A CANONICAL AND/EXOR FORM THAT
INCLUDES BOTH THE GENERALIZED
REED-MULLER FORMS AND KRONECKER
FORMS

Marek Perkowski, Lech Jo6zwiak §, Rolf Drechsler +

Portland State University, Dept. of Electr. Engn., Portland, Oregon 97207,
Tel: 503-725-5411, Fax: 503-725-4882, mperkows@ee.pdx. edu
T Faculty of Electrical Engineering, Eindhoven University of Technology,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands, lech@eb.ele.tue.nl
+ Institute of Computer Science, Albert-Ludwigs-University,
79110 Freiburg in Breisgau, Germany, drechsle @informatik.uni-freiburg.de

Abstract— The paper gives a positive answer to an open problem - whether there exists some
family of canonical forms that would include both the Generalized Reed-Muller Forms and the
Kronecker Forms as its special cases. We call the new forms Generalized Kronecker Forms.
We present also the corresponding decision diagrams. They can be used for representation
of large functions and also for optimal synthesis of highly testable two-level and multilevel
circuits in several technologies, including Field Programmable Gate Arrays (FPGAs).

[. INTRODUCTION

Several canonical families of AND/EXOR forms have been investigated, many of them (but not
all) can be derived from binary AND/EXOR decision diagrams. All the circuit structures that use
exclusively AND and EXOR gates and that were developed based on the AND/EXOR represen-
tations, belong to the highest testable circuits ever invented [18, 17]. Since EXOR gates are quite
expensive in many technologies, AND/EXOR representations are not yet broadly used in custom
VLSI design. We stress, however, that the new representations introduced here can be also used for
synthesis with arbitrary gates. In the first phase of the entire synthesis process the AND/EXOR
circuit is created. Then, it is mapped to an arbitrary technology that may involve AND, OR, EXOR
and other gates. Circuits obtained in such a way continue to be highly testable [9]. In the map-
ping phase, the trade-offs between the implementation cost and the testability are investigated and
utilised to satisfy various requirements for a given technology.

Families of canonical AND/EXOR forms, subsets of general ESOPs expressions, have been studied
by many authors, because they display interesting trade-offs between testability, number of terms,
area, and speed [21]. An open problem was posed by Tsutomu Sasao - “whether there exists some
family, or families, of canonical forms thatl ia a superset of both KRO and GRM families?”. Such
family would be interesting because presumably it would be close in cost to ESOP and still have
good testability properties similar to GRM. In this paper we will answer positively to this questions

and we will develop a new representation that can be used in the first stage of the proposed logic
synthesis process - the "technology independent, EXOR synthesis” phase, which will be followed by
the 7"EXOR-related technology mapping” [25, 9, 19, 26], not discussed here. Because the class of
circuits covered by the new representation includes all the AND/EXOR circuits obtained from the
previously known canonical representations, the new representation should lead to superior results,
in terms of: the two-level realization areas for forms, the diagrams complexity, and the complexity
of multilevel circuits corresponding to the diagrams after technology mapping.

Section II will give the preliminaries on EXOR type decision trees and corresponding canonical
forms. In section III, on Canonical Expansions for Many Variables, the insufficiency of the binary
tree model (i.e. trees with single variable expansions in nodes) as a base of high quality AND/EXOR
representations will be explained. First we present a GRM as an example of a non-decomposable
expansion for many variables that corresponds to a node in our new representation. GRM expansion
is non-decomposable, because it cannot be presented as a composition of canonical single-variable
expansions. In section IV we introduce the GRM Universal Logic Module (node) and show how to
compute the expansion data functions for such multi-variable nodes in the process of tree creation.
Section V will introduce Generalized Kronecker Tree Decision Diagrams and Forms. Section VI shows
that the new forms are essentially better than all known canonical forms and section VII presents
how these results can be applied to exact ESOP minimization. Section VIII concludes the paper.

II. AND/EXOR CANONICAL TREES WITH SINGLE-VARIABLE EXPANSION
NODES.

The first fundamental idea of generalizing the functions realised by the nodes of the tree comes
from Davio [1], who introduced the following three fundamental expansions realised by nodes:

flrr, z2, o x,) = Tyfolze, . zn) & 21 fi(ze, .. 20)

in short f =7 fo Dz i (2.1)
F(@1, 20 2n) = 1~ fo(s s 2) © 1 fo(2)

inshort [= fo ®x1fs (2.2)
flz, 2o, 20) = 10 fi(zg, o, 20) O T fol2a, .0s 24)

inshort f = fi1 71 fs (2.3)

where fo is f with 1 replaced by 0 (negative cofactor of variable x1), fi is f with z; replaced by 1
(positive cofactor of variable z1), and fo = fo & fi. All of them generalize the Shannon expansion.
Equation (2.1) is the Shannon Expansion with inclusive OR operator replaced with EXOR operator.
This can be done because functions 77 fy and z; f; are disjoint. We will denote a node corresponding
to the Shannon Expansion by S. Equation (2.2) represents the Positive Davio Expansion, pD for
short, and (2.3) represents the negative Davio Expansion, nD, for short.

Let us observe that S uses both a variable and its negation, pD uses only the positive literal of
the variable, and nD uses only the negative literal of the variable. The circuit realisation of S is a
multiplexer. Realisation of pD includes a two-input AND and a two-input EXOR gate and is called
AND/EXOR gate. Realisation of nD includes a two-input AND gate with inverted input for the
control variable xy, called the inhibition gate, and the EXOR gate. It is called the Inhibition/EXOR
gate. All such gates exist in Fine Grain FPGAs and in modern VLSI libraries.

An example of a generalized decision tree (we will call it the Generalized Kronecker Tree) is shown
graphically in Figure 1. The S, pD and nD expansions are single-variable nodes: for variable x;
in the first level, and for variable x3 in the third level. The output function of a node is shown
by it, the edges on the bottom of the node correspond to the two inputs of a node - these are the

level of x1
E- x1
f 0 f1
GRM(2)-13 expansion GRM(Z) 13 expansion
of polarity (x2x4x4.x2) of polarity (xxxd, x2) level of x2, x4
=[11,0,1] —[11 0,1]
1 X2 x4 X2x4 X2 x4
@ level of x3
14 /N1

Figure 1: Fzample of a Generalized Kronecker Tree

(respective to the expansion type) functions from (2.1) - (2.3) and are taken from the set fo, fi, fa.
The expansion literals are shown near the input edge(s). Label 1 corresponds to function fq in pD
and f; in nD. Label 77 to fo in S and f; in nD. Label z; to f; in S and f; in pD. By applying
recursively expansions (2.1) - (2.3), or any subset of them, to the function, its cofactors with respect
to the first level variable of the function, second level variable cofactors, third level cofactors, and so
on, various types of binary decision trees can be created [24]. The meaning of multi-variable nodes
GRM(2)-13 for variables xq, 24 will be explained in the next section.

ITI. CANONICAL EXPANSIONS FOR MANY VARIABLES

A. Insufficiency of the single-variable expansion tree models.

Three expansions, S, pD and nD, are the basis of all single-variable EXOR- based representations
of logic functions, and have been therefore investigated in detail by many researchers. For instance,
many canonical AND/EXOR based expansions for a function are obtained by repetition of some,
or all, of these expansions for all input variables of this function. All these expressions, including
minterm expansion, positive Davio expansion, Fixed Polarity Reed-Muller expansion (FPRM) and
Kronecker expansion (KRO), are called Kronecker family of families of expansions (expressions)
[7]. It can be observed, however, that there exists a peculiar canonical EXOR-based expression,
called the Generalized Reed-Muller Expansion (GRM), that cannot be obtained by a composition
of canonical expansions for single variables, but is obtained by certain simultaneous expansion for
ALL variables [24, 2, 31, 27, 28]. This expansion does not belong to the Kronecker family of families
of expansions. GRM expansions, as proved by Debnath and Sasao [2], are less complex on average
and on the worst case than the Kronecker type of expansions, and are therefore of high practical
interest in recent years. However, until now, they have not been linked to the general theory of tree
expansions, their respective diagrams, and the flattened (two-level) expressions obtained from them.
Below, the generalized canonical expansions will be presented, that will include these Generalized
Reed-Muller Expansions as their special cases. Also, the new kinds of expansions applied in nodes of
the decision trees will be introduced. These new multi-variable node expansions will generalize the
three expansions (2.1) - (2.3) that have been used in the classical representations and in the based
on them synthesis methods. The generalization of tree representation will be achieved by a simple

conceptual extension to the known binary trees: in addition to single-variable nodes in the trees, the
nodes with GRM expansions for several variables will be also allowed, see Figure 1.

B. Generalized Reed-Muller Expansion

An arbitrary n-variable function f(x1,zs,...,2,) can be represented as
flz1, ., 2,) = ao® a1y B azxe B ... BapT, O a122122 B a1301235
B T 1 Ty B B A2,y T1T2T 5.0 T (3.1)

where q;’s are either 0 or 1.

Formula (3.1) is a Positive Polarity Reed-Muller Expansion (PPRM). For a given function f, the
coefficients a; are uniquely determined. PPRM is thus a canonical representation. The number of
products in (3.1) is 2", and all the literals are positive (uncomplemented). In (3.1), for each variable z;
(1 =1,2,... n), if we use either a positive literal (z;) throughout or a negative literal (Z;) throughout,
then we have a Fixed Polarity Reed-Muller Expansion (FPRM). For each variable z; there are two
ways of choosing the polarities: positive or negative. Therefore, 2" different combinations of values,
called polarities, exist for an n-variable function. Thus, every FPRM is a canonical representation
and there are 2" FPRMs for a function. Let us observe, that each of these FPRMs can be obtained
by a step-by-step expansion of the function using expansions from set (2.1) - (2.3), one variable at a
time.

Definition 1. The Generalized Reed-Muller Expansion (GRM) is obtained by freely choosing
in (3.1) the polarity for each individual literal.

Thus, in GRM, and contrary to FPRMs, the same variable can stand in both positive and negative
polarities. There are n2"~! literals in (3.1), so there are 972"~ polarities for n-variable function.
Each of the polarities determines a unique set of coefficients, and thus a canonical representation
of a logic function. Let us observe that there are many more GRMs than FPRMs for a function,
thus the minimal GRM (among the GRMs for all the possible polarities) is not worse (and is usually
much better) than the minimal FPRM (among all the respective polarities) of the same function.
However, it is more difficult to find a good GRM. GRM cannot be found by steps executed for each
variable separately, but for all the variables together.

Next section will explain how to compute these multi-variable GRM expansions, assuming however
that coefficients a; in (3.1) are no longer binary constants, but functions of some variables.

IV. COMPUTATION OF THE DATA FUNCTIONS FOR A GIVEN GRM POLARITY

The GRM Universal module, introduced here, computes the output function f(xy,...,2m,...,z,)
from the values of expansion variables and subfunctions SF; in the following GRM expansion formula
with functional coefficients.

f(l'l, L2y eeey Tipyy enny l’n) = SFO($m+1, ceey l’n) D f15F1($m+1, l’n) @fQSF2($m+17 ceey l’n) D ...

@ .fL’AmSFm(LUm+1, ceey .I’n) @ f1f25F12($m+1, vy xn)@ f1f35F13($m+1, ceey fl?n)@

...wé_lw;n,@SFm_Lm(Im*_l, ceey LL’n) D....H Lflfgfg...LUAmSFlgmn(me+1, ceey LL’n) (41)
where #; means variable z; with negation or not (i.e. variable x; in arbitrary polarity).

Let us observe that formula (4.1) for function f(xy, 2, ..., %m, ..., 2,) is similar to (3.1) with the
difference that now: (1) the expansion is with respect to variables x1,...,2,,, (2) polarities of all

literals in product terms are arbitrary, and (3) coefficients a; are now replaced with subfunctions
SF; of remaining variables x,,11,...x,. Observe also that functions SF;(z,,41,...,%,) are not the
respective cofactors of function f, as it would be in case of variable-decomposable expansions, FPRM
or KRM, but are computed together for every GRM polarity.

In this section we will explain how GRM expansion is calculated from given function f(xy,..., Zpm,...,s),
for only a subset of its variables (z1,...,2,,). This calculation is crucial for the method introduced
below, to expand efficiently any function f(zy,...,%m,...,2,) with respect to given product terms
Ty, ..., T, of arbitrary GRM on the subset of the function’s variables. As far as we know, this
generalization of GRM expansion has been yet not discussed in the literature.

We will use methods of Linearly Independent logic [12, 13, 14] to uniquely derive functions SF;
from the original function f(z1,x9, ..., z,), assuming given sets of products of literals #1, ..., 2,,. These
methods are very powerful and generic: they can be applied to every field extension.

We create a 2 x 2™ matrix M with rows corresponding to minterms (for a function with m variables

we have 2™ columns). The columns correspond then to some Boolean functions of m variables. A

” ” ”
2

and row 73”7 means that minterm 73”7 is in function 7:”. The
set of columns can be linearly independent with respect to EXOR operation (i.e. columns are bit-

1 in the intersection of a column

by-bit exored). If a set of 2" columns is linearly independent then there is one and only one matrix
M~ inverse to M with respect to exoring operation. In such case, the family of Boolean functions
corresponding to columns will be called the ”linearly independent family of Boolean functions” (or
set of LI Boolean functions, or LI set), and the matrix will be called a "nonsingular matrix”.

Let us denote the vector of minterms by FV. CV denotes the vector of coefficients for some given
canonical form represented by nonsingular M. Given is an arbitrary linearly independent (LI) set
of 2™ Boolean functions f; of m variables. This set can be represented as a 2™ x 2™ nonsingular
matrix M with functions f; as columns, 2 = 0, ..., 2™ — 1.

Ezample 4.1. Let us assume that for f(A, B) the LI functions are AB, B, A, and 1. Because
m=2, the minterms are in 2™-dimensional space, 2 = 4. The rows of matrix M from top to bottom
correspond to the following minterms in m = 2-dimensional space: A B, A B, A B, and A B,
respectively. Thus, the 2™ x 2™ matrix M is as follows:

01 1 1
0 0 11

M="10101

1 001

The first column corresponds to function AB, the second column to function B, the third column to

function A, and the last column to function 1. It is easy to check that M is nonsingular with respect
to EXOR-ing operation, and that it has exactly one inverse matrix M !,

Theorem 1. Given is a function F(z1,..., 2y, ..., 2,) such that the set of input variables {z1,...,z,}
includes properly the set {zy,...,z,}. There exists an unique expansion (called an LI expansion):
Fx1,.xn) = folxr, ey @m) SFo(Tmats ooy @n) S f1(21y 0oy) SFU (T g1y ooes Tn) B

... D f2“—1($17 ceey $m)SF2n_1($m+1, ceey l’n), (42)

where functions f; are the given LI functions of m variables, and the coefficient functions (called also
the "data input functions”) SF; of the remaining input variables are determined from the coefficient
vector CV = M~ x FV, where FV(2,,41,...,7,) is a vector of all 2 cofactors of F' with respect
to variables from the set {z1,...,2,,}. In general, M is the matrix of 2™ cofactors of F' with respect
to variables from the set {z,...,z,,}. Thus, when m = n, the cofactors with respect to variables

CD A B

AB\ 00 01 11 10 T e :
o/ 0j1]1]1] ¢ [| SFag |
0|0/1] 0|1 D !
u|0/1/0/0] ¢ - W,B,C,D)
R m i
- ()
b :
(a) 3 SFy |
c ‘

Figure 2: (a) Function f(A,B,C,D) to Example 4.2, (b) Universal GRM expansion module to
FExample 4.1.

x1,..., T, become minterms on these variables, as in Example 4.1 above.

Proof. Proof is a generalization of the method of solving EXOR logic equations from Example 4.2
below. !

It can be observed that, because the set of product terms #;24345...2,, is a linearly independent
family of functions, the GRM expansion with functional coefficients (4.1) is a special case of the
LI expansion with functional coefficients (4.2). This is an unique expansion for the set of variables
x1,..., T, and the linearly independent functions on variables x1,...,z,,. Thus, the data functions
SF; are also unique.

FExample 4.2. Given is function f(A, B,C, D) from Fig. 2a. Let us assume that the GRM expansion
is with respect to variables {A, B}. In order to calculate functions SF;(C, D) we will expand function
f(A, B,C, D) with respect to these variables twice. The first expansion will use the computable from
function f(A, B,C, D) standard cofactors: f7 5(C,D), f4 5(C,D), f,5(C,D), fap(C,D). The
second expansion will use unknown functions SF;(C, D). This will lead to a set of linear logic
equations, which after solving will give the values to the unknown functions SF;(C, D) The basis of
LI functions of a GRM expansion is here arbitrarily selected as: fap = AB, fz = B, and fq = A,
and f; = 1.

AB f75(C,D)o ABf; 5(C,D) @ ABf,5(C,D) @ AB fap(C,D)

= Bf(A7B707D)| A=0,B=0 @_A_B f(A7B707D_)| A=0,B=1 © AB (A C D)| A:lﬁ:o@
AB f(AB,C.D)| ampa=AB(C+D) @ ABD®C)® ABCD) & AB(DC)

= AB SF45(C,D) & B SF5(C,D) & A SF4(C,D) & SF\(C,D)

By substituting in the above equation A = 0, B = 0, we get

SFg@& SF;& SF, = f7 5(C,D) = (C + D). By substituting A = 0, B =1, we get SF;& SF, =
J5 5(C,D) = (C @ D). By substituting A = 1, B =0, we get SF5® SFi= [, 5(C,D) = (CD). By
substituting A = 1, B = 1, we get SFap ® SFy, = f4 5(C,D) = (CD).

Hence we obtain the following equation for cofactors fui g;(C,D): FV =M x CV =

0111 SFu5(C, D) f55(C, D)
_ |00 11| | SFRC.D) | _| fxs(C.D)
“lo10 1 SFL(C,D) | = | f,5(C,D)
1001 SF,(C, D) f4 8(C, D)

!This Theorem can be expanded for arbitrary field and thus create a basis of constructive logic minimization for
logic algebra over this field.

Therefore CV = M~! x FV =

1 000 Hs(C,D) SF4p(C, D)
1 100 o | 3 5(C.D) | | SF(C,D)
1101 fagC.D) | | SFC,D)
1 110 Ja B(C,D) SF\(C, D)
From Theorem 1, the corresponding GRM expansion for ULM is:
[=AB SF45(C,D)® B SFg(C, D)®A SF4(C, D) & SFi(C, D) (4.3)

and the coefficients SF;(C, D) are taken from the above vector C'V.

Ezample 4.3. Let the function F be represented by a vector FVT = [(C+ D) (C & D) (CD)
(CD)].

1 000 (C+ D) Sap (C'+ D) (C+ D)
ov— | L L ool t(CaeD) | _| S5 |_ (C+D) @ (CeD) | (©D)
1101 €Dy | | S§ | | (C+D)a® (CeD)® (CD) |~ (D)
1110 (CD) Sy (C+D) & (Ce&D) & (CD) ()
Then f(A,B,C,D) = (AB)(C+ D)® B(CD)& A(D)® (C) (4.4)

Observe, that to calculate new GRM expansion with functional coefficients from M~! and FV7T,
one has always to execute certain EXOR-ing on a subset of the set of all cofactors from FVT. These
cofactors can be functions of many variables, so it is important to execute this operation efficiently.

In a circuit the GRM expansion with functional coefficients is realized using universal logic module
for GRM expansion with respect to variables A, B (illustrated in Fig. 2b). This way, for the set of
L1 functions (products of literals in this case), {A, B, AB, 1}, there exists only one GRM expansion
specified by its matrix M~!. From this expansion the following ESOP can be found:

AB[C & CD)® BCD @& AD & C = ABC® ABCD & BCD & AD & C

Let us observe that formula (4.3) describes only one of 16 GRM expansions for variables A, B,
and that 16 possible GRM universal modules exist for two variables. In addition, any set of two or
three variables out of set {A, B,C, D} can be selected for the first level GRM expansion. So, there
are many different trees representing successive expansions. Observe also that matrices are used
here only for dydactic purpose, and expansions can be executed directly on any representation of
functions, including ESOP cubes and BDDs, because all what is needed is: cofactoring, exoring
and solving linear equations.

V. GENERALIZED KRONECKER TREES, DECISION DIAGRAMS AND FORMS.

The Kronecker Tree has levels that correspond to single input variables and only one of three types
of binary expansions is used in every level [23]. However, such trees cannot generate the General-
ized Reed-Muller expressions, and thus both the two-level and multi-level circuits corresponding to
Kronecker Trees can be far from the minimum. Similarly, the decision diagrams that are created by
applying reductions to nodes of such trees have also non-minimum numbers of nodes. By allowing
to have nodes in the trees for sets of variables, instead for single variables only, the concept of the
tree is now generalized, and the tree is no longer a binary tree. This new type of tree will be called
the Generalized Kronecker Tree, (GKT), to reflect its properties.

Definition 2. The Generalized Kronecker Tree is a multi-variable expansion node tree created
as follows:

1) The set of all n input variables is partitioned into disjoint and nonempty subsets S;, called
blocks, such that the union of all these subsets forms the initial set. The blocks are disjoint and
non-empty. If each block includes just a single variable, the tree reduces to the special case of a KRO
Tree. If there is only one block that includes all variables, the tree reduces to the special case of a
GRM.

2) The blocks are ordered, each of them corresponds to a level of the tree.

3) For every level, if the block involves a single variable, S, nD, or pD is selected for its nodes. If
the block is multi-variable, one GRM expansion polarity is selected for nodes.

In the name ”Generalized Kronecker Tree”, the component ”Kronecker” comes from the fact that,
similarly to the Kronecker tree, the levels of GK'Ts correspond to variables, and at each level, the
same expansion type is applied for the same set of variables. But like in the Generalized Reed-Muller
Expressions, the expansion in every level can correspond to a set of variables with more than one
member, and the expansions applied in these nodes are the Generalized Reed-Muller expansions,
hence the component - ” Generalized” in the name Generalized Kronecker Trees. In GKTs, the set of
all input variables is thus partitioned to several blocks (disjoint subsets), each corresponding to a level
of the tree. For every block with a single variable, the corresponding expansions are S, pD and nD.
For a set with two variables there are 272"~ GRM expansions, i.e. 16 expansions. Therefore, for the
two- variable nodes there are 16 types of nodes, called GRM(2) nodes (expansion types). They will
be denoted by GRM(2)-0, GRM(2)-1,...,GRM(2)-15, or as their polarities: [00,0,0], [00,0,1], ...,[11,
1, 1], respectively. To make the above notation easier, we write all bits corresponding to literals in
the same product term without separating them with commas; thus, for variables T3, T3, the part of
the polarity 00 represents the term T3 Z3. In this way, the polarity GRM(2)-0 = [00,0,0] represents
LI functions T3 T, T4, T3 and 1 of the polarity matrix M (the LI function 1 has no polarity since
it has no literals). Polarity GRM(2)-1 = [00,0,1] represents LI functions T3 T4, 7s, 22 and 1 of the
polarity matrix M. And so on. It can be shown in a similar way that there are 2'? types of GRM(3)
nodes for 3 variables.

Definition 3. Generalized Kronecker Forms (GK Forms) are obtained by flattening the GK
Trees, i.e. finding all ordered product terms obtained by multiplication of paranthesized expressions
corresponding to AND/EXOR trees, using recursively the rule a(b® ¢) = ab @ ac.

Definition 4. Generalized Kronecker Decision Diagrams (GK DDs) are created by: (1)
combining isomorphic nodes of any kind, (2) performing standard Ordered Kronecker Functional
Decision Diagram (OKFDD) transformations [3] on S, pD and nD nodes, (3) performing generaliza-
tions of standard Ordered Kronecker Functional Decision Diagram (OKFDD) transformations [3] on
multi-variable nodes. All these generalizations remove nodes that evaluate to their single argument.

FExample 5.1. Figure 1 illustrates an example of the Generalized Kronecker Tree (GKT). The first
level of the tree has Shannon expansion for variable z, the second level has GRM(2)-13 expansion
for set of variables { x9,24 } and the third level has S, pD, and nD expansions for variable x3.
As we can verify in Figure 1, the number 13 in expansion name GRM(2)-13 is a natural number
corresponding to a binary number 1101, in which the rightmost 1 corresponds to the positive polarity
of single variable x5, 0 corresponds to the negative polarity of variable x4, and the leftmost two ones
correspond to the positive polarities of variables x5 and x4 in a two variable AND term for variables
zq and x4. The expansion of the node GRM(2)-13 is described by the following formula:

Jo(za, 23, 24) = SF(fo)1(x3) © 22SF(fo)uy (23)BT2S F(fo)ir(23) D224 S F(f0) ey (23)
where notation SF'(f);(X) denotes function SF;, with arguments from the set X of variables, applied

f(A,B,C,D)

GRM(2)-12 expansion
for variables A,B, polarity =
[11,00]

Figure 3: A Generalized Kronecker Diagram for function from Example 4.1.

to argument function f.

This formula is the specialization of GRM expansion (4.1) for fo(x2, x5, 24) with expansion variables
T9, T4, where subfunctions SFu of the remaining variables are all calculated on the cofactor func-
tion fo (these are functions: SF(fo)1,5F (fo)z, (23), SF(fo)z(23),SF(f0)ryz, (x3) in this particular
GRM(2)-13 expansion).

We will say that the node evaluates to single argument if after substituting constants and a single
variable value H; to the function realized by this node, after propagation of constants the function
evaluates to H;. Observe that only multivariable nodes that have only logic constants and the same
signal H; as arguments should be evaluated.

For instance:

Formula@ bH, @@ bH, & a bH, & a bH, evaluates to H;.

Formula @ b0 & a b0 & bH, & bH, evaluates to Hs.

Formula ab0 @ a0 & b0 & H; evaluates to H;.

This method is a generalization of simplifications of S, pD and nD nodes applied in OKFDDs.

Fzxample 5.2. A Generalized Kronecker Decision Diagram created from a GKT corresponding to
the expansion from Examples 4.1 - 4.3 is shown in Figure 3.

VI. THE QUALITY OF THE GK FORMS.
In this section we will investigate is there any real advantage in the new forms.
FExample 5.3 An example of a GK form that is not a GRM and not a KRO is the following
9(2,y,2)=T(Yz) dx(yz DY &z D 1)=Tyz GayzPaybrz & z

This is not a GRM form, because there are two terms that include the same set of variables {z,y, z}.
The above form can be transformed to one of GRM forms as follows:

g(z,y,2) =TYZ Qayz@ay Pz © z=102)10y)(1T®z2) ©aryzS2y Pz z D =
=1BrPydzPryPrzByzbryz Baryzdry Brz & r=10yd2PrxPyz Pr=1ByH2zDy=z
=1®y o2y gl(z,y,z2)

As we see, in this case the GRM form ¢l(z,y, z) is better than the GK form g(z,y, z).
Form g¢(z,y, z) = is also not a KRO, because g(z,y,2) | s=1=yz2®7 & Z @& 1 is not a KRO.
The above form can be transformed to one of KRO forms as follows:

(yz) Se(y: @70 70 1)=3(y7) S2(yz @ y © 2) =7(y2) ©2(y7) =y 7 = g2(z,y,2)

As we see, in this case the KRO form ¢2(z,y, z) is better than the GK form g¢(z,y, z), and better
than the GRM form gl(z,y, 2).

We demonstrated thus an example of a GK form that is not included in KRO or in GRM families,
therefore we proved that GK forms include properly the KRO and GRM families.

The question remains, however, is the GK form potentially more minimal than GRM and KRO
forms.

Theorem 2. Every AND/EXOR canonical form f can be obtained from any other canonical form g
by substituting terms of f by EXOR operation performed on some subsets of product terms from g.
Proof. Tt is well known that in a non-singular matrix every column can be replaced with a linear
combination of other columns. In AND/EXOR canonical expansions the columns correspond to
product terms and the linear operation is and EXOR of columns. Thus, by EXOR-ing the subsets
of product terms we obtain all possible Linearly Independent forms. Because the set of Linearly
Independent forms includes all forms with columns corresponding to products of variables, it includes
the set of all canonical AND/EXOR forms. Thus, every AND/EXOR canonical form can be obtained
from some other AND/EXOR canonical form by EXOR-ing some of its terms.

Fzxample 5.4. By EXOR-ing all terms of g(z,y, z) we obtain § z = ¢2(z,y, 2)
Theorem 3. Every AND/EXOR form that can be described by the following formula:

flaybye, ks xq,zay oy 2m) = fila, by e, k)@ faa, b, e, . k)xe®... fru(a, by e, .. k)z, (5.1)
where:
- sets of variables {a,b,¢c,...,k} and { z1, 29,,2,,} are disjoint,

- functions f; are linearly independent,

- all variables z; are different.
has the minimum number of terms.
Proof. According to Theorem 2, any canonical AND/EXOR form can be obtained by replacing terms
from the form f(a,b,c,...,k;x1, 22,,) by EXOR-ing some subsets of its terms, for instance:

fla,byey . kyxy, 2oy 2m) = fila,bye, k)1 @ fala,bye, . k) @ .. fnla, by e, . k)2
= hi(a,b,c,... k;x1, 20y ooy @) & hola,byc, o k21, 20,y ey) B hs(a,bycy o k21, 20y ey) =
[fila,b,c,..k)x1 & fs(a,b,c,..k)xs|® [f2(a,b, e, ...k)xs & fala,b,c,...k)xqE
[fs(a,b,c,...k)x1 & fela,b,c,..k)d frla,b,c,..k)xq].

However, none of the expressions in brackets can be simplified to less terms, because they have

different variables x;. In the best case, when all functions f; are the same, the factorization of f;
can be performed, but it also does not decrease the number of terms. So, any EXORs of terms will

not decrease the number of terms. Thus, the form f(a,b,¢,...,k; x1, 22,, 2,) is the one with the
minimum number of terms among all canonical forms representing this function.

Theorem 4. In every minimal ESOP all product terms are linearly independent.

Proof. Let assume that z(xy,z,...2,) is the minimal ESOP. Thus, it has the minimum number of
terms among all ESOP expressions equivalent to z(xy, z3,...x,). Assume that all terms from ESOP
z(x1,x2,...x,) are different and are not linearly independent. Thus some term can be replaced by an
EXOR of some subset with more than one element of them, leading to new equivalent ESOP expres-
sion z'(x1, xg,...x,). This new expression would have less terms, which contradicts the assumption
that the expression z(x1, x2,...x,) had the minimum number of product terms.

Definition 5. By ESOP-simplifiable expression in AND/EXOR form we will understand
one that applying any combination of rules from EXORCISM-MV-2, [29], an ESOP with smaller
number of terms were created. Expression that is not ESOP-simplifiable, will be called ESOP-

nonsimplifiable.
Theorem 5. Every AND/EXOR expression of the following form:

f(a, b, Cy.ny k‘, Xl,XQ, ,Xm) = fl(a, b, C, k)fhl(Xl)@
fala,bycy o k) fra(X2) & oo ® frn(a, by e, o k) frm(Xm) (5.2)

where:
o set of variables {a,b, ¢, ...,k} and any set of variables Xi, Xs,...., X, are disjoint,

e functions f; are linearly independent or they are EXOR combinations of linearly independent
functions that are ESOP-nonsimplifiable,

e variables in formula (5.2) z; are all different,
e all functions f;; are on disjoint sets X; of variables.

has the minimum number of terms.
Theorem 6. The canonical form of the form (5.2) is the minimal ESOP.

Theorem 7. The minimal GK Form is better than the minimal KRO and the minimal GRM forms.
Proof. From Theorems 4 and 5, the form g(z,y,z,u,v,r,s,{) =T Y Zu & xyzv S ayr Gr z s G
has a smaller term cost than all KRO and GRM canonical forms.

Thus, Theorem 7 demonstrates the usefulness of the concept of GK forms in practical minimization

algorithms for high-performance canonical forms (because their expected superior testability) and
ESOPs. The form shown in Theorem 7 is also the exact minimum ESOP.

All above notions and methods can be generalized to functions with many outputs.

Definition 6. A Single-Polarity GRM expansion for a multi-output function is a vector of
GRM expansions for its component single-output functions, all of them of the same polarity.

Definition 7. A Multi-Polarity GRM expansion for a multi-output function is a vector of GRM
expansions for its component single-output functions, each of them can have different polarity.

Thus, for a three-output function, the polarity vector of a Single-Polarity GRM expansion has 4
bits, and for Multi-Polarity I.I expansion has 3 * 4 = 12 bits. Let us observe, that Definition 6 of
multi-output GRM expansions is in accordance with the definition from [31], while Definition 7 is
in accordance with the definition from [2]. Obviously, the minimal DD obtained from Definition 7
is smaller than one obtained from Definition 6. There are, however, some advantages of considering

representations created according to Definition 6; mostly simpler and more efficient algorithms, and
better testability.

Concluding, the set of canonical forms that are created by flattening the GK'Ts properly includes
both the Kronecker forms and the GRM forms. This way we give a positive answer to the question
posed several years ago by Tsutomu Sasao - "whether there exist any family of canonical forms that
s a superset of both KRO and GRM families”. Of course, as it results from counting the number of
the GK Forms, in addition to expansions from KRO and GRM families, there are very many other
new canonical expansions resulting from the flattening of the GK trees.

VII. APPLICATIONS TO EXACT ESOP MINIMIZATION

ESOP Circuits are the AND/EXOR two-level circuits with no any constraints imposed on the
products of literals - they are thus the best AND/EXOR circuits but they are not canonical. Much
research has been devoted to the synthesis of minimal ESOP circuits [6, 8, 15, 20, 21, 22, 29], but
so far the exact solution can be obtained only for a very small number of input variables [22]. The
quality of AND/EXOR circuits obtained from the expansions proposed here should be significantly
better than those corresponding to GRMs or KROs because the search space of GKTs is much larger
than the combined search space of GRM or KRO expansions. Therefore, such circuits will be on
average very good approximations of exact ESOPs.

It is easy to improve every ESOP minimizer by using Theorem 4. It is done by adding a final
check to it. For every solution it has to be checked if the terms are linearly independent. If not,
the exoring of the terms that are not linearly independent should be executed to obtain a better
expression. Some top ESOP minimizers have already the rules that satisfy the condition that all
terms are linearly independent.

Theorems 5 and 6 can be also used to create better rule-based searching ESOP minimizers (such
as EXORCISM-MV-2, [29], and especially EXORCISM-MV-3, [30]). This can be achieved by tree-
structuring the transformation rules that search the solution space, so that the space is represented
by a tree. New nodes are created by applying rules to parent nodes, but the rules are selected in
such a way that the costs are non-decreasing along the branches, which allows to apply the branch-
and-bound principle for cutting off branches with higher costs than some of the previously found
solutions. Special rules and methods are used to nodes of expressions like (5.1) or like (5.1) but with
repeated literals ;. An expression with repeated literals is transformed to expression (5.2) in which
ESOP-nonsimplifiable expressions stand by z;. (For instance, the expressions such as (abc® @ b ¢)z;
are ESOP-nonsimplifiable, even they have the same factorized variable z;.) Concluding, we can
say that the class of generalized expressions of form (5.2) is the generalization of sparse functions
introduced by us in previous papers on exact ESOP minimization [10]. Whenever a form like (5.2) is
found, the branch of the tree is cutted-off, because no better form can be found by exoring subsets of
terms. This way, the EXORCISM-3-MV search can be improved. More details on look-ahead search
strategy of EXORCISM-3-MV are in [30].

It is well-known that set of ESOP expressions includes the set of all known and not known canonical
expansions, but it was now known, if every minimal ESOP can be found from some canonical family
of forms.

Theorem 8. For every minimum ESOP one can create a canonical form for which this ESOP is one
of the solutions.

Proof. The form is created from the ESOP as follows. Assume the function of n variables. Let
the minimal ESOP has k& terms. Thus k& columns of matrix M can be obtained from these terms.

The remaining 2" — k columns are created one be one by adding columns that are EXOR linearly
independent with all previous columns, such that the 2" x 2" matrix M becomes nonsingular.

Theorem 9. The family of all canonical AND/EXOR forms includes the set of minimal ESOPs.

Theorem 9 can lead to a new ESOP minimization algorithm. Algorithms are known, [31] that
enumerate all AND/EXOR forms of some type in certain order, for instance, the Grey order (this
approach was used for FPRMs or GRMs [31]). The search is for the form with the smallest cost. If
one were able to parametricize all canonical AND/EXOR forms, then, according to Theorem 9, the
same approach would be possible to find the exact minimum ESOP.

VIII. CONCLUSIONS

In the paper, we proposed a new AND/EXOR representation. We have proved, that in general,
this new representation will be better than all the known canonical AND/EXOR representations
with respect to the circuit complexity. Based on the previous results in the field of AND/EXOR
representations, we can expect that the new trees, diagrams, and expansions will find broad applica-
tions, especially in multi-level logic synthesis for FPGAs, gate arrays and standard cell technologies
and in the design for high testability. For small number of variables, the introduced methods can be
also used to design highly optimized ESOP circuits. We showed also some new theorems that will
allow to create improved exact ESOP algorithms for small number of variables, and prove exactness
for some special classes of ESOP expressions. Obviously, the future research should include counting
the new forms and comparing them with the known forms.

Moreover, it is known from AND/OR minimization that the graph based representations allow
to represent much larger functions than the two-level forms. The new graphs may be thus useful
to represent large functions, larger than those possible to represent by the Ordered Kronecker DDs
(which themselves allow to represent larger functions than the BDDs).

In this paper the difficulties of calculating the expansions were not addressed, and matrices were
used for illustration. It should be stressed, however, that the discussed expansions can be executed
on any representation of completely or incompletely specified single- or multi- output function, and
we have already developed efficient algorithms that are not based on matrices [16].

Adaptation of the proposed approaches to multiple-valued, multiple-output functions, both com-
pletely and incompletely specified, as well as Boolean relations, is also of our interest, [16]. It will be
also interesting to create a special algorithm to find exact minimum solutions for symmetric functions
represented in the new forms [4].

Since AND/EXOR canonical representations have universal tests and have very good testability
properties, and/or are easily modifiable to AND/EXOR circuits with such properties, it would be
interesting to investigate how these properties can be best used for the introduced here GK repre-
sentations.

REFERENCES

[1] M. Davio, J.P. Deschamps, A. Thayse, “Discrete and Switching Functions,” McGraw Hill,
1978.

[2] D. Debnath, T. Sasao, “GRMIN: A Heuristic Simplification Algorithm for Generalized Reed-
Muller Expressions,” Proc. RM’95, pp. 257-264.

[3] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski, “Efficient representa-
tion and manipulation of switching functions based on Ordered Kronecker Functional Decision

Diagrams,” Proc. DAC"9/, pp. 415-419, 1994.

[4]
[5]
[6]
[7]
8]
[9]

[10]

23]

[24]

R. Drechsler, “Pseudo Kronecker Expressions for Symmetric Functions,” Proc. VLSI Design

Conference, pp. 511-513, 1997.

B. J. Falkowski, S. Rahardja, “Family of fast transforms for GF(2) orthogonal logic,” Proc.
RM’95, pp. 273-280.

J. Froessl, B. Eschermann, “Module Generation for AND/XOR-Fields (XPLAs),” Proc. I[CCD
91, pp. 26-29, 1991.

D.H. Green, “Families of Reed-Muller Canonical Forms,” Intern. J. of FElectr, pp. 259-280,
Febr. 1991, No 2.

M. Helliwell, and M. Perkowski, “A Fast Algorithm to Minimize Multi-Output Mixed Polarity
Generalized Reed-Muller Forms,” Proc. DAC’8S, pp. 427- 432.

Ch. Tsai and M. Marek-Sadowska, “Multilevel Logic Synthesis for Arithmetic Functions,” Proc.
DAC"96, pp. 242-247.

M.A. Perkowski, and M. Chrzanowska-Jeske, “An Exact Algorithm to Minimize Mixed-Radix
Exclusive Sums of Products for Incompletely Specifed Boolean Functions,” Proc. 1SCAS’90,
pp- 1652-1655.

M. Perkowski, L. Csanky, A. Sarabi, I. Schaefer, “Fast Minimization of Mixed-Polarity
AND/XOR Canonical Networks,” Proc. ICCD’92, pp. 32-36.

M. Perkowski, “A Fundamental Theorem for Exor Circuits,” Proc. RM’93, pp. 52-60.

M. Perkowski, A.Sarabi, F. Beyl, “XOR Canonical Forms of Switching Functions,” Proc.
RM’93, pp. 27-32.

M. Perkowski, A.Sarabi, F. Beyl, “Fundamental Theorems and Families of Forms for Binary
and Multiple-Valued Linearly Independent Logic,” Proc. RM’95, pp. 288-299.

M. Perkowski, T. Ross, D. Gadd, J.A. Goldman, N. Song, “Application of ESOP Minimisation
in Machine Learning and Knowledge Discovery,” Proc. RM’95, pp. 102-109.

M. Perkowski, L. Jozwiak, R. Drechsler, “New Canonical Forms for Galois Logic and their
Minimization.” to be submitted to ISMVL’9S.

A. Sarabi, M.A. Perkowski, “Fast Exact and Quasi-Minimal Minimisation of Highly Testable
Fixed-Polarity AND/XOR Canonical Networks,” Proc. DAC,’92, pp. 30-35.

A. Sarabi, M. Perkowski, “Design for Testability Properties of AND/EXOR Networks,” Proc.
RM’93, pp. 147-153.

A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. A. Perkowski, ”A Comprehensive Approach to
Logic Synthesis and Physical Design for Two-Dimensional Logic Arrays,” Proc. DAC 94, pp.
321 - 326.

T. Sasao, “Optimisation of Multiple-Valued AND-EXOR Expressions using Multiple-Place
Decision Diagrams,” Proc. ISMVL’92.

T. Sasao (editor), “Logic Synthesis and Optimisation,” Kluwer Academic Publishers, 1993.

T. Sasao, “An Exact Minimisation of AND-EXOR Expressions Using BDDs,” Proc. RM’93,
pp- 91-98.

T. Sasao,“Representation of Logic Functions using EXOR Operators,” Proc. IFIP WG 10.5
Workshop on Applic. of the Reed Muller Expansion in Circuit Design, RM’95, pp. 11-20.

T.Sasao, “Representation of Logic Functions using EXOR Operators,” Proc. RM’95,pp.11- 20.

[25] T. Sasao, H. Hamachi, S. Wada, M. Matsuura, “Multi-Level Logic Synthesis Based on Pseudo-
Kronecker Decision Diagrams and Local Transformation,” Proc. RM’95, pp. 152-160.

[26] 1. Schaefer, M. Perkowski, “Synthesis of Multi-Level Multiplexer Circuits for Incompletely
Specified Multi-Output Boolean Functions with Mapping Multiplexer Based FPGAs,” IKFEE
Trans. on CAD,, Vol. 12, No. 11, November 1993. pp. 1655-1664.

[27] 1. Schaefer, M.A. Perkowski, “Multiple-Valued Input Generalized Reed-Muller Forms,” [EFE
Proc., Pt.E, Vol. 139, No. 6, pp. 519-527, November 1992.

[28] 1. Schaefer, M.A. Perkowski, “Multiple-Valued Input Generalized Reed-Muller Forms,” Proc.
ISMVL 91, pp. 40-48.

[29] N. Song, M. Perkowski, “EXORCISM-MV-2: Minimisation of Exclusive Sum of Products
Expressions for Multiple-Valued Input Incompletely Specified Functions,” Proc. ISMVL 93,
May 24, 1993, pp. 132-137.

[30] N. Song, M. Perkowski, “New Fast Approach to Approximate ESOP Minimization for Incom-
pletely Specified Multi-Output Functions,” Proc. RM’97.

[31] X. Zeng, M. Perkowski, K. Dill, A. Sarabi, “Approximate Minimization of Generalized Reed-
Muller Forms,” Proc. RM’95, pp. 221-230.

