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Abstract

Staircase Method of Zakreuskij has been used for exzact solution to incomplete Ezclusive-Or Sum of Products
(ESOP) and Fized Polarity Reed-Muller (FPRM) forms. It can be observed, that the method of Zakreuskij can
be generalized to all problems where the function sought is the canonical form of an EXOR of arbitrary linearly
independent (LI) generating functions. Next it can be observed that the EXOR ezpression can be not necessarily
canonical, so that arbitrary functions are used instead of LI functions. Finally, the method can be extended
to a non-canonical Galois Field (GF(k)) sum of arbitrary multivalued generating functions. We call this the
”Generalized Zakreuskij Staircase Method”. This paper introduces a software-hardware approach using the DEC
PERLE-1 FPGA-based board. The Boolean decision function to be satisfied with minimum non-zero arguments is
a generalization of the Helliwell Function and is first minimized in software taking into account the predicted cost
of the solution. Next, the simplified incomplete function is realized in hardware and an ezhaustive breadth-first
search with use of a special "m out of N” counter is executed, where m is an ezpected solution cost and N is

the number of classes of equivalent generating functions. The method is efficient because for incomplete functions

"m?” is small even for large "N 7.

1 Introduction

A revolutionary technology for software-hardware
codesign has been introduced recently called reconfig-
urable computing. A Programmable Active Mem-
ory (PAM) is a meta-circuit which behaves as a given
circuit after its configuration has been downloaded.
One of the most successful FPGA boards introduced
until recently comes from Paris DEC Labs and is called
DECPeRLe-1 [15]. A Xilinx 3090 FPGA-based accel-
erator board to DECstation 5000 executes a computa-
tion intensive part of the algorithm and achieves per-
formance superior to supercomputers with a fraction of
cost, while the rest of the algorithm is done by software.
Applications of DECPeRLe-1 span a wide range of
current leading-edge computational challenges: high-
energy physics in CERN, CALO Calorimeter, Transi-
tion Radiation Tracker, Silicon Tracker (SCT), Global
Decision for feature extraction tasks, Cluster Detec-
tion, Stereo Vision, Heat and Laplace Equations, Long
Viterbi Decoder, RSA Cryptography, Sound Synthe-
sis, Multistandard Video Compression, Biological Se-
quence Comparison, Long Integer Arithmetics and

many other in Cryptography, arithmetic, DSP, Image
Processing and Instrumentation.

The joint Reconfigurable Computing Project of
Portland State Univesity and Technical University of
Eindhoven aims at using these concepts in a new appli-
cation domain - solving of NP-hard search com-
binatorial problems [4]. These problems are more
difficult to realize in hardware because of lack of ob-
vious regularities that would allow realization of such
ideas as pipelining, SIMD processing, systolicism or
cellular automata. In several smaller projects PSU
students work on cube calculus operations, satisfiabil-
ity, graph coloring, Petrick Function minimization and
solving Boolean equations. Our DECPeRLe-1 board is
connected to an Internet-connected DEC 5000 station,
so when completed, the system will be made available
to other researchers.



2 Generalized Zakrevskij Staircase
Method for EXOR logic minimiza-
tion.

In 1988, Martin Helliwell introduced the Helliwell
Function for exact ESOP minimization [3] and imple-
mented a GAL-based circuit (courtesy Lattice Corp.)
for hardware minimization of exact ESOPs for single-
output 5-variable functions. The generating func-
tions were all possible products of terms of n-variable
function F, there existed thus N = 3% = 243 of such
generating functions. There were 25 = 32 flip-flops
corresponding to every minterm of the function, set
initially to the value of a function to be minimized.
The problem was to find, by a hardware search, such
choice of the generating functions that the EXOR of
them would make the states of all flip-flops equal to
zero (F = Zg iff F @ Eg = 0). A 243-bit bi-
nary counter in natural code was used to exhaus-
tively search all combinations of the generating func-
tions, so the search was generating worse solutions af-
ter already finding a solution with a smaller cost (such
as generating candidate 00...01110 after already finding
that combination 00...00011 was a solution). This was
the first hardware accelerator for EXOR logic problem
and its performance was much superior to IBM PC
AT, but the limited size of functions discouraged us at
this time to continue this research. Searching with a
binary counter is not a depth-first, nor a breadth-
first method and its only advantage is the simplicity
and regularity of hardware.

In 1990 Perkowski and Jeske found several general-
izations of the Helliwell’s Method: to multi-output,
multi-valued functions, to Positive Polarity Reed-
Muller Forms, to Fixed Polarity Reed-Muller Forms,
GRM forms and other [2, 13]. The method was im-
plemented in software using depth-first search, but un-
fortunately the limit of 5 variables was not exceeded.
However, we observed that the search algorithms can
be made much more efficient for strongly unspecified
functions, and by using more sophisticated tree search
strategies. A tree is pruned by finding equivalent oper-
ators on each level. A better search strategy was sub-
sequently implemented which allows to realize a higher
percent of functions with more than 5 variables, and
these improved results will be soon published. We ob-
served also that very good upper bounds can be found
by EXORCISM-MV-2, which are next used to limit
the first backtracks in our search.

In 1993 Sasao solved Helliwell’s Function for only
small functions using BDDs, but his method allowed
to realize more functions of more than 5 variables than
our approach at this time. Similar BDD-based results
were reported by Somenzi and Escobar and other au-
thors (unpublished). In 1993 Perkowski generalized

the Helliwell’s function for arbitrary canonical family
in Linearly Independent Logic and for Galois Logic.

Zakrevskij [16] introduced the so-called Staircase
Method which he used for exact solution to (non-
canonical) ESOP expressions and (canonical) FPRM
forms, and reported good results for multi-output
strongly incomplete functions, specified by minterms.
In essence, his method is based on partitioning a set
of generating functions (products of variables or prod-
ucts of literals in his case), to classes of equivalency
with respect to a set of care minterms. Two generat-
ing functions are equivalent if they cover exactly the
same care minterms. If a function is completely speci-
fied, there are no equivalent generating functions for it.
(The more don’t cares exist in the function, the larger
are the equivalency classes, so Zakrevskij method has
the best advantage for very strongly unspecified func-
tions). Only one representative function is selected
from a class for subsequent search, which limits sub-
stantially the search. It can be observed that from a
programming point of view the depth-search software
search method is used with cost-based backtracking.
Zakrevskij’s method was next generalized, improved
and extended by Shmerko, Zajtseva, and Yanushke-
vitch and other researchers in Europe, including log-
ics more general than binary. The idea of dividing
to classes of equivalency is the reason of the success
of this method for incomplete functions, but with the
introduction of more cares the method becomes not
efficient, and is very similar to the one from [3]. On
the other hand, when the exact ESOP or FPRM min-
imization is not required, there exist many efficient
algorithms, such as EXORCISM-MV-3, so Zakrevskij
Method loses its merits when approximate solutions
are sought.

There are, however, the following two ideas in Za-
krevskij Method that remain very powerful to generate
exact solutions, and should be in our opinion further
investigated:

(1) Partitioning the set of generating functions to
equivalence classes. Although used by Zakrevskij only
to ESOP and PPRM solutions, (3™ and 2" generating
functions corresponding to terms of literals, and vari-
ables, respectively), it can be used to arbitrary Lin-
early Independent family of functions. Moreover, this
idea can be used to any functions, even linearly de-
pendent, such as generating functions for all possible
polarities for AND/OR/EXOR expansions based on
generalized Maitra cascades [6, 5, 7, 14, 11, 9, 8] and
AND/OR cascades.

(2) Using the breadth-first search at level m, next
at level m — 1, m — 2, etc, which leads to the staircase
pattern.

The following observations can be made:



(al) The method of Zakrevskij can be generalized to
all problems where the function sought is the canoni-
cal form of an EXOR of arbitrary linearly independent
(LI) generating functions. The only difference is that
instead of all products of literals, all generating func-
tions of certain Linearly Independent form are created
[11], which can be of AND/OR, AND/OR/EXOR,
or another type [6, 5, 7, 14, 11, 9, 8]. Next, for
these generating functions, groups of functions are
compared and all those that cover exactly the same
care minterms are put into one equivalence class. The
equivalence classes are thus generated as in the orig-
inal staircase method, and one representative from
each class is selected. Next the search is performed
as in Zakrevskij Method. This generalized method
can be applied to arbitrary Linearly Independent
forms, which means, in particular, to all AND/EXOR
forms such as Fixed Polarity, Generalized Reed-Muller,
Kronecker, Pseudo-Kronecker, Generalized-Kronecker,
and all AND/OR/EXOR forms such as those from
[2, 13, 6, 5, 7, 14, 11, 9, 8].

(a2) The original method of Zakrevskij was created
for Positive Polarity Reed-Muller forms (PPRM). It
was next extended for FPRM and ESOP, but it is our
understanding that the generalization for ESOP was
not exact. It can be observed that the EXOR expres-
sion of generating functions used in both ESOP and
PPRM can be not necessarily canonical, so that ar-
bitrary functions can be used instead of LI functions.
Thus, if for some reason given is an arbitrary set of
generating functions (specified by a singular matrix M,
[6]), then a minimal solution is generated for a non-
canonical expression type. This way, the method can
be also applied to an arbitrary class of non-canonical
expressions that includes the class of canonical Lin-
early Independent forms defined in point (al). These
expressions can be ESOPs (when all 3" product terms
are used as generating functions), and all AND/EXOR
subsets of ESOPs that are created by selecting smallest
sets of generating functions from the sets being unions
of sets of some generating functions of some canoni-
cal forms. More interestingly, all AND/OR/EXOR ex-
pressions created from the generating functions which
are selected from unions of sets of generating functions
for any canonical AND/OR/EXOR forms can be also
minimized this way. Maitra cascades [6, 5, 7, 8]. We
call this the Generalized Zakrevskij Staircase Method.

In conclusion, Zakrevskij Method in this generalized
formulation becomes already the most general method
of solving all exact problems for all Linearly Inde-
pendent and non-canonical multi-output expressions
that have EXOR output gates.

Unfortunately, as it is now, the method is computa-
tionally not efficient. To release its full potential, more
sophisticated search methods, and a hardware realiza-

tion of search should be employed.

This paper introduces a software-hardware ap-

proach using the DECPeRLe-1 FPGA-based board.
Our approach to minimize arbitrary single-output ex-
pression with EXOR output gate and with given set of
generating functions has several stages as follows:
Given:
(d1) the set of care minterms of a multi-output func-
tion F, with the corresponding binary output values of
a single-output function for each care minterm. (d2)
the set of generating functions.
Find: The minimum solution, i.e. the expression be-
ing an EXOR of generating functions with the min-
imum number of inputs to the output EXOR gate.
(i-e., in other words, the minimum number of EXOR-ed
functions selected from the set of generating functions
from (d2)).
(s1) Step executed in software. For function F of n
variables create an arbitrary number C of all generat-
ing functions G; stored in hypothetical registers (C =
2™ for any canonical AND/EXOR form, 3" for ESOP,
C= 2" for any LI form, C = 3™ for non-canonical ex-
pressions being generalizations of canonical Maitra LI
forms, C = v -2" for a combination of generating func-
tions from various canonical forms, etc.). Create a bi-
nary matrix with generating functions as columns and
care minterms as rows. Thus there exist B < 2"
rows. If function covers this minterm, there is a 1 on
their intersection, otherwise - 0. (sla) Find equiva-
lence classes of generating functions with respect to
care minterms. Two functions are equivalent if they
have the same columns. If a function is completely
specified, this step should be omitted. (s1b) Select one
representative from each class (exactly as in Zakrevskij
method). Thus the new matrix has N < C columns.
(s2) Step executed in software. Create a function
@zzf, ¢; G;, where G; are vectors of minterm-variables
G;,. Minterm-variables correspond to values of func-
tion G; on all care minterms. Each such vector cor-
responds then to a column of the matrix. All these
vectors have length R. For any given function G;, all
the minterm-variables G;; are constants 0 or 1. Vari-
able ¢;=1 means selection of function G; for the EXOR
combination. Variable ¢;=0 means no selection of func-
tion G; for the EXOR combination.

Satisfaction of formula
@y GioF =0
where 0 = (00...0),
means that function F is realized by the selected

generating functions for which ¢; =1, with cost being

the number of ¢; that are equal 1. Thus, the minimum
number of ¢; = 1 for which formula (F1) is satisfied,
is the exact minimum solution to the generalized min-
imization problem. In yet another words, exoring all
selected groups equals the original function F. The

(F1),



decision function from formula F1 is a generalization
of the Helliwell Function. Its generalization for multi-
output case is trivial, the cares of each output must be
separately repeated in the vectors. Figure 1 explains
the principle of our approach.

(s3) Step Executed in software.

(s3a) Substitute

variables from registers G; to function @Efl c; G;.

constant values of minterm-

Thus, function @:if, ¢; G; becomes now function
H(eq, ez, ..., cn) of only ¢; variables.

(s3b) Having value m+1 of an upper bound of the solu-
tion, found in software by a heuristic search depth-first
program, expect the solution with cost m and modify
function H accordingly to this expectation. First, cre-
ate function S™ with arguments ¢;. (By S™ we denote
the (single-index) symmetric function on variables ¢;,
that equals 1 when exactly m of its input variables are
equal 1.) Create a new decision function: H N ™ =
(ON,OFF), and replace all minterms in H N S™ by
don’t cares.

(s3c) Using fast Boolean minimization methods, sim-
plify the incomplete function H; = (ON,OFF), where
ON = ON(H) n 8™, and OFF = OFF(H) N S™ to
some completely specified function Hj.

(s3e) Download the simplified, completely specified,
decision function Hj(ey, .., cn) as a netlist to hardware.
If this function is zero, there is no solution of cost m.
Otherwise, there exists at least one solution of cost m.
(s4) Step executed in hardware. Use the special
Search Counter (address generator) circuit that gener-
ates all binary vectors (¢, .., cx) in ”m out of N code”.
If Hj(e1,..,en) = 1 for some vector of ¢;-s then a new
solution is found. If it is known that a better solution
cannot be found, return and stop (see below), else con-
tinue. This way, a single level on depth m is searched
in the solution tree for one downloading of a hardware
configuration.

(s5) Steps executed in software and hardware.
Repeate above steps (s1)-(s4) for m — 1, m — 2,... and
smaller values of m. This means, for every value of
m, a new hardware configuration is created and down-
loaded.

We developed several variants of this algorithm
which speed-up the operation in some special cases.
(case 1). In some problems, for instance in ESOP
minimization, it can be proved that for every m, if a
solution with cost m exists, then also a solution with
cost m + 1 exists. In such case, if no solution is found
for certain m, then our algorithm can stop and return
m+ 1 as the minimum solution cost. Its corresponding
combination of ¢; satisfying the equation H} = 11is
returned as the solution.

(case 2). When no upper bound is known, the al-
gorithm with increasing the value of m can be used, in-
stead of the above algorithm with decreasing the value

of m. In the increasing variant, the first solution is the
minimum one, but usually more iterations are needed.
In this variant, it speeds the algorithm when we calcu-
late a lower bound of the cost as the starting value of
m.
(case 3). When function is complete and exact
ESOP is looked for, a simplified algorithm is executed.
It starts from a upper bound found by EXORCISM-
MV-2 and EXORCISM-MV-3. When it finds in (s3c)
that H # 0 it is not downloading the configuration
to hardware but keeps decreasing m by one and iter-
ating. When it finally finds for value m/ in (s3c) that
H = 0 which means, no solution of cost m/, it down-
loades the configuration for m' + 1 to hardware and
finds the solution in hardware.

The problem of designing the ”m out of N” counter
is an interesting design problem in itself which will be
discussed in our oral presentation. It is designed as
a one-dimensional cellular automaton. The method is
(relatively) efficient because for incomplete functions
the value of "m” is small even for large ” N”. At the
time of this writing we do not know how big functions
would be possible to minimize.

3 Approach to the Minimization of
Multivalued Logic Functions with
Galois-Addition Output Gates

Zakrevskij Method and its hardware realization pre-
sented above can be further extended to canonical and
non-canonical Galois(k) sum of arbitrary multivalued
generating functions. The only differences are the fol-
lowing: (a) Instead of EXOR gates, the Galois(k) addi-
tion gates are used in the Generalized Helliwell Func-
tion H. (b) Instead of storing values 0 and 1 as for
GF(2), the flip-flops in registers of function F and of
generating functions store values from 0 to &k — 1 for
k-valued logic.

Because the coding for ¥ # 27 is difficult, we con-
centrated on the cases when k = 2". Thus, a 2"-valued
signal is realized with r binary singals. For instance,
this way, only two two-input EXOR gates are needed
to realize a Galois(4) addition and only 3 two-input
EXOR gates for Galois(8) addition.

The construction of the "m out of N” Search
Counter and the rest of the circuit remain the same.
Similarly, the software preprocessing of the function
is basically the same. This way, the expressions that
are GF(k) additions of arbitrary k-valued generating
functions can be exactly minimized. The classes of ex-
pressions include all Galois Logic canonical forms, all
Linearly Independent forms with GF(k) Addition, all
Galois Logic Linearly Independent GF (k) forms, and
all their non-canonical extensions and generalizations
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Figure 1: Principle of the presented method for ESOP minimization: (a) EXOR-ing groups G; selected by signals
¢; with F. Groups ¢, b and a¢ are selected to realize function F = (ON,OFF) where ON = (1,2,4,5), OFF = (3,6).
The result of EXORing is vector 0, so F =¢ ® b @ aé. (b) the schematic diagram ezplaining the configuration

downloaded to hardware.

[6, 1, 10]. Thus, similarly as in the binary case, the
Generalized Zakrevskij Method allows to find
exact solutions for arbitrary canonical and non-
canonical expressions.

Our main idea can be summarized as follows: every
(multi-output, incomplete) k-nary input k-nary out-
put function realized in the form of a GF(k)-addition
of arbitrary functions from a well-defined set of func-
tions over GF(k), can be minimized (exactly or approx-
imately) in a system, that realizes a generalized Helli-
well function in a hardware data-path, and implements
the staircase algorithm of Zakrevskij with a sequence
of down-loaded "m out of N” Address Generators re-
alized as Cellular Automata (Finite State Machines).
In addition, a general software technique of prepro-
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