalised Kronecker Tree is a tree with multi-variable expansion nodes created as
follows

1) The set of all n input variables is partitioned to disjoint and nonempty subsets S; such that the union of these
subsets forms the initial set (If each subset has just a single variable, the special case of PKRM is considered.)

2) For every node of the tree, in a level with variable subset S;, any GRM expansion for all variables from S; can
be performed.

Ezample 2.1. An example of the Pseudo Generalised Kronecker Tree (PGKT) can be found in Figure 1. The first
level of the tree has Shannon expansion for variable z;, the second level has GRM(2)-13 and GRM(2)-2 expansions
for set of variables { z3,z4 } and the third level has S, pD, and nD expansions for variable z3. The output function
of a node is shown by it, the edges on the bottom of the node correspond to the two inputs of a node - these are the
(respective to the expansion type) functions from (1.1) - (1.3) and are taken from the set fo, f1, f2. The expansion
literals are shown near the input edge(s). Label 1 corresponds to function fo in pD and f; in nD. Label Z; to fy in
S and f; in nD. Label z; to f; in S and f; in pD. The nodes denoted by S denote Shannon Expansions (Equation
(1.1)) In them, the Shannon Expansion with inclusive OR operator can be replaced with the expansion with EXOR
operator. This can be done because functions Z;fo and z;f; are disjoint. Nodes pD denote the Positive Davio
Expansion (Equation (1.2)), and nodes nD denote the negative Davio Expansion (Equation (1.3)). Observe that S
uses both a variable and its negation, pD uses only the positive literal of the variable, and nD uses only the negative
literal of the variable. The circuit realisation of S is a multiplexer. Realisation of pD includes a two-input AND and a
two-input EXOR gate and is called AND/EXOR gate. Realisation of nD includes a two-input AND gate with inverted
input for the control variable z1, called the inhibition gate, and the EXOR gate. It is called the Inhibition/EXOR



gate. All such gates exist in Fine Grain FPGAs and in modern VLSI libraries.

The notation for the multi-variable GRM nodes is described below. As we can observe in Figure 1, the number
13 in expansion name (polarity) GRM(2)-13” is a natural number corresponding to the binary number 1101, called
a polarity, in which the rightmost 1 corresponds to the positive polarity of single variable z3, 0 corresponds to the
negative polarity of variable z4, and the leftmost two ones correspond to the positive polarities of variables z; and
z4 in a two variable AND term for variables z; and z4. The expansion of the node GRM(2)-13 is described by the
following formula:

fo(z2, z3,24)= SF(fo)1(23)Dz25F (fo)z,(3)

BZ4SF(fo)z,(23)D2224SF (fo)ye.(z3)
where notation SF(f);(X) denotes function SF;, with arguments from the set X of variables, applied to argument
function f.

The GRM expansion in node GRM(2)-2 (for polarity [00,1,0]) is described by the formula:

fi(za, 23, 24) =SF(f1)1(z3) ® Z2SF(f1)z,(23) ® 2aSF(f1)z,(23) ® T2TaSF(fo)z,z,(23)

It can be observed that the concept of Pseudo GKTs can be further extended by allowing in the second level of the
same tree the mixture of both single variable and two-variable expansion nodes. Such expansions will be called the
Mixed Pseudo GKTs (MPGKTs). If, for instance, the GRM(2)-2 node in Figure 1 were replaced with a two-level tree
with S node for variable z; and pD nodes for variable z4, an example of a MPGKT would be created.

Definition 3. The Mixed Pseudo Generalised Kronecker Tree (MPGKT) is any multi-branch tree created as
follows.

1) The set of all n input variables is partitioned to disjoint subsets (blocks) S; of variables.

2) For every multi-variable set, either apply to a root node in the level an arbitrary GRM expansion of all its
variables or create a subtree of single-variable expansions of variables from §;. Ordered sets S; are assumed. For a
single-variable level of the tree, any combination of the S, nD and pD nodes can be applied.

The most general is the category of free trees.

Definition 4. The Free Generalised Kronecker Tree (FGKT) is any multi-branch tree created as follows. For
every node of the tree, an arbitrary size subset of input variables can be selected. For single variable sets - an S, pD
or nD node can be created, for multi-variable sets - the GRM expansion of its variables of any polarity is calculated.
The levels are no more associated with variables or their sets, various local orders and partitions of variables may exist
in the branches.

Definition 5. The Ordered Generalised Kronecker Tree (OGKT) is any multi-branch tree created as a Free Tree,
with the additional constraint that every branch has the same order of variables.

In OGKT the sets of variables in different branches may have different sizes and overlap, but the order must be the
same. For instance, in one branch the first set is {zo, 1, z2} the second set is {z3, z4}, and the third set is {zs, z6}-
In another branch the sets are: {zo}, {z1}, {2, 23}, and {z4, z5, z6}.

The schemata of various types of GKTs are shown in Figure 2 and Figure 3. Figure 2 presents various types of
Ordered Generalized Kronecker Trees. Figure 3 has a scheme of a Free GKT. One can appreciate various orders of
variables in branches here.

Canonical AND/EXOR Forms are obtained by flattening respective trees. Flattening means finding the AND-terms
by following all the paths from the root to all the leafs. This way an AND/EXOR two level expression is created that
is equivalent to the tree and that is a canonical form.

Canonical AND/EXOR Decision Diagrams are obtained by combining isomorphic nodes (nodes that correspond
to the same subfunctions), and removing nodes that are in some sense redundant. For instance, a node with two
inputs originating from the same node is removed [33]. Similarly, a node with four inputs originating from the same
node is removed [24]. Transformations for S, pD and nD nodes from [33] are applied to single-variable nodes. Their
multi-variable node generalizations, presented in [24] are applied to multi-variable nodes. All these transformations
generalize the OKFDD transformations from [33]. This way, the definitions of all flattened forms and decision diagrams
can be obtained analogously as in [24].

Ezample 2.2. This example demonstrates a function fi in which the PGKT is better than the GKT. The PGKT
for fi has Shannon node for variable @ on top, GRM node for cofactor fiz for expansion variables b, c, and GRM node
for cofactor fi, for expansion variables b, c. The expansion diagram is

fi=a(l-z @ b-y®c-z ® bc-v) ® a(ll-vdec-y®b-z®bec-z).



Thus, it has two GRM nodes, and 5 nodes for variables a, z,y, z,v (the variable-nodes for variables z,y, z,v are
shared). Observe that in the subdiagram for fiz the polarity is [11,1,1] and in the subdiagram for fi, the polarity is
[00,0,0]. It can be shown, that it is not possible to have a smaller diagram for fiz, because each change to another
polarity would require exoring some of variables z, y, z, v and this would lead some extra exor nodes, which is to more
nodes than four for only the variable-nodes. Similarly, changing the polarities in the subdiagram for e will always
lead to diagrams with more nodes than in the above solution. Since both subdiagrams are worse, the entire diagram
is worse by having the same expansion in both subdiagrams. Similarly it can be shown that the variable @ must be
on top, and, in general, there exists no GKT that is better or equal to fi.

Ezample 2.3. This example demonstrates a function fk for which the free GKT is better than the ordered GKT.
The free GKT for fk has Shannon node for variable a on top, GRM node for cofactor fkz for expansion variables b, c,
and GRM node for cofactor fk, for expansion variables z,y. The expansion diagram is

fk=a(l-z @by ®c-z®bc-v) ®all-c®z-0y-0 zy-c).

Thus, it has two GRM nodes, and 6 nodes for variables z,y, z,v and ¢ (the node for ¢ is shared). Observe that in
the subdiagram for fkz the order of variables is {b, c} before {z, v, z, v}, and in the subdiagram for fk, the order is
{z, y} before {b,¢c,z,v}. It can be shown, that changing the orders in the subdiagram for a to the orders with {b,c}
before {z, y, z, v} will bring trees with higher node costs (we calculate the cost of the 2-variable node as three standard
nodes). For instance, there would be one more standard node in the solution:

fk=a(l-z @by ®c-z®bc-v) ® a(l-0D c-(zydl) ® b-0 @ be-0).

Similarly it can be shown that all possible changes of orders in the subtrees to the same order in both subtrees will
always result in higher total node costs.

Examples of forms with special properties, like superiority of GKE with respect to PSDKRO, PGKE with respect
to GKE, MPGKE with respect to PGKE, and so on, can be created using Theorem 3 in [24]. This way, the hierarchy
from Fig. 4 has been also created. The mutual relationships of PSDKROs and GKEs, and FKROs and GKE were
for instance investigated: (1) ”are there any PSDKRO’s that are not in GKE?”, (2) "are there any FKRO’s that are
not in GKE?” and positive answers were given to them. Another method to create examples for forms and trees to
investigate relations between families is to create an expression for the form for which we want to prove the superiority,
and next create from it a multi-output function with as many outputs as the form has product terms, each of its single
outputs being a product equal to one product term from the form.

The idea of separating variables to ”Kronecker-type” variables and " GRM-type variables” in a canonical AND/EXOR
representation, introduced in [24] allows to create very fast ESOP minimizers based on algorithmic ideas introduced
in [24, 25, 40, 5, 6], in which function is represented by a flat vector instead of a tree or a DAG.

The concepts presented here can be applied for the synthesis of easily testable two-level AND/EXOR circuits.
Obviously, in addition to the expansion forms from KRO and GRM, there are many other new canonical expansion
forms resulting from the flattening of the new trees. Furthermore, variants of non-ordered sets S; can also be considered.
ESOP circuits are AND/EXOR two-level circuits with not any constraints imposed on the products of literals - they
are thus the best AND/EXOR circuits but they are not canonical. Much research has been devoted to the synthesis
of minimal ESOP circuits [39, 35], but so far the exact solution can be obtained only for a very small number of input
variables [36]. The quality of AND/EXOR circuits obtained from the expansions proposed here should be significantly
better that those corresponding to GRMs or (Pseudo) KROs because the search space of GKTs is much larger than
the search space of the GRM expansions. For the case of many variables, it will be, however, not possible to search
it exhaustively, even for 8-9 variables, because of the large size of this new space. Therefore the practical usefulness
of the proposed ESOP minimization method based on the GKTs and their extensions will depend on the quality of
search heuristics to partition and to order the input variables.

III. ENHANCING THE GREEN/SASAO HIERARCHY WITH NEW REPRESENTATIONS

Table 1 shows relationships of the canonical trees, the canonical expressions, and the decision diagrams created
from these trees by applying the reduction rules. This table adds new AND/EXOR representations, Zhegalkin Forms
1 to the table from [33]. It should be noticed, that not all known EXOR-based representations are included here,
for instance some of those from papers [16, 22, 33, 40] are not included. However, the goal was to compare here the
new representations only to those AND/EXOR representations that are popularly known and have been thoroughly
investigated in the past. Non-canonical representation have also been not included.

Figure 4 shows the set-theoretical relationships among the known Reed-Muller and the (defined above) new classes
of Zhegalkin canonical forms. Observe, that we illustrate here several new families of forms that stand between GRM

! Using the name ” Zhegalkin” is also useful practically, because otherwise very long composite names such as ” Generalized Pseudo Mixed

Kronecker Reed-Muller” should be introduced
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Type of Tree

Expression generated
from the tree

Decision Diagram
Generated from Tree

Shannon Tree

Minterm Expansion

Binary Decision Diagram (BDD)

Positive Davio Tree

Positive Polarity
Reed-Muller (PPRM)

Functional Decision

Diagram (FDD) [38]

Reed-Muller Tree

Fixed Polarity
Reed-Muller (FPRM)

Reed-Muller

Decision Diagram

Kronecker Tree

Kronecker Expansion (KRO)

Ordered Kronecker Functional

Decision Diagram (OKFDD) [32, 7]

Pseudo Reed-Muller Tree

Pseudo Reed-Muller Expansion (PSDRM)

Pseudo Reed-Muller Decision Diagram

Pseudo Kronecker Tree

Pseudo Kronecker

Expansion (PSDKRO)

Pseudo Kronecker Decision

Diagram (PKDD) [34]

Free Kronecker Tree

Free Kronecker

Expansion (FKE)

Free Kronecker Decision

Diagram (FKFDD) [11]

Generalised Kronecker

Tree (GKT)

Generalised Kronecker

Expansion (GKE)

Generalised Kronecker

Decision Diagram (GKDD)

Pseudo Generalised

Kronecker Tree (PGKT)

Pseudo Generalised

Kronecker Expansion (PGKE)

Pseudo Generalised Kronecker

Decision Diagram (PGKDD)

Mixed Pseudo Generalised
Kronecker Tree (MPGKT)

Mixed Pseudo Generalised
Kronecker Expansion (MPGKE)

Mixed Pseudo Generalised
Kronecker Decision Diagram (MPGKDD)

Ordered Generalised
Kronecker Tree (OGKT)

Ordered Generalised
Kronecker Expansion (OGKE)

Ordered Generalised
Kronecker Decision Diagram (OGKDD)

Free Generalised

Kronecker Tree (FGKT)

Free Generalised

Kronecker Expansion (FGKE)

Free Generalised

Kronecker Decision Diagram (FGKDD)

Table 1: Relations of Canonical AND/EXOR Trees, Ezpressions and Decision Diagrams

? ? ESOP
FGKE
MPGKE OGKE
PGKE ?
GKE
GRM

FKRO
PSDKRO

?

Figure 4: Set-theoretical relationship among known and new (Zhegalkin) classes of AND/EXOR canonical forms




Type of Tree

Lattice Diagram
Generated from Tree and type of regular layout

For what functions

Shannon Tree

Universal Akers Array

nearly symmetric, all

Positive Davio Tree

Functional
Lattice Diagram

nearly symmetric

Reed-Muller Tree

Reed-Muller

Lattice Diagram

nearly symmetric

Kronecker Tree

Ordered Kronecker
Lattice Diagram

all

Pseudo Reed-Muller Tree

Pseudo Reed-Muller Lattice Diagram

nearly symmetric

Pseudo Kronecker Tree

Pseudo Kronecker
Lattice Diagram

all

Free Kronecker Tree

Free Kronecker
Lattice Diagram

all

Generalised Kronecker

Tree (GKT)

Generalised Kronecker
Zhegalkin Lattice Diagram

all

Pseudo Generalised

Kronecker Tree (PGKT)

Pseudo Generalised Kronecker
Zhegalkin Lattice Diagram

all

Mixed Pseudo Generalised
Kronecker Tree (MPGKT)

Mixed Pseudo Generalised
Kronecker Zhegalkin Lattice Diagram

all

Ordered Generalised
Kronecker Tree (OGKT)

Ordered Generalised
Kronecker Zhegalkin Lattice Diagram

all

Free Generalised

Kronecker Tree (FGKT)

Free Generalised
Kronecker Zhegalkin Lattice Diagram

all

Boolean Ternary
Decision Diagram

Boolean Ternary
Zhegalkin Lattice Diagram

all

Table 2: Relations of Canonical AND/EXOR Trees, and Lattice Diagrams

and ESOP (and between PSDKRO and ESOP) in the Green/Sasao hierarchy of AND/EXOR canonical expansions.
In the new families, there are included their respective restricted families not shown in the diagram; for instance
families with sets S; limited to 2, 3, 4, ..., n — 1 variables. These families are important from the practical point of
view.
Similarly as in examples 2.2 and 2.3 one can create functions that prove that the proper inclusion relations illustrated
in Table 1 and Figure 4 are true; for instance, that the MPGKTs are better than PGKTs, the MPGKE are better
than PGKEs, and so on.

An interesting open question is the following: ”Is the FGKE family of expansions equal to the well-known class of
ESOP circuits or is it properly included in ESOP, as the Figure 4 would suggest?”

The guess of the authors is that it is very close to ESOP but not the same and perhaps only experimentation will
answer this question. In any case, flattening of the optimal new diagrams will lead to better ESOP circuits than those
obtained from flattening of known diagrams, which will lead to high quality ESOP minimization programs.

IV. ZHEGALKIN LATTICE DIAGRAMS AND REGULAR LATTICE LAYOUTS.

Akers introduced the so-called Universal Akers Arrays [1, 4] in 1972. They are regular lattices and look like BDDs
for symmetric functions. The nodes are multiplexers (Shannon expansions). Each multiplexer obtains one data input
from North and one from East, and directs its output to South and West. Diagonal lines are used for inputs (control
variables of mulitplexers). It was proven that every binary function can be realized with such structure, but an
exponential number of levels was necessary (which means, the control variables in diagonal buses were repeated very
many times). (Sometimes the only way to implement a function is to repeat the same variable subsequently, without
other variables interspersed. We will cal such subcategory of arrays the variable interval arrays. The arrays of Akers
were universal and they were unnecessarily large, because they were calculated once for all for the worst case functions.
No efficient procedures for finding order of (repeated) variables were given, and some functions were next shown for
which this approach is very inefficient. Nevertheless, the idea of the Akers’ Array is very captivating from the point of
view of submicron technologies, because connections are short, delays are equal and predictable, late arriving variables
can be given close to output, and, similarly as in PLAs, logic synthesis can be combined with layout, so that no special
stage of placement and routing is necessary. He showed also many interesting properties of his both universal and
non-universal arrays that can be utilized to develop new design methods and efficient computer algorithms.

Because of the progress of hardware and software technologies since 1972, our approach is quite different from that
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Figure 5: An Ezample of Zhegalkin PGKT Jz4 Lattice that realizes a 4-output, 11-input function. Every small rectangle
is a Universal GRM Ezpansion Module with corresponding two control variabls in diagonal buses, and four data inputs.
Numbers in squares correspond to levels of the lattice. Predictability and equality of delays should be appreciated



of Akers. We do not want to design a universal array for all functions, because this would be very ineflicient for
nearly all functions. Instead we create a logic/layout functions’ generator that gives efficient results for many
real-life functions, not only symmetrical ones. We argue that there is no need to realize other functions, since it was
shown in [31] that, in contrast to the randomly generated ”worst-case” functions, 98% of functions from real-life are
decomposable. Therefore, the ”other” functions are either decomposable to the easy realizable functions, or they do
not exist in practice [31, 26].

Based on analysis of realizations of arithmetic, symmetric, unate and standard benchmark functions and new
technologies [3], we have very substantially generalized the concept of Akers Array in the following ways:

1. Instead of assuming only a Shannon expansion, we use any subset of S,pD and nD expansions. We allow also
all Linearly-Independent expansions [16, 17, 25, 5], the Boolean Ternary expansions from [20, 21], as well as all
Zhegalkin expansions from [24] and this paper.

2. We consider all Kronecker, Pseudo-Kronecker, Mixed, and other Decision Diagram concepts that are used in
Reed-Muller logic, and we generalize these concepts. In addition, we take diagram ideas from Boolean Ternary
Decision Diagrams introduced in [20, 21], as well as the expansion types (such as mixed or free) from this paper.

3. We allow more powerful neighborhood geometries. Instead of having only two inputs and two outputs from every
node (we call them 2x2 Lattices), we consider also regular lattice diagrams in which node has 3 inputs and 3
outputs, diagrams with 4 inputs and 4 outputs from a node, and diagrams with 8 inputs and 8 outputs from a
node, The 3x3 Lattices are for 3-valued logic or for Boolean Ternary Decision Diagrams. The 4x4 Lattices (as
in Figure 5) are for 4-valued logic, or pairs of binary control variables. They are for instance used for Lattice
realizations of GKTs, PGKTs, etc. The 8x8 Lattices are for 8-valued logic, or triplets of binary control variables.
Similarly we can create higher-neighborhood geometries, but we believe it is more practical to keep the number
of neighbors small. In essence, the 2x2,3x3,4x4 and 8x8 neighborhoods are used in patents [3] and published
works.

4. We allow to mix control variables in diagonal buses. This permits to realize Free diagrams.

Table 2 presents some of new Lattices. They are counterparts of known and new trees. The last column includes
type of functions for which this array type is recommended. In theory, every Lattice from this table can implement
every (multi-output) binary function (so, we could write ”all” in all rows). In practice, however, some of the arrays,
those that have "nearly symmetric” in the third column, are good only for nearly symmetric functions and can be
done universal only by repeating the same variable in consecutive levels (making them the variable interval arrays).
Taking the same variable in consecutive levels is a trick that practically changes the lattice to a tree in upper levels, so
it is very area wasteful. Besides, changing a lattice to a tree can be done better using other introduced by us methods.

For symmetric or nearly symmetric functions, the lattices with "nearly symmetric” in the third column can be still
better choices than other types of arrays. The universal Akers Array and variable interval arrays are superseeded by
our new arrays, because we demonstrate how a better array can be created for each of them.

The choice of the appropriate array type for a given function remains a difficult problem to be solved and at the
moment we dispose just examples and heuristics, but we do not know the best solutions. In theory, one would need
just the most powerful array type, and assume that the design algorithm will select the best expansions and variable
ordering in any case (the same as OKFDD versus BDD or FDD). But creating good a heuristic algorithm for the
most general arrays is more difficult than to create such an algorithm for a restricted type of array. Perhaps, some
simpler arrays are also better for layout, like assuming only Shannon Expansions (multiplexers) allows to design the
function from mostly pass-transistors and very regular small-grid layout (also bidirectional pass-transistors in some
technologies).

An example of Zhegalkin Lattice PGKT is shown in Figure 5. The input variables are: a and b variables that
control various GRM expansions in level 1 (realized by Universal GRM Expansion Modules introduced in [24]), ¢
and d variables control various GRM expansions in level 2, other input variables are e, f, g, h, ¢, 7, k. Only one of the
output functions, f1 has all its possible lattice connections and nodes in previous layers. Other output functions
can be realized with only a subset of second and third level nodes. (The particular structure type from Figure 5, in
which all variables are paired, does not allow to realize arbitrary functions without resorting to the variable interval
array. Thus, this kind of array, with all variables paired and GRM used for them, although theoretically universal,
does not give good results for strongly unsymmetrical functions. By adding single variable layers with S, pD and nD
expansions the array’s power is greatly improved. However, for some symmetric functions, the more restricted array
may be better.

Calculation of data input functions to lattice nodes for any type of expansions and any lattice neighborhoods is
performed by the same technique of logic solving equations for a given structure, as one used for Linearly Independent



logic in [24, 25]). This technique is very general and can be adopted to many non-binary logics. However, in contrast to
the LI logic, where the equations have always one solution resulting from non-singularity of the matrix M [24, 25, 19,
22], the structural equations, in general case, can have one, many, or no solutions. (Also, they are not only equations
over Galois Field.) When there are many solutions, the one evaluated as best is taken. When there are no solutions,
the backtrack to another structure, another expansions, or another blocks of input variables is executed. Selection
of the order of (usually repeated) variables is done using the concept of the best separation of most different-value
minterms, using the Repeated Variable Maps from [26]. The problems of variable ordering and variable partitioning,
known for long in logic synthesis to be tough ones, here become even more important and at the same time more
difficult, because the variables must be repeated. Hopefully, it was found that in contrast to the worst-case randomly
generated functions, for real-life benchmark functions only few repetitions of variables are enough. It is especially easy
to symmetricize weakly specified functions and Boolean relations.

V. CONCLUSIONS AND FUTURE WORK

The generalisation of the DDs can be done in several ways, which can be combined together to create various
representations.

e D1. Replacing the single type of expansion realised in nodes of the Shannon tree, called the Shannon expansion,
with other type of expansion,

e D2. Allowing for several types of expansions in every level of the expansion tree,

e D3. Allowing more freedom in ordering variables in branches of the tree (including the case of no ordering at

all),

e D4. Generalizing Trees to Directed Acyclic Graphs by combining non-isomorphic tree nodes together, and thus
requiring repetitions of variables (as in Zhegalkin Lattices), Real repetitions add much power to the diagrams,
consecutive repetitions in levels (variable interval arrays), can be modified to other diagrams without repetitions.

e D5. Creating generalised expansions for sets of variables, instead for single variables.

Any combination of the above generalisation types of a binary tree can be next used to create canonical trees, flattened
(two-level) expressions (expansions, forms) based on them, decision diagrams and corresponding regular layouts.

Several of these generalized types of decision diagram representations have already been introduced, investigated
theoretically, and implemented in CAD tools, e.g. [6, 37, 39, 40], to mention only those used for Exor Logic. Many
more, however, remain still to be analysed and evaluated experimentally. Many types that may result from the above
dimensions of generalization have not even been defined yet.

If we consider the well-known Green/Sasao hierarchy of representations of EXOR-based Boolean functions the new
representations will be not worse than the known ones in terms of complexity. Based on the previous results in this
field (including the Free KRO diagrams from [11]), it is expected that all these representations will find important
applications in logic synthesis for ESOP circuits, and fine grain FPGAs, as well as in representation of large functions.
It would also be interesting to check if the new Zhegalkin forms will improve on the known canonical AND/EXOR
forms for symmetric functions [8]. Definitely, Zhegalkin Lattices proved to be very good and superior to Universal
Akers Arrays when realizing all totally symmetric functions, partially symmetric functions, or easily symmetrizable
functions for which only few variables require repetitions in the structure. In general, the proposed methods should
be combined with Ashenurst/Curtis decompositions, and the problem when to decompose and when to symmetricize
remains in general open.

Observe, that all the generalizations proposed in this paper are oriented towards the binary logic synthesis, and
therefore still use expansions for the binary logic. However, in line with K¥BMDs, all our ideas above can be further
extended to multiple-valued logic (where more general multivalued operations extending EXOR and AND operators
would be used and the linearly independent logic methods applied [16, 22].) The diagrams and lattices introduced here
can also be generalized to integer arithmetic (and also for rational arithmetic realized with continuous logic), where
+ and * arithmetic operators and more general linearly independent operations would be used. These "word-level”
expansions can be derived by the careful reader based on papers [14, 16, 22, 9]. The word-level expansions together
with the generalization types D1-D5 can be used to create trees, forms, diagrams, lattices, and layouts, along the
same lines as presented in [24] and this paper [28]. Lattices have been also proposed for continuous logic [30, 29, 28]
and mv logic [17, 28]. All these researches have the same applications to submicron technology and the same basic
philosophy as explained in [40] (they can be used for custom logic/layout synthesis, and to develop new types of
FPGAs [28, 29, 30].
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