A New Representation of Strongly Unspecified Switching Functions and
its Application to Multi-Level AND/OR/EXOR Synthesis.

Marek A. Perkowski
Department of Electrical Engineering, Portland State University,
P.O. Box 751, Portland, Oregon 97207, tel. (503) 725-5411

Abstract— The paper presents a new representa-
tion of Boolean and multiple-valued functions, called
Cube Diagram Bundles. This representation is especially
good for very strongly unspecified functions. The dis-
joint cubes of the original function as well as the origi-
nal variables are re-encoded with a smaller number of
new variables, so that several smaller BDDs are used
to represent the function. This representation allows
to efficiently implement algorithms based on the Cube
Calculus and calculus of Rough Partitions.

As an application of this new general-purpose rep-
resentation we discuss a generalized, goal-oriented
multi-level decomposition, that makes special use of
EXOR-based decompositions. Our unified approach
includes the decompositions of Ashenhurst, Curtis,
Steinbach et al, Luba et al, and Perkowski et al as
special cases.

I. INTRODUCTION.

Boolean and multiple-valued functions that include
very many don’t cares are becoming increasingly impor-
tant in several areas of applications [14]. In this pa-
per we introduce a new representation and decomposition
method for such functions. The paper is organized as fol-
lows. In section 2 we introduce a new representation of
Boolean and Multi-valued Functions - Cube Diagram Bun-
dles (CDBs). This general-purpose representation com-
bines Cube Calculus [7], Decision Diagrams [3] and Rough
Partitions [10], and is especially efficient for very strongly
unspecified functions. CDBs incorporate also a new con-
cept of generalized don’t cares for multiple-valued logic.
This representation is next used to solve various decompo-
sition problems that are important for Machine Learning
and circuit design applications. Sections 3 to 6 introduce
several types of decompositions based on patterns found
in this representation. In section 3 general decomposi-
tion patterns with respect to EXOR, OR and AND gates
are presented. Section 4 presents the Immediate Decom-
positions that happen rarely but are of a good quality:
Strong Gate Decompositions, and the Ashenhurst Decom-
position. A new approach to Ashenhurst Decomposition
[1] is also presented - it is shown that contrary to the
more general case of Curtis Decomposition [6], the column

minimization problem is polynomially complete, and we
give an efficient algorithm to solve it. Section 5 presents
a new approach to Curtis Decomposition, which belongs
to the Basic Decompositions of the system. Although in
some respects similar to the approach from [16], we use
the new representation, and several of its partial prob-
lems are significantly improved. For instance, a new very
efficient algorithm for coloring of the Column Incompati-
bility Graph is proposed that utilizes the similarity of the
graph coloring and the set covering problems, and thus
gives an exact minimal coloring for any graph that cor-
responds to a non-cyclic set covering problem. Section 6
introduces another new concept in logic synthesis: goal-
oriented reduction schemes, which generalize the EXOR
transformation of Curtis-nondecomposable functions from
[16]. Any function can serve as a goal function, and three
reduction types (EXOR, OR and AND) of reducing to a
goal function are presented. Section 7 presents the com-
bined search strategy that uses all the decompositions,
and section 8 presents numerical results and conclusions.

II. CuBE DIAGRAM BUNDLES TO REPRESENT
DISCRETE MAPPINGS.

In principle, two essentially different representation
methods for Boolean functions have been successfully
used in logic synthesis software: Cube Calculus (CC),
and Decision Diagrams (DDs). Similarly, for multiple-
valued logic one uses two representation methods:
Multiple-Valued Cube Calculus (Positional Notation) and
Multiple-Valued Decision Diagrams. These methods have
been also extended to incompletely specified functions.

All these representations are being improved with time,
and several variants of them have been invented and
proved superior in some applications. For instance,
XBOOLE system of Bochmann and Steinbach [2] intro-
duces Ternary Vector Lists (TVLs), a variant of Cube
Calculus with disjoint cubes, new position encoding and
new operations, and demonstrates its superiority on some
applications. Similarly, Functional Decision Diagrams
(FDDs), Kronecker Decision Diagrams (KDDs), Alge-
braic Decision Diagrams (ADDs), Moment Decision Dia-
grams (MDDs), and other Decision Diagrams (DDs) have

been introduced and shown superior to the well-known Bi-
nary Decision Diagrams (BDDs) in several applications.
In other related efforts: Luba et al [10] introduced a new
representation of Rough Partitions and used it in few suc-
cessful programs for Boolean and multiple-valued decom-
position; and Truth Table Permutations to create BDDs
are recently investigated [11, 8]. While cubes seem supe-
rior in problems with a limited number of levels, such as
SOP or ESOP synthesis, the DDs are superior for general-
purpose Boolean function manipulation, tautology, tech-
nology mapping, and verification.

This paper introduces a new represention of binary and
multiple-valued functions. More generally - a representa-
tion for discrete mappings and for some restricted class
of discrete relations. We call this new representation the
Cube Diagram Bundles (CDB). Cube - because they op-
erate on cubes as atomic representations, Diagrams - be-
cause they use Decision Diagrams (of any kind) to repre-
sent sets. Bundles - because several diagrams and other
data are used together to specify a function or a set of
functions. CDBs are related to Cube Calculus [7], De-
cision Diagrams [3], Rough-Partitions [10], and Boolean
Relations [4]. This new representation is general and can
be applied to both binary and multiple-valued functions
(state machines) in the same way. Tt allows to add
and remove variables (functions) in the synthesis pro-
cess, which would be difficult or inefficient using other
representations. All operations are reduced to set-
theoretical operations on DDs.

Let us observe that the meaning of a representation in
an algorithm is two-fold. First, it allows to compress data
- the switching functions - so that the algorithm becomes
tractable in time or in space. Secondly, any representation
introduces certain bias for function processing, making
some algorithms particularly suited for some representa-
tions, and less for other. This author believes that it is not
possible to create a single represention that will be good
for all applications, and the progress of various represen-
tation methods in past years seems to support this opin-
ion. Therefore, here we concentrate on an area that has
not found sufficient interest until very recently, but one
that in our opinion will be gaining in importance: binary
and multiple-valued, very strongly unspecified functions.
We will call this class SUF - Strongly Unspecified Func-
tions. Such functions occur in Machine Learning (ML)
[14], Knowledge Discovery in Databases (KDD), Artificial
Intelligence (AT), and also in some problems of circuit de-
sign, such as realization of cellular automata. One can
observe that many well known problems in logic synthe-
sis can be also converted to binary SUF functions: for
instance every multi-output function can be converted
to a single output binary SUF (BSUF). SUF functions
are manipulated while solving some decision problems
and Boolean equations. Also, every multiple-valued in-
put function can be converted to a binary SUF. Multiple-
Valued SUF (MVSUF) are important in ML, and KDD

TABLE 1

BN — O

O o ~1 S
OO R R OREFE = OO O
o
o~

—_ 0 O = O OO = O M=M= O|o

Ot
O OO O R~ PP ORFROOIR

== = = = OO OO OO OO0

—_ O

areas.

One can think about a discrete function as a two-
dimensional table - see Table 1, in which the (enumer-
ated) rows correspond to the elements of the domain (the
minterms) or to certain groups of elements of the domain
(the cubes). The columns of the table correspond to the
input and output variables. Sometimes, also to inter-
mediate (auxiliary) variables which can be (temporarily)
treated as input or output variables. Let us observe, that
such table is in a sense realized in cube calculus, where the
cubes correspond to rows. The disadvantages of cube cal-
culus include however: - some large multilevel functions,
such as an EXOR, of many variables, produce too many
cubes after flattening so that their cube arrays cannot
be created, - it i1s difficult to add and remove input and
output variables to the cubes dynamically in the synthe-
sis process, - in strongly unspecified functions we would
need relatively few but very long cubes, - column-based
operations are global, and therefore slow. Luba invented
a new function representation called Rough Partitions (r-
partitions, or RP) [10]. R-partition is also called a cover.
This representation stores r-partitions «(v;) for all input
and output variables v; as lists of ordered lists. Each up-
per level list represents an r-partition 7(v;) for variable
v;, and lower level lists correspond to the blocks of this
partition. A block of partition 7(v;) includes numbers
of rows of the table that have the same value VAL in
the column corresponding to variable v;. For instance, in
ternary logic there are three blocks that correspond to val-
ues VAL = 0, VAL = 1, and VAL = 2, respectively. All
operations are next performed on these r-partitions using
r-partition operations that extend the classical Partition
Calculus operations of product, sum and relation < of
Hartmanis and Stearns. Blocks included in other blocks
are removed, and the origination of a block - which value
of input variables it comes from - is lost. This makes some
operations in this representation not possible, and some
other not efficient. Our other source of inspiration is the
concept of Generalized Don’t Cares [15]. In binary logic, a

single-output function F has two values: F® and F', and
there exists one don’t care F1%1} that corresponds to a
choice of these two values. Analogously, in a three-valued
logic, function F has three values: F°, F', F? and there
exist the following combinations of values: F101} 10,2}
F112} and F1%12} The last one corresponds to a clas-
sical don’t care, but the other three are new, and we will
define them all as the generalized don’t cares. Similarly,
the concept of generalized don’t cares can be applied to k-
ary logic for any value of k. This concept has applications
for instance in Machine Learning and Knowledge Discov-
ery from Databases. It has also some link to Boolean
Relations. In this section, a multi-valued, multi-output
function F' with generalized don’t cares will be referred
to as a function.

In CDB representation, function F' is represented as a
record of:

1. A pointer to a list Var(F) of primary input variables
on which the function depends. The variables are sorted
lexicographically.

2. A pointer to a list Inp(F) of vectors of primary
input columns. The vectors are in the same order as the
input variables. Each vector has as many positions as the
corresponding variable has values, and the positions are
sorted starting from 0 to k-1, where k is the number of
values. Each position of the vector is a pointer to a DD.
These are called ”input value DDs.”

3. A pointer to a list Out(F) of vectors of output
columns. This list is analogical to the Inp(F') list. The
DDs in the vectors in this list are called ”output value
DDs.” The ”input value DDs” and the ”output value
DDs” are called ”value DDs”.

The representation of Luba has been used only for de-
composition, and CDBs are a general-purpose function
representation designed for speed and data compression -
there are then several differences of CDBs and the repre-
sentation of Luba. For efficiency of operations, the CDB
of F' stores also the list of primary input variables on
which F depends (some of them can be still vacuous).
It stores vectors of function values, and not rough par-
titions. This means, inclusion operations on blocks are
not performed, and we keep track on the origin of each
block - what value of the variable it corresponds to. In
case of cofactors, we store then cofactor functions, and not
their equivalence classes. CDBs represent functions with
generalized don’t cares, while Luba represents only clas-
sical don’t cares. The rows (their numbers) correspond
in Luba’s approach to minterms or arbitrary cubes, while
they correspond to disjoint cubes in CDBs. All sets are
represented as ordered lists in RP and as Decision Dia-
grams in CDBs. Currently we use standard BDDs, but
any kind of decision diagrams can be used, and we plan to
test other DD packages in the future. Because the sets are
represented as DDs, CDBs introduce new variables to re-
alize these DDs with. They are called the secondary input
variables. The number of these variables is usually much

input output

row
variable

(cube)

°
- =} Or’

Gl
01 m
nu

Gl

10

e R EGEE
w N R o
o
o
~ o
kR ool

3 b)) d)

BN 0 1 2 ow | a b e |t |y

E) f) 9

)
2
|
-
~
w Nk o

ok ko
NN RO
koo
»oro

Figure 1. Mapping from primary to secondary variables: (a) original function with primary input
(b) sweondary space with secondary input ~ variablesx and y
(c) table of function f
(d) encoding of primary cubes
MV function: (€) K-map
(f) table
(g) encoding to secondary variables

smaller than the number of primary input variables, and
the complete freedom of encoding rows with these new
variables allows to minimize the size of all BDDs. This
property is totally missing in Rough Partitions and exists
only in [11, 8]. While the authors from [11, 8] solve it as
a truth-table permutation problem, we solve it as a cube
encoding problem, which is more general.

FEzample 1: Tables and encodings of functions. The
first example illustrates a table and encoding for a binary-
input, binary-output completely specified function. A
Kmap with primary input variables a, b, and ¢ is shown
in Fig. la. This table has four disjoint cubes. Two are
OFF cubes, enumerated 0 and 1, and two are ON cubes,
encoded by 2 and 3. As the results of encoding of pri-
mary cubes with secondary input variables, x and y, a
new map from Fig. 1b is created. Figure la,b shows
clearly how cubes of the first map are mapped (encoded)
to the minterms of the secondary map. The table for the
function from Fig. la is shown in Fig. 1lc, and the encod-
ings of its rows to secondary input variables is shown in
Fig. 1d. The function is specified as the following CDB.
Var(F) = {ab,c}. Inp(F) = { [pointer to BDD for
{0,1,2}, pointer to BDD for {1,2,3}], [pointer to BDD
for {0,3}, pointer to BDD for {1,2}], [pointer to BDD
for {0,2,3}, pointer to BDD for {0,1,3}]} ;;var. a,b,c
Out(F) =
{[pointer to BDD for {0,1}, pointer to BDD for {2,3}]}
The second example, see Table 1, presents a table for
a binary-input, 5-valued-output incompletely specified
function with generalized don’t cares. The map for this
function is in Fig. 5a. In this case:

Out(F) = { [pointer to BDD for {0,2,3,4,5,6,8}, pointer
to BDD for {0,1,7,8,10}, pointer to BDD for {1,9,11},
pointer to BDD for {3,4,6,7,9,11}, pointer to BDD for

The third example presents a table, Fig. 1f for an

incompletely specified function with standard don’t cares
from Fig. le. It has two binary input variables, a and
b; a ternary input variable ¢, and a 3-valued-output. The
encoding of primary cubes with secondary input variables
z and y is shown in Fig. 1g.

The function is specified as the following CDB.

Var(F) = {a,b,c}.

Inp(F) = { [pointer to BDD for {1,2,3}, pointer to BDD
for {0,1}], [pointer to BDD for {0,3}, pointer to BDD
for {1,2}], [pointer to BDD for {0,3}, pointer to BDD
for {1,3}, pointer to BDD for {2}] }

Out(F) = { [pointer to BDD for {0}, pointer to BDD for
{1}, pointer to BDD for {2,3}] }

The following points about CDBs are important:

1. Standard don’t care positions are not stored in tables
and CDBs, but generalized don’t care positions are stored.

2. The definitions of a Binary Cube Diagram Bundles
and Multiple-valued Cube Diagram Bundles (mvCDBs)
are exactly the same. Therefore, the same operations
are applied to them.

3. All Boolean operations on CDBs can be easily real-
ized as set-theoretical operations on corresponding DDs.

4. The important concept of a cofactor i1s calculated
using only the set-theoretical operations as well: cofactor
CF of F with respect to cube C' is calculated as follows:
CF := DD(F)ADD(C), Var(CF) := Var(F)-Var(C).

5. The operations of derivative, differential, minimum,
maximum, k-differential, k-minimum, and k-maximum of
a function [2] are also realized. Since all these operations
are based on set and cofactor operations, they can be
easily realized because of points 2 and 3 above.

6. A CDB represents a set of cubes. Each true minterm
in DD(F) is an ON cube in function F' on primary vari-
ables, and each false minterm in DD(F) is an OFF cube.

7. There is no difference in the representation of pri-
mary input variables, auxiliary variables and output vari-
ables. Therefore, CDBs are good to represent functions
defined on combinational functions of input variables, one
can just add new ”columns”, which means, new sets of
”value DDs”. For instance, to check a separability of a
function to unate functions, one just introduces new in-
put variables, like A; = A. Similarly, one can create new
intermediate variables such as Ay = a @ b, Az =a - b,
or Ay = a + b by calculationg corresponding functions
on BDDs of @ and b and storing new items in Var and
Inp. This property allows also to: realize algorithms that
operate on output functions as on variables; use auxiliary
functions for synthesis; and re-use the existing functions
in synthesis.

8. We created one more variant of CDBs, that we call
encoded CDBs, or ECDBs. For instance, when there are
four values of variable v;, the standard CDB would create
four DDs for this variable. However, the ECDB would
create only two ”encoded” DDs. This obviously saves
space. Operations on ECDBs are very similar to those on
CDBs, but will be not discussed here [15].

9. During the incremental reading of the input data in
the form of disjoint cubes of primary variables (rows of the
"table”), the encoding of these primary cubes as minterms
in the new space of secondary variables is executed. The
goal of this encoding is to simplify all DDs of the CDB.
This 1s done in such a way that the false minterms that
are encodings of all primary OFF cubes are grouped near
the cell 0...0 (the minimum minterm in the space of new
variables). Similarly, true minterms of new space that are
the encodings of all primary ON cubes are grouped near
the cell 1...1 (the mazimum minterm in the new space).
In addition, the larger the cube, the closer it should be
located to the minimum or the maximum cell, respec-
tively. Moreover, the cube encoding algorithm attempts
to fill those cubes in the new space that are of smaller
Hamming distances with either the minimum or the max-
imum minterm, in such a way that as many as possible of
these cubes become completely filled with the same types
of minterms. This is done for all DDs in parallel.

I11I. BAsic PATTERNS FOR DECOMPOSITIONS.

There are only three types of decomposition in the
literature that are truly different and that make use of
the concept of partitioning of input variables to bound
and free sets: Curtis Decomposition [6], Steinbach et
al (XBOOLE) Decomposition [2], and Perkowski et al
(PUB) Decomposition [13, 12, 15]. The decompositions of
Ashenhurst [1]; Luba et al [10]; Lai, Pedram et al [9], and
many other are just special cases of Curtis decomposition
or use only various representations [15]. While most au-
thors differentiate between disjoint and non-disjoint de-
compositions, the introduced below concept of the Re-
peated Variable Maps (RVMs) allows to explain them in
a uniform way, and the CDBs allow to realize all these
decompositions uniformly in software.

In RVM, the rows of the map correspond to the Row
Variables, and the columns correspond to the Column
Variables. As we see, the Row Variables can be repre-
sented as A U C, and the Column Variables can be rep-
resented as B U C. Using Curtis terminology, set B U
C is a bound set, and set A U C' is a free set. If C =
¢ the decomposition is disjoint and the RVM becomes a
standard Karnaugh Map. If C' # ¢ the decomposition is
non-disjoint and the RVM is incompletely specified, even
if the original function is completely specified. Every vari-
able in C'is called a repeated variable. Let us observe, that
every repeated variable creates a map of one dimension
higher, in which all newly introduced cells are don’t cares.
For instance, if the original map is completely specified
and has 4 variables a, b, ¢, d, the bound set is {a, ¢, d} and
the variable a is a repeated variable, the new 4 * 8 map
will have three variables for columns and two variables
for rows (variable a stands in both rows and columns).
Half of the RVM are don’t cares. If variables ¢ and ¢
were repeated, and {a,c,d} were a bound set, the new 8

* 8 map will have three variables for columns, and three
variables for rows. Tt will have 75% of don’t cares. As we
see, even starting with a completely specified function, by
repeating variables, very quickly one has to deal with very
strongly unspecified functions. In addition, in ML appli-
cations, even the initial data can have more than 99.99%
of don’t cares. It is than absolutely crucial to be able to
represent and manipulate such functions efficiently.

The main observation of our unified and general-
ized approach is the observation that all decompositions
[6, 2, 13, 12, 15, 10] use certain fundamental patterns in
cofactors. These patterns can be easily observed in rows
and columns of the RVM. Recall please, that both the
rows and the columns of RVM correspond to cofactors
with respect to cubes on literals created from row and
column variables, respectively.

Let us concentrate in this section on binary functions.
We will distinguish the following patterns in cofactors:

1. Pattern of don’t cares. We will call it the DC Pat-
tern.

2. Pattern of ones (and possibly don’t cares). We will
call it the ON Pattern.

3. Pattern of zeros (and possibly don’t cares). We will
call it the OFF Pattern.

4. Pattern of function F (with any non-empty subset
of zeros, ones, and don’t cares). We will call it the F
Pattern.

5. Pattern of function F. We will call it the F' Pattern.

6. Pattern being either the DC Pattern or the ON
Pattern. We will call it the DC/ON Pattern.

Similarly other combined patterns of DC, ON, OFF,
F, and F can be defined. We will say that function has
pattern X/Y/Z on columns (rows) if every column (row)
cofactor has one of patterns X, Y or Z. Let us observe that
if a function has DC/ON/OFF pattern on columns then
it i1s independent on the variables from the free set. Ana-
logically, if a function has DC/ON/OFF pattern on rows
then it is independent on the variables from the bound
set. Obviously some columns (rows) can be characterized
as corresponding to several patterns. For instance, a col-
umn may be characterized as having either an ON pattern
or an F' pattern. There exist more characteristic patterns
that we do not discuss here for the lack of space, and
all possible decomposition methods are based on finding
these patterns in functions.

Definitions of Patterns. Row OR decomposition exists
with respect to the set of row variables RV if there ex-
ists at least one row that has the ON Pattern. Row AND
decomposition exists with respect to the set of row vari-
ables RV if there exists at least one row that has the
OFF Pattern. Let us observe that in the above two cases,
decompositions OR and AND can be found immediately
just by analysing one row at a time, and without compar-
ing rows to other rows. Row EXOR decomposition exists
with respect to the set of row variables RV if for every
row its pattern is either F' Pattern or F Pattern. (Let us

observe, that in this case every DC, ON and OFF row
must be here characterized as either an F or F pattern).
This case is then more difficult than the first two. Ana-
logically one can define the Column OR, Column AND,
and Column EXOR decompositions. Row and Column
decompositions are also called Weak Decompositions [2].
There exist then Weak AND, Weak OR, and Weak EXOR
decompositions (our understanding of weak and strong
follows that from [2], and not the one from U.C. Berke-
ley). Strong OR decomposition exists with respect to a
set of row variables RV and a set of column variables C'V
if there exists Row OR Decomposition, and next, after
replacing the ON rows with don’t cares, there exists a
DC/ON/OFF Pattern on columns. Equivalently, Strong
OR decomposition exists with respect to a set of column
variables C'V and a set of row variables RV if there exists
Column OR Decomposition, and next, after replacing the
ON columns with don’t cares, there exists a DC/ON/OFF
Pattern on rows. Strong AND decomposition exists with
respect to a set of row variables RV and a set of column
variables C'V if there exist Row AND Decomposition, and
next, after replacing the OFF rows with don’t cares, there
exists a DC/ON/OFF Pattern on columns. Strong EXOR
decomposition exists with respect to a set of row variables
RV and a set of column variables C'V if there exist Row
EXOR Decomposition, and Column EXOR Decomposi-
tion. Strong OR/AND decomposition exists with respect
to a set of row variables RV and a set of column vari-
ables C'V if there exist ON Patterns of rows, and next,
after replacing the ON rows with don’t cares, there exists
a Strong AND decomposition. There are several other
complex patterns of this type. AND, OR and EXOR de-
compositions will be called the Basic Gate Decomposi-
tions. OR/AND, AND/OR and other decompositions of
this type will be called the Complex Gate Decompositions.

An example of the RVM is shown in Figure 2. Fig. 2a
presents a standard Kmap of 3-input function f. Assum-
ing b to be a repeated variable, the Bond Set {b,c} (the
columns) and the Free Set as {a,b}, one creates a RVM
from Fig. 2b. Let us observe that ON Patterns b ¢ and
a b exist in this RVM, which lead to Strong OR Decom-
position: f = b @ + a b. Similarly, for the same RVM in
Fig. 2c, the OFF Patterns (a + b) and (b) are found,
which lead to the Strong AND Decomposition: (a + b) -
(b ©). Finally, for the same RVM in Fig. 2d, the Column
Patterns F, and F and the Row Patterns G, and G are
found as shown with loops on the map in Fig. 2d. These
patterns lead to Strong EXOR Decomposition: (b ¢) @
(@ + b) from Fig. 2e. Fig. 2e clearly shows the incom-
plete patterns from Fig. 2d after their completion with
0’s and 1’s. Let us observe that from Fig. 2d one can find
also a b @ b ¢, assuming the first three columns from left
to have a pattern of F.

bc bc
C

ws 0 1 b\ 00 0l 11 10 4N\ 00 01 11 10

'Y
o 0| o o of of —|[— o|(o] o))
o1l 1| o ol —| —| oll1 ol — | — || o|| 1
1 1] o 1 —| 1] ofl 1 1| — | — o]l 1
o 1] 1 o] 1] -]l= 10 1| 1] —
a) f=bc+ab f=(a+b)(b+c)
OR decomposition AND decomposition

b) ©
bc bc

o\ 00 0L 11 10 4N\ 00 01 11 10
oo (o|[[o) [~)—¢c o ol ol(—) —
o[-l o[l th—e (= | =[] o]| 2
a|[=[[[=1Tolll tf-c 11||—| = | of| 12
(=6 1ol 1] 1|l —

T T T T
,‘ ,‘ f=bc®(a+b)

F F F F

EXOR decomposition
Column patterns
d e

Figure 2. Basic patterns and decompositions.

IV. IMMEDIATE DECOMPOSITIONS.

Immediate Decompositions are those that are very good,
happen relatively rarely, and if encountered, should be
immediately executed. The Immediate Decompositions
are: Strong Basic Gate Decompositions (Strong EXOR
Decomposition, Strong AND Decomposition, Strong OR
Decomposition), Strong Complex Gate Decompositions
(section 3); Strong PUB Decompositions; and the Ashen-
hurst Decomposition. (The PUB decompositions [15] will
be not discussed because of lack of space). All these de-
compositions can be efficiently found in CDBs using co-
factors and set-theoretical operations [15]. Let us make
a point that the more strongly is the function unspeci-
fied and the larger is set C, the more probable is that an
Immediate Decomposition will exist for this function.

Existence of the Ashenhurst Decomposition can be
checked either using Property 1, or Property 2.

Property 1. Ashenhurst Decomposition F = H(G(B U
C), AU C) with bound set B U C, free set AU C, and
single-output binary function G exists if all row patterns
are: ON Pattern, OFF Pattern, F Pattern and 7 Pattern.

Property 2. Ashenhurst Decomposition with bound set
BUC and free set AU C exists if all column patterns are
F'1 Pattern and F2 Pattern, F2 # F1. In other words,
column multiplicity index p = 2.

Both these properties can be used to verify the exis-
tence of Ashenhurst Decomposition. Traditionally, for in-
completely specified functions, the Ashenhurst and Cur-
tis decompositions were reduced either to the clique par-

titioning of the Column Compatibility Graph or the
graph coloring of the Column Incompatibility Graph
[10, 9, 12, 13, 15, 16]. All these problems are in general
NP-hard. However, in case of Ashenhurst decomposition,
the problem can be solved by a polynomial algorithm.
The following algorithm is based on Property 1.
Algorithm 1.
1. Remove from RVM all rows that correspond to ON,
OFF and DC Patterns.
2. Find two rows, r; and r; that are incompatible,
and remove them. From remaining rows create the set
Remaining_Rows.
3. Pair_Counter := 1.
4. Put row r; to LEFT[Pair_Counter] and row r; to
RIGHT[Pair_Counter].
5. Take next row rs in set Remaining_Rows and remove
it from set Remaining_Rows.
6. Compare r; with arrays LEFT and RIGHT.
a) If there exists a pair (LEFT[k], RIGHT[k]) such that
s is incompatible with both LEFT[k] and RIGHT[k],
then exit ”No Ashenhurst Decomposition”.
b) Else if for all v from 1 to Pair_Counter r; is compatible
with LEFT[v] and 7, is compatible with RIGHT[v]
then

if RIGHT[Pair_Counter] # ¢ then

Pair_Counter := Pair_Counter + 1;

put r; to LEFT[Pair_Counter];
else

LEFT[Pair_Counter] :=

Combine_Rows(r;, LEFT[Pair_Counter]);

c) Else Combine(LEFT,RIGHT,r;).
7. If there are still rows in Remaining_Rows, go to 5.
8. Combine all sets LEFTJi] (i=1,...,Pair_Counter) to set
LEFT, Combine all sets RIGHT][i] (i=1,...,Pair_Counter)
to set RIGHT.
9. Return pair (LEFT, RIGHT) as the 2-coloring of the
Compatibility Graph.

Procedure Combine_Rows(rs, r,) combines row r; with
row 7y, position by position in a row, using the combining
symbol; = symbol; combine symbol;,
symbol; := symbol; combine dont’care,
Procedure Combine(LEFT,RIGHT,r;).
1. Find set of such indices vl=1,...,Pair_Counter

that rs is incompatible with LEFT[vl].

Combine all their RIGHT[v!] to RIGHT1

and all their LEFT[vl] to LEFTIL.

RIGHT1 := Combine_Rows(r;, RIGHT1).
2. Find set of such indices vr=1,...,Pair_Counter

that 7, is incompatible with RIGHT[vr].

Combine all their RIGHT[vr] to RIGHT?2

and all their LEFT[vr] to LEFT2.

LEFT2 := Combine_Rows(r;, LEFT2).
3. RIGHT3 := Combine_Rows(RIGHT1, LEFT2).

LEFT3 := Combine_Rows(RIGHT2, LEFT1).

4. Remove all rows vl and vr from arrays LEFT

rules:

and RIGHT, append combined row RIGHT3 to the
end of array RIGHT, append combined
row LEFT3 to the end of array LEFT.

Algorithm 1A, based on Property 2, can be applied to
mv-output functions and is very similar; Algorithm 1 is
usually more efficient, but can be applied only to binary-
output functions.

V. BAsic DECOMPOSITIONS.

Basic Decompositions are Curtis Decomposition and
PUB Decomposition [15]. They happen more often than
Immediate Decompositions. Hower, when executed with
large value of Multiplicity Index pu they lead to difficult
encoding problems and the not necessarily minimum cir-
cuits (especially that we are never able to perform ex-
haustive search of sets A, B and C). We execute, there-
fore, these decompositions only with small values of y =
3,...8. Because of lack of space, we present only the Cur-
tis Decomposition: F = H(G(B U C), AU C) where G
is a [logs(p)]-output function. Following the approach
from [16], given the bound set B U C' and the free set
AUC, first a fast approximate graph coloring of the Col-
umn Incompatibility Graph (CIG) is found with the nodes
corresponding to columns, and the edges to incompatible
pairs of columns. Compatible are columns that can be
combined (can be completed to the same pattern). Next
the encoding method that is similar to the input encoding
algorithm for function H from [16] is applied, but which
attempts to minimize both H and G. Finally, functions
G and H are found.

The reason to use here graph coloring instead of Clique
Partitioning is to dramatically decrease the size of the
memory. Let us assume that the N columns of the cov-
ering table correspond to the columns of the RVM, and
the rows of the covering table correspond to the mazi-
mum cliques. Thus, for strongly unspecified functions,
the number of rows is exponential, while the graph has
only N * (N-1) / 2 edges.

A set covering algorithm is well known that makes use
of essential rows, secondary essential rows and domina-
tions of rows and columns. In case of non-cyclic cover-
ing tables, this algorithm finds the exact solution with-
out backtracking. We will present a similar algorithm
for graph coloring of the CIG. Node G2 of the graph is
dominated by node G1 if the set of incident nodes of G1
includes (properly or not) the set of incident nodes of node
G2. In such case, any color of node G1 can be also ap-
plied to node G2. Thus, this fact can be stored, and the
node G2 can be removed from the graph, together with
all its incident edges. This leads to a new graph, that
can possibly have new dominated nodes, and so on, until
the graph is reduced to a complete graph, for which every
node is colored with a different color. When there are
no dominated nodes in the graph (this is a cyclic graph,
a counterpart of a cyclic set covering table), a coloring

11

10 b) <)

5 5 colorc

Figure 3. Stages of exact graph coloring

choice is done as in [16]. This can lead to dominated
nodes, and the node dominations are propagated and re-
movals are done as presented above, until a new branching
choice is necessary. There is a perfect analogy of this col-
oring approach with the popular methods of solving both
cyclic and non-cyclic covering problems, but our approach
is faster and does not require creating large covering ta-
bles. Moreover, it was found experimentally that most
CIG graphs are non-cyclic.

FEzample 3. We will illustrate how to convert the cov-
ering problem to the coloring problem using a Kmap of a
non-cyclic function f, Fig. 3a. Numbers denote the true
minterms. All other cells are false minterms. Obviously
in this case, after sharping essential primes @bé and acd,
the secondary essential primes abd and bed are created.
After sharping these secondary essential primes no true
minterms remain, so the exact solution was found for a
non-cyclic function f without backtracking. The Incom-
patibility Graph (IG) corresponding to this map is shown
in Fig. 3b. The stages of coloring the graph are shown in
Fig. 3b - 3e. In Fig. 3b node 2 has neighbors 4,5,6,7, and
node 1 has neighbors 3,4,5,6,7. Therefore, node 1 domi-
nates node 2, and 2 is removed from the graph, leading to
the graph from Fig. 3c. Now node 6 has neighbors 1,3,4
and node 7 has neighbors 1,3,4,5. Thus node 7 dominates
node 6 and node 6 is removed. This leads to the graph
from Fig. 3d. Now node 3 has neighbors 1,5,7 and node
4 has neighbors 1,7. So, node 3 dominates node 4 and
node 4 is removed. Now, Fig. 3e, the graph is a com-
plete graph. Its nodes are colored with different colors,
as shown. With respect to dominations, node 2 is colored
with the same color as node 1, which is color a, node 4 is
colored with color b, and node 6 is colored with color d.

In CIG, columns of nodes colored with the same color
are combined as compatible groups of columns which de-
termines column partitioning and the value of u. In some
covering problems, like in SOP minimization, a group of
CIG nodes colored with the same color are not necessarily
all compatible, and group compatibility must be checked
[5]. Tt can be proven, however, that in the Column Com-
patibility Problem in Functional Decomposition (for both

binary and mv cases), if columns in a set are pairwise
compatible the set of all these columns is compatible as
well [15]. Then the solution from CIG coloring is always
correct. This is, however, no longer true for mv functions
with the generalized don’t cares [15].

VI. GoAL-ORIENTED REDUCTION DECOMPOSITIONS.

We will use two stacks. The OPEN stack stores the sub-
functions to be realized, from which the one evaluated as
the easiest to realize is selected for the realization first.
The DONE stack stores the completely realized subfunc-
tions. These functions can be re-used during reduction
decompositions. Also, DONE 1is used to reconstruct the
entire circuit when the OPEN stack becomes empty.

The Goal-Oriented Reduction Decompositions are used
in two cases:

1. When some already realized function Fg is close to
the function F to be decomposed (we mean by this a high
correlation of variables Fg and F' in CDB). Function Fg
becomes then a goal function.

2. When one of the previously attempted (Immediate
or Basic) decompositions of F' was "nearly possible”. We
mean by this that many cofactors in this decomposition
had patterns corresponding to a given type of decomposi-
tion. In such case, the method from [16] is used to create
the goal function Fg and select the Reduct_Type_Oper,
which defines the type of the decomposition.

In both above cases, the procedure Reduction is next
called, to execute the reduction, possibly also to execute
the decomposition, and put new subfunctions to OPEN.
Procedure Reduction(F, Fg, Reduct_Type _Oper).
Function F¢ is a goal function, F is the decomposed func-
tion. F¢ is the correcting function.

1. If Reduct_Type_Oper = ‘OR’ then
ON(F¢):=ON(F)®OFF(Fg); OFF(F¢) .= OFF(F).
If Reduct_Type_Oper = ‘AND’ then
ON(F¢):=ON(F); OFF(F¢) :=ON(Fg)® OFF(F).
If Reduct_Type_Oper = ‘EXOR’ then
ON(F¢):=ON(Fg) NOFF(F)VOFF(Fg) NAON(F) ;
OFF(F¢) == ON(Fg) NON(F)VOFF(Fg) NOFF(F).
2. If Fg was a decomposable function, execute its corre-
sponding decomposition and put the correcting function
Fc to OPEN stack. Otherwise, put Fe to OPEN stack.
3. Put expression (F := Fg Reduct_Type_Oper F¢) to
DONE stack.

VII. THE ENTIRE DECOMPOSITION STRATEGY.

The comprehensive Decomposition strategy, Algorithm
3, includes all above partial decomposition schemes
among its special cases. It is based on the following prin-
ciples:

1. Using various fast and greedy decompositions is bet-
ter for a very strongly unspecified function than a single
method of high complexity. Try simple decompositions

first. If various previous attempts failed then try more
complex circuit structures and decomposition types.

2. Use DFC (see [14] for definition) to measure the costs
of partial solutions and be thus able to compare them.

3. The user can control the algorithm using several
parameters.

Besides OPEN and DONE, Algorithm 3 uses the EVAL
stack, which stores the decomposition attempts, in order
to compare them one with another and select the best
decomposition. In making choice decisions, the follow-
ing parameters of F; are taken into account: number of
true minterms, number of false minterms, number of true
cubes, number of false cubes, sets A, B, C together with
best patterns for them. number of input variables, %
of ON Pattern columns, % of OFF Pattern columns, %
of DC Pattern columns, % of F/F; Pattern columns, %
of Approximate ON Pattern columns, % of Approximate
OFF Pattern columns, % of Approximate DC Pattern
columns, % of Approximate F;/F; Pattern columns, cost
parameters, distance, number_of_bound_sets, and other.
Algorithm 3. Total Decomposition Strategy.

1. Put F to OPEN.
2. Take the easiest to realize function from OPEN.

Call it FT.

3. Using PAR]1 number of different sets A, B, C'
try Immediate Decompositions to F'T" in this order:
OR, AND, EXOR, Complex_Gates, Ashenhurst.

a) If the decomposition exists, execute it for F'T,

using stacks OPEN and DONE.

b) If there exist some close function Fg

(of distance smaller than DIST1) to F'T in DONE,

then call Reduction(FT, Fg, Reduct_Type_Oper),

to reduce function F'T to Fg.

c) If there exist a decomposition of function Fg,

of distance D152 from FT

then call Reduction(FT, Fg, Reduct_Type_Oper)

to reduce function F7T to Fg,

and execute decomposition of Fg.

4. Using PAR?2 number of different sets A, B, C|
try Basic Decompositions in this order:
Curtis (u = PAR3), PUB (u = PAR4).
5. If none of the above worked, and good weak patterns
have been found in the previous stages,
execute respective Weak Decompositions.
6. If OPEN = ¢ then return the SOLUTION
else go to 2.

VIII. NUMERICAL RESULTS AND CONCLUSION

Table 2 shows the number of 5/3 CLBs for various
strategies. Second line is number of levels. Number in
parentheses is the number of EXOR decompositions. For
comparison, CL.B count and not DFC values are given.
Table 3 shows the DFC-optimized solutions with their
times (SPARCstation 5).

sl s2 s3 s4 s5 s6
bw 27 27 27 27 27 27
i=5,0=28 1 1 1 1 1 1
bench 16 16 16 18 18| 16
i=6,0=8 2 2 2 2 2 2
fout 26 26 26 26 26| 26
i=6,0=10 2 2 2 2 2 2
f51m 9 9 15 12 13| 13
i=8,0=8 3 3 3 3 3 3
rd&4 11 11 12 12 12 11
i=8,0=4 3 3 3 3 3 3
testl 70 65 74 70 73| 73
i=8,0=10 |[4(5)| 4(4)| 4(7)| 4(4)| 4(7)|4(s6)
clip 38 29 48 32 40| 40
i=9,0=5 4(2) | 4(1)| 4(3) 31 4(2)[4(2)
alu2 23 21 25 44 38| 24
i=10,0=8 3 3 31 5(2)] 5(1) 3
b9 29 46 46 59 50| 35
i=16,0=5 4] 6(3)| 5(2)| 7(5)| 6(5) 4
duke2 235| 259 280| 360 292| 264
1=22,0=29 | 9(8) | 9(11) | 8(14) | 8(24) [8(13) [9(9)
misex2 31 32 38 42 45| 38
i=25,0=18 3 3 3 4 4 3

We introduced a new representation and a new general
decomposition approach for strongly unspecified multi-
output functions. Similarly, extensions for mv logic de-
composition have been done. This approach opens several
new research areas: input variable re-encoding problem to
simplify DDs; using new decompositions in machine learn-
ing; efficient solving of combinatorial problems (such as
graph coloring); bound set encoding and variable parti-
tioning. Although the preliminary results are very good,
we believe we will be able to further improve them with
more sophisticated bound set partitioning and encoding
algorithms. The method should be also compared with
other DFC-based approaches to ML that use SOPs, trees,
Curtis decompositions, and ESOPs [14].

REFERENCES

[1] R.L. Ashenhurst, “The Decomposition of Switching Func-
tions”, Proc. Int. Symp. of Th. of Switching, 1957.

[2] D. Bochmann, B. Steinbach, “Logikentwurf mit XBOOLE,”
Verlag Technik, Berlin, 1991.

3] R.E. Bryant, “Graph-Based Algorithms for Boolean Function
g
Manipulation,” Trans. on Comput., Vol. C-35, No. 8, pp.
667-691, 1986.

[4] R. Brayton and F. Somenzi, “An Exact minimizer for
Boolean Relations,” Proc. of ICCAD, pp. 316-320, 1989.

[6] M. J. Ciesielski, S. Yang, and M. Perkowski, “Multiple-
Valued Minimization Based on Graph Coloring,”
ICCD’89, pp. 262 - 265, October 1989.

Proc.

[6] H.A. Curtis, “A New Approach to the Design of Switching
Circuits,” Princeton, N.J., Van Nostrand, 1962.

(7]

(8]

(9]

10]

(11]

(12]

(13]

(14]

(18]

(16]

D.L. Dietmeyer, “Logic Design of Digital Systems,” Allyn
and Bacon, Boston, MA, 1971.

M. Fuyjita, Y. Kukimoto, R. Brayton, “BDD Minimization
by Truth Table Permutations,” IWLS ’95.

Y.T. Lai, K.R. Pan, M. Pedram, S. Vrudhula, “FGMap:
A Technology Mapping Algorithm for Look-up Table Type
FPGA Synthesis,” Proc. 30-th DAC, pp. 642-647, 1993.

T. Luba, J. Rybnik, “Algorithmic Approach to Discernibility
Function with Respect to Attributes and Object Reduction,”
Int. Workshop on Rough Sets, Poznan 1992.

Ch. Meinel, J. Bern, A. Slobodova, “Efficient OBDD-Based
Boolean Manipulation in CAD Beyond Current Limits,”
Proc. 32nd DAC, San Francisco 1995.

M. Perkowski, H. Uong, “Generalized Decomposition of
Incompletely Specified Multioutput, Multi-Valued Boolean
Functions,” Report, Dept. FElectr. Eng., PSU, unpublished,
1987.

M. Perkowski, J. Brown, “A Unified Approach to Designs
with Multiplexers and to the Decomposition of Boolean
Functions,” Proc. ASEE Ann. Conf., pp.1610-1619, 1988.

M. Perkowski, T. Ross, D. Gadd, J. A. Goldman, and
N. Song, “Application of ESOP Minimization in Machine
Learning and Knowledge Discovery,” This Workshop, Au-
gust 1995.

M. Perkowski, T. Luba, S. Grygiel, M. Kolsteren, R. Lisanke,
N. Iliev, P. Burkey, M. Burns, R. Malvi, C. Stanley, Z. Wang,
H. Wu, F. Yang, S. Zhou, and J. S. Zhang, “Unified Approach
to Functional Decompositions of Switching Functions,” PSU
Report, unpublished, July 1995.

W. Wan, and M. Perkowski, “A New Approach to the De-
composition of Incompletely Specified Multi-Output Func-
tion Based on Graph Coloring and Local Transformations
and Its Application to FPGA Mapping,” Proc. Furo-DAC,
pp. 230 - 235, 1992.

name in | out | cubes || DFC time
9sym 9 1 158 288 1.2
rd84 8 4 515 384 3.0
rd73 7 3 274 192 1.2
sa02 10 4 133 992 579.8
clip 9 5 271 1344 | 1972.8
5xpl 7 10 143 576 4.1
b12 15 9 72 544 | 7691.4
bw 5 28 97 864 0.5
duke2 22 29 406 4892 179.4
cc 21 22 96 768 3.6
cu 14 8 1150 448 2.7
misex2 | 25 18 101 992 10.2
c8 28 18 166 1120 10.0
alu2 10 6 315 2528 180.7

