APPLICATION OF ESOP MINIMIZATION IN MACHINE
LEARNING AND KNOWLEDGE DISCOVERY

Marek A. Perkowski
Dept. Electr. Engin.
Portland State University
P.O. Box 751
Portland, Oregon, 97207-0751

mperkows@ee.pdx.edu

Ning Song
Lattice Logic Corp.
1820 McCarthy Blvd.
Milpitas CA 95035

ning@lattice.com

Abstract— This paper presents a new application
of an Exclusive-Sum-Of-Products (ESOP) minimizer
EXORCISM-MV-2: to Machine Learning, and par-
ticularly, in Pattern Theory. An analysis of vari-
ous logic synthesis programs has been conducted at
Wright Laboratory for machine learning applications.
Creating a robust and efficient Boolean minimizer
for machine learning that would minimize a decom-
posed function cardinality (DFC) measure of functions
would help to solve practical problems in application
areas that are of interest to the Pattern Theory Group
- especially those problems that require strongly un-
specified multiple-valued-input functions with a large
number of variables. For many functions, the com-
plexity minimization of EXORCISM-MYV-2 is better
than that of Espresso. For small functions, they are
worse than those of the Curtis-like Decomposer. How-
ever, EXORCISM is much faster, can run on problems
with more variables, and significant DFC improve-
ments have also been found. We analyze the cases
when EXORCISM is worse than Espresso and propose
new improvements for strongly unspecified functions.

I. INTRODUCTION.

Recently, there has been an increasing interest in ap-
plying methods developed in design automation to other
fields (see DAC’94 and Euro-DAC’94 panel discussions).
Amazingly, the techniques developed in the last 15 years
by the design automation community have been so univer-
sal and powerful, that they are also increasingly used in

Tim Ross, Dave Gadd, Jeffrey A. Goldman

Wright-Laboratory
WL/AARA-3
2010 5th Street Bld 23

Wright-Patterson AFB, 45433-7001

tross@mbvlab.wpatb.af.mil

areas outside circuit design. For instance, they are now
used in automatic theorem proving, robotics, industrial
operations scheduling, stock market prediction, genetics
research, and many others. It is then quite probable, that
the design automation methods will lead to breakthroughs
in these other fields.

One of the sub-areas of design automation that can find
numerous external applications is logic synthesis. Unfor-
tunately, the potential of logic synthesis for external ap-
plications is still less appreciated (by both the CAD and
Machine Learning communities, and the general research
and industrial circles) than the potentials of placement,
routing, scheduling, simulation, and database techniques
of design automation.

Until very recently, the logic synthesis discipline for-
mulated efficient methods and algorithms to minimize and
optimize only the hardware of digital computers and other
digital circuits. This goal was achieved very successfully,
and the logic synthesis techniques developed in universi-
ties and industry in the last 15 years became one of the
sources of the success of Design Automation in creation of
such products as Intel’s Pentium microprocessor. In the
last few years, however, one can observe some increased
trend to apply these methods also in image processing,
machine learning, knowledge discovery, knowledge acqui-
sition, data-base optimization, Al, image coding, auto-
matic theorem proving and verification of software and
hardware [4, 15, 22, 7, 8, 9].

This paper is related to the use of an ESOP mini-
mizer in Machine Learning (ML) and Knowledge Dis-
covery in Databases (KDD) applications. We will ex-
amine the performance of the EXORCISM circuit min-
imizer on small binary functions comparing the results
with Espresso. References will be made to data on these



same test functions with C4.5 and function decomposi-
tion. The comparison will serve to highlight the strengths
and the shortcomings of all approaches. The goal of this
paper is not to go too deeply in algorithms, but rather
to demonstrate the applicability of logic synthesis, and
specifically EXOR-based synthesis, to KDD and ML. All
four algorithms share the common goal of a consistent,
minimal complexity solution, albeit different measures of
complexity. All four differ in their method to find it.

The paper is organized as follows.
will present briefly the basic concepts developed by the
Pattern Theory Group at Wright Lab (WL). Section 3
concentrates on DFC and its role. Section 4 will dis-
cuss specific requirements for logic minimizers in Machine
Learning applications. Section 5 outlines the applica-
tion of EXORCISM-MV-2 ESOP minimizer for machine
learning. Section 6 presents numerical results on learning
benchmarks. Section 7 briefly characterizes the machine
learning benchmarks of WL. Section 8 presents the way
to improve EXORCISM on very strongly unspecified func-
tions. Finally, section 9 concludes the paper and outlines
future areas of research.

In section 2 we

II. THE Basic RESEARCH IDEAs oF THE PTG.

The Pattern Theory Group (PTG) in the Avionics Di-
rectorate at Wright Laboratory develops new system-level
concepts for military applications, mostly based on im-
age processing and machine learning technologies. Since
1988, the PTG developed a radically new approach to
machine learning, where by “machine learning” we un-
derstand any method of teaching a computer to recognize
any kind of patterns. Specifically, we are examining Su-
pervised Classification Learning paradigms. The machine
learning technologies most influential in military applica-
tions until now have been the neural nets and the bayesian
methods. If successfully completed, the new approach of
PTG will allow both automatic learning of any kind of im-
ages, and automatic creation of algorithms. Interestingly,
in contrast to most of the well-known approaches, the ap-
proach of the PTG is based on logic synthesis methods:
the so-called Curtis Decomposition of Boolean functions
is applied here as the main component[18]. Many decom-
position ideas have been implemented in the program-
ming system FLASH (the Function Learning and Synthe-
sis Hotbed) developed by this group[20]. This system is a
Testbed for machine learning based on the logic synthe-
sis approach. The group also compares FLASH to other
logic optimizers and machine learning programs, (such as
Espresso and C4.5, respectively) from the point of view
of the robustness of learning[7, 8].

Simplifying, the main difference of the logic approach
and the previous approaches to machine learning is that
in these previous methods, the recognizing network had
some assumed structure which was “tuned” by the learn-
ing process (for instance, by decreasing and increasing

the numerical values of some coefficients). Thus, creating
a new structure is accomplished by setting some coeffi-
cients to zero. All “new” structures are in a sense “hid-
den” in the assumed mother-structure. Also the type of
an element, such as a formal neuron in Neural Nets, or a
polynomial in Abductory Inference Mechanism (AIM?) is
decided before the learning takes place.

In contrast, in the Curtis Decomposition approach,
there is no a priori assumption of structure of the learning
network, nor on the type of the elements. The elements
are arbitrary discrete mappings (functions) in the form of
a combinational network with universal gates. Both the
structure and the elements are calculated in the learn-
ing process, and this process is entirely based on finding
patterns in data.

The central concept of Pattern Theory is a “pattern.”
In Pattern Recognition and Knowledge Discovery the
problems with nice representations based on “features”
belong to a more general class of problems with restric-
tive “patterns.” Pattern finding is, therefore, a general-
ization and formalization of feature extraction. The goal
of the Pattern Theory is to support “automating” the
pattern finding process, and to construct a representa-
tion of a function based on examples; therefore, this is a
method for constructive induction. Furthermore, it con-
structs this representation by minimizing complexity as in
Occam-based learning. The Ashenhurst Function Decom-
position (AFD) method based on Curtis Decomposition
implemented in FLASH is unusual in that it learns both
the architecture of the combinational representation and
the component functions from the examples.

Induction is often modeled as the process of extrapo-
lating samples of a function. This extrapolation requires
both the samples and the “inductive bias.” The bias to-
wards low complexity, as in Occam’s Razor, is particu-
larly important. There is a strong theoretical basis for
Occam-based learning, see for example [2, 3]. Kolmogorov
complexity was developed specifically for induction [14],
however, it has been proven that its exact computation is
not tractable. There have been some tractable measures
of complexity used in actual implementations of Occam-
based learning, such as the Abductory Inference Mecha-
nism which uses polynomial networks and C4.5 [17] which
uses decision trees. However, the measures of complexity
used in these applications are relatively narrow, which
implies some compromise in the robustness of the learn-
ing; for example, neither of these methods would find the
parity function to have low complexity even though it is
highly patterned and can be easily computed. The chal-
lenge is to develop robust and tractable measures of com-
plexity.

Pattern Theory [18] treats robust minimal complex-
ity determination as the problem of finding a pattern.
Pattern theory uses Decomposed Function Cardinality
(DFC), proposed by Y. S. Abu-Mostafa as a general mea-

1 Trademark of AbTech Corp.



sure of complexity [1, p.128]. DFC is based on the car-
dinality of a function. After all, a function is a set of
ordered pairs and, as with any set, has a definite prop-
erty in its number of elements or cardinality. DFC is de-
fined as the sum of the cardinalities of the components of
a combinational representation of a function, when that
sum has been minimized. DFC is especially robust in the
sense that it reflects patterns of many different kinds. Its
robustness is supported by its relationship to more con-
ventional measures of complexity, including circuit size
complexity, time complexity, decision tree or diagram size
and Kolmogorov complexity. If a problem has low com-
plexity by any of these measures then it will also have a
low DFC [18, Chapter 4]. The PTG work has concen-
trated on functions with binary inputs, but the concept is
easily extended to continuous and multiple-valued func-
tions [21].

The decompositions are evaluated based on the sum of
the function cardinality of the decomposed partial blocks.
Of course, the real DFC of f is less than or equal to this
sum in any particular (usually approximate) realization.
The objective of the decomposition is to search through
partitions of input variables to find one that produces
the smallest total DFC. In other words, the “cost” of the
feature is measured in terms of DFC and that cost is min-
imized. Therefore, features are constructed to minimize
their computational complexity. The use of DFC as the
measure of complexity allows for robustness in the type
of feature that can be generated.

Let us observe that both in the Curtis decomposition
and the ESOP minimization approach of EXORCISM, we
look for certain patterns in data: in Curtis decomposition
these patterns are in columns of the map corresponding
to the cofactors of the bond set of variables [5]. The pat-
terns for ESOP minimization are based on certain rules
of Boolean Algebra[24].

Let us also observe that in both cases we minimize a
certain cost of the circuit. Traditionally in ESOP min-
imization one calculates the number of terms and the
number of literals. In our case, we calculated addition-
ally the total DFC as a sum of function cardinality of
all non-decomposable blocks (this is an upper bound ap-
proximation of the minimum DFC). For an arbitrary non-
decomposable block in Curtis Decomposition, the DFC of
the block is calculated as 2% where k is the number of in-
puts to the block. In “gate-based” minimizers such as
Espresso and EXORCISM it is then fair to assume that
a DFC of a decomposable gate (such as AND, OR or
EXOR) is equal to the total DFC of a circuit equivalent
to this gate, that is constructed from two-input gates.
The DFC of a four input AND gate, OR gate, or EXOR
gate is then 22 4+ 22 4 22 = 12, since such gates can be
decomposed to balanced trees of three two-input gates.

One variant of the AFD algorithm looks at all partitions
at a given level and 40 random partitions one level deeper.
Essentially, this is a 2-ply look ahead search where we only

explore 40 grand children. It chooses a particular parti-
tion over another based on the function’s DFC. Exorcism
finds an ESOP, Espresso finds a SOP, and C4.5 finds a low
complexity decision tree. Minimizing complexity provides
good generalization performance [8, 15, 18].

I1I. SuMMARY oF DFC MEASUREMENTS AND
APPLICATIONS

A number of experiments have been conducted to assess
the generality of DFC across different problem domains
(see [18, 8, 19]. The DFC of over 800 non-randomly gen-
erated functions was measured, including many classes
of functions (numeric, symbolic, chaotic, string-based,
graph-based, images and files). Roughly 98 percent of the
non-randomly generated functions had low DFC (versus
less than 1 percent for random functions). The 2 per-
cent that did not decompose were the more complex of
the non-randomly generated functions rather than some
class of low complexity that AFD could not deal with.
It is important to note that when AFD says the DFC is
low, which it did some 800 times, it also provides an algo-
rithm (or a description of the pattern or features found).
AFD found the classical algorithms for a number of func-
tions. Each of these algorithms are represented in a com-
binational form that includes intermediate states. These
intermediate states are features in the sense of concen-
trating information.

There is also high correlation between DFC and a per-
son’s judgment of the strength of a pattern in an image,
the degree of compression by a data compression program,
and the Lyapunov exponents of logistic functions. This
shows DFC’s ability to reflect patterns within each do-
main, despite their different nature.

In learning experiments, AFD has been compared to
back-propagation trained Neural Networks (NN), AIM,
C4.5, SMOG [15] and standard logic minimization tools.
These comparisons used a broad range of function types
(from the 800 mentioned above). For each of the test func-
tions, AFD performed near the best of any method, while
the other methods generalized well on some functions but
not on others.

In the context of ML, when one talks about “noise,” it
is assumed that he is referring to the situation where you
have some training data classified correctly as a “1” or a
“0” but then “noise” flips that bit to the incorrect entry.
Another situation is that the value of some minterm is or
becomes unknown - a “don’t care”. This would be referred
to as “unknown” in the ML community. ML techniques
can be used to restore noisy images [4]. Of course, we do
not know which pixels (or feature values) are “noisy” - so
we treat those that are most suspicious as don’t cares.

The more robust generalization performance of AFD,
including dealing with noise and unknown data, is a reflec-
tion of its robust measure of complexity, DFC. It is also an
indication that the useful inductive bias of these various



standard methods results from their parsimonious tenden-
cies rather than their particular representation schemes
(be they thresholded weighted sums, polynomials, deci-
sion trees or Boolean operators).

IV. TowarDs IMPROVED APPROACHES TO LoGIC
MINIMIZERS FOR MACHINE LEARNING

Although the AFD approach of FLASH gives very ro-
bust results, it is slow, which essentially restricts its prac-
ticality to 20 or even less, variables. It is, therefore, im-
portant, to be able to compare the FLASH decomposi-
tional logic approach to other logic approaches that use
the same DFC measure, but introduce some restricted
bias resulting from the assumed network’s structure. Such
approaches are then faster and can be used for larger vari-
able functions. In this respect, the well-known circuit
minimizer Espresso and the standard machine-learning
program C4.5 were tested together with EXORCISM.
These programs have the following structure/gate-type
biases: Espresso assumes a two-level AND-OR network,
EXORCISM assumes a two-level AND-EXOR network,
C4.5 assumes an ordered tree. (The input variables can
be multiple-valued).

The questions arise:

e How much of the network’s simplicity is lost by as-
suming these structures?

e How much is gained in the speed of the program with
respect to a bias-free decomposer? Is this speedup
worth an increased DFC and thus a more limited
extrapolation capability?

o Is the method with a biased structure still robust
enough for practical applications?

Other important question that must be faced with while
developing improved minimizers for machine learning ap-
plications is the following:

e What are the reasons that machine learning using
logic synthesis is not exactly the same as circuit de-
sign using logic synthesis?

This question is very important practically. Improving
the performance of the FLASH system orders of magni-
tude without sacrificing much of its robustness (DFC) is
required for making it useful for such important military
applications as High Resolution Radar, for example.

The data (switching functions) used in learning and al-
gorithm design applications by the PT group are arbitrary
switching functions. Thus, the standard and generally
applicable minimization procedures of “logic synthesis’
can be applied. An extremely important observation is
that these functions have quite different properties than
the data taken from industrial companies on which the
programs are tested in the “logic synthesis” community

(MCNC benchmarks). In theory, the algorithm should
work well on any type of data. However, since all practical
network minimization problems are NP-hard, all practical
algorithms, by necessity, are heuristic in nature. Thus,
they are very dependent on the type of data. Taking
into account the data characteristics (such as closeness to
unate Boolean functions) was, in principle, the main rea-
son of the commercial success of two-level logic minimizers
in circuit-design applications.

What is it that distinguishes the machine learning data
from the circuit design data? Our preliminary answer is
the following:

1. ML problems have an extremely high percent of don’t
cares (Don’t cares are combination of argument value
for which the function value is not specified.) The
missing data can be represented as don’t cares.

2. Arguments (variables) in ML problems are naturally
multiple-valued, or continuous.

3. ML problems involve missing values in inputs (miss-
ing fields) and conflicting data for discrete as well as
continuous fields.

V. ESOP MINIMIZATION FOR MACHINE LEARNING

In the past, EXORCISM-mv-2 was tested very success-
fully on industrial circuits that have up to 80% of the
values as don’t cares [24]. Comparisons with EXMIN
[23] and MINT [13] demonstrates that EXORCISM either
finds the best solution, or finds one that is nearly the best
one of the three. EXMIN does not allow for don’t cares so
it is of little use to machine learning, and MINT is slower
than EXORCISM. Its approach to handling don’t cares
is very similar to the older variant of EXORCISM. One
can then assume that the following critical remarks about
EXORCISM apply to all current ESOP minimizers.

Testing EXORCISM on “machine learning” applica-
tions, we found that its performance on learning bench-
marks is still unsatisfactory on larger examples. Analyz-
ing these cases, we came to the conclusion, that the in-
ferior behavior of the approach is caused predominantly
by the extremely high percent of don’t cares that is typi-
cal for machine learning benchmarks, and can be as high
as 99.99%. Espresso beats EXORCISM in cases where
functions had a high percentage of don’t cares.

However, EXORCISM is able to find a pattern of EXOR
(parity) or similar functions, even when it is corrupted by
“unknowns”. This is a difficult problem in machine learn-
ing. To explain this case on an example, let us assume
that we recognize the even/odd parity function. For a
completely specified function and a relatively small (less
than 16) number of variables, the AFD minimizer finds
the exact minimal result (EXOR of input variables) quite
fast. When we add some “unknowingness” to this func-
tion by replacing some ones and zeros with “don’t cares”,



we should still be able to find the EXOR of inputs so-
lution, since the underlying principle function did not
change, only its pattern has been corrupted, “hidden”
by the unknown values. This seemed to work, but when
the percentage of don’t cares increases and the number
of variables increases, the average error increases and the
method yields poor results. First it ceases to recognize the
“EXOR of variables” pattern, and second, on 96-variable
functions, it finds no EXOR’s at all and looses track of
any patterns (so would a human on this case). As seen in
tests, EXORCISM deals better with these kinds of prob-
lems, but is still unable to solve the 96-variable problem.

Another positive property of EXORCISM is simultane-
ous classification of patterns to more than two categories
(you want not only to distinguish a “friend from foe”
airplane, but you want to learn its orientation, speed,
etc.). In terms of logic synthesis, this property corre-
sponds to concurrent minimization of switching functions
with many outputs. Currently FLASH operates on single-
output functions, but EXORCISM works with multi-
output functions. There are many decomposers that de-
compose multi-output functions, but all of them have
been designed for circuit design. One needs a minimizer
for strongly unspecified, multi-valued input, multi-
output functions. EXORCISM (as well as Espresso)
both satisfy this requirement, but they both can be im-
proved for strongly unspecified functions.

What is also missing in both “industrial circuit” and
“machine learning” decomposing systems, is the decom-
position of multiple-valued input, multiple-valued-
output functions.

Why is this important? In theory, which is also the ap-
proach of the PT group, any multiple-valued variable can
be encoded by a vector of binary variables. What hap-
pens, however, in learning situations is, that the learn-
ing system inferences rules that depend on the encod-
ing of multiple-valued variables with binary variables. To
give an example, if the system would infer from a large
set of data that people who live close to power lines de-
velop cancer, we would perhaps treat such “invention”
with due care. If the system would, however, infer that
people whose third bit of encoded distance from the line
is 1 develop cancer, we would treat such inference as a
“coding-related” artifact. Therefore, the best approach
to the learning system would be not to use coding at all,
but perform the inference on the variables that are natural
for any given feature; e.g. either binary (man, woman),
or multiple-valued (distance in yards). EXORCISM has
this property.

VI. NUMERICAL RESULTS

This section compares the results of Espresso and Exor-
cism and gives a partial description of functions from the
“Learning Benchmark.” In the first table, we show the
On-Set, Don’t-Care Set, the number of terms, the num-

ber of literals, the calculated DFC, the CPU time, and
the average number of errors for a learning experiment
for every function with Espresso. The second table is the
same categories for EXORCISM.

The average error on the individual functions were cal-
culated as follows. First, each method was given a random
set of data to train on ranging from 25 to 250 out of a total
of 256 possible cares. Once the method was trained, the
entire 256 cases were tested and the number of differences
were recorded as errors. This procedure was repeated
10 times for a given sample training size in intervals of
25. Thus, the total number of runs for each function was
100 of varying sample size. None of the learning was in-
cremental. All of the runs were independent. For each
function, the average number of errors for the entire run
was recorded in the table.

Espresso generalizes as well as C4.5 - a main stream ML
method[7]. Tt, however, does have a weakness when the
function to be learned is most naturally represented with
EXORs. This points out to the complementary nature
of these two programs in the search of low DFC solu-
tions. Lower combinational size complexity (DFC, gate
count, Decision Tree node count, Decision Diagram size,
etc) provides better generalization [15, 6, 19, 22]. There is
greater than 0.9 correlation between complexity reduction
and generalization performance for both SMOG (RODD
size) and FLASH (DFC) [22]. In the two comprehensive
tables, we provide some results for functions that do not
have a low complexity SOP representation but do have a
low complexity ESOP for total functions, such as parity
and palindrome.

VII. CHARACTERIZATION OF BENCHMARK FUNCTIONS

We thought it may be interesting to describe some ex-
amples of benchmarks that we used in addition to MCNC
benchmarks?. Some of the benchmark names from the
tables are separated into several groups listed and briefly
explained below.

LEARNINGS8_SET. This set of functions is intended
to be representative of a wide variety of functions for test-
ing machine learning systems.

RANDOM. There are 3 randomly generated func-
tions, generated with FLASH with seeds 1,2, and 3: rnd{,
rnd2, and rnd3.

RANDOM MINORITY ELEMENTS. There are
5 functions generated with a fixed number of minority el-
ements placed at random. The seed for all was 1. rnd_m1,
rnd_-md, rnd_m10, rnd_m25, rnd_m50.

BOOLEAN EXPRESSIONS. These are functions
intended to represent database concepts for knowledge
discovery[7]. kddI: (x1 x3) + x27; kdd?2: (x1 x2’ x3)(x4 +
x6"); kdd3: NOT (x1 OR x2) + (x1’ x4 x6); kdd{: x4’;

2More “machine learning benchmarks” are available from U.C.

Irvine. (http://www.ics.uci.edu/AI/ML/MLDBRepository.html)



Function | ON | DC | terms | literals | DFC | time | average | | Function | ON | DC | terms | literals | DFC | time | average |
error error
addo 120 0 15 64 252 0.15 19.86 addo 120 0 15 68 268 0.61 58.91
add2 128 0 16 68 268 0.23 28.6 add2 128 0 5 10 36 0.18 59.35
add4 128 0 2 4 12 0.1 0.8 add4 128 0 2 2 4 0.14 59.38
ch15f0 88 0 12 60 236 0.12 30.02 ch15f0 88 0 9 37 156 0.24 40.07
ch17610 64 0 2 6 20 0.1 1.4 <ch176f0 64 0 2 4 12 0.08 28.58
ch177{0 128 0 2 4 12 0.11 0 <ch177{0 128 0 2 2 4 0.14 59.34
ch22f0 48 0 6 30 116 0.13 16.01 ch22f0 48 0 6 30 116 0.1 22.25
<ch30f0 64 0 7 32 124 0.11 17.06 ch3010 64 0 7 32 124 0.12 29.39
ch47f0 52 0 9 48 188 0.11 24.54 ch47{0 52 0 7 34 132 0.13 23.48
ch52f4 50 0 18 108 428 0.16 26.87 ch52f4 50 0 15 93 392 0.84 22.04
ch7013 24 0 5 28 108 0.08 12.36 ch7013 24 0 5 28 108 0.09 9.82
ch74f1 39 0 10 58 228 0.11 21.71 ch74f1 39 0 10 58 248 0.2 18.72
ch83f2 38 0 17 115 456 0.12 30.41 ch83f2 38 0 13 kkd 304 0.32 16.65
ch8f0 224 0 7 16 60 0.28 12.08 ch8f0 224 0 7 28 124 0.36 103.88
contains Contains
4_ones 70 0 70 560 2236 0.22 63.94 4_ones 70 0 40 224 968 8.23 32.65
greater_than 120 0 15 64 252 0.15 20.26 greater_than 120 0 15 72 284 0.61 57.83
intervall 58 0 16 96 380 0.24 29.12 intervall 58 0 16 98 388 1.44 26.9
interval2 128 0 22 110 436 0.46 35.8 interval2 128 0 19 88 308 1.62 59.16
kddi1 160 0 2 3 8 0.12 0.96 kddi1 160 0 2 4 12 0.18 73.8
kdd10 120 0 8 28 108 0.26 17.16 kdd1o0 120 0 4 10 40 0.16 55.28
kdd2 24 0 2 8 28 0.08 12.86 kdd2 24 0 2 8 28 0.07 18.05
kdd3 80 0 2 5 16 0.1 3.52 kdd3 80 0 2 6 20 0.09 33.48
kdd4 128 0 1 1 0 0.11 0 kdd4 128 0 1 1 0 0.14 58.9
kdds 106 0 4 13 48 0.12 8.44 kdds 106 0 6 27 108 0.16 50.25
kdde 240 0 4 4 12 0.19 2.64 kdde 240 0 2 4 12 0.31 111.3
kdd7 175 0 4 8 28 0.15 5.69 kdd7 175 0 15 64 268 0.54 82.68
kdds 64 0 2 6 20 0.09 5.64 kdds 64 0 2 4 12 0.08 32.25
kdd9o 64 0 8 36 140 0.16 16.54 kdd9o 64 0 4 12 44 0.11 28.09
majority majority
gate 93 0 56 280 1116 0.4 31.68 gate 93 0 34 189 732 5.73 45.52
modulus2 43 15 10 45 160 0.12 14.73 modulus?2 43 15 9 52 140 0.13 18.96
mux8 128 0 4 12 44 0.1 8.49 mux8 128 0 4 12 44 0.15 59.92
pal 16 0 16 128 508 0.11 32.2 pal 16 0 16 72 268 0.43 16.82
pal_dbl pal_dbl
output 160 0 29 151 600 0.31 45.91 output 160 0 22 92 412 2.14 74.45
pal_output 118 0 46 291 1156 0.48 60.43 pal_output 118 0 37 206 820 16.32 55.1
parity 128 0 128 1024 4092 0.42 82.6 parity 128 0 8 8 36 1.38 11.1
remainder2 88 15 23 137 528 0.18 29.57 remainder2 88 15 19 108 416 3.86 36.89
rnd_m1 1 0 1 8 28 0.06 104.51 rnd_ml 1 0 1 8 28 0.06 102
rnd_m10 10 0 9 71 280 0.09 25.8 rnd_m10 10 0 9 62 268 0.14 11.68
rod_m25 25 0 20 154 612 0.12 37.27 tnd_m25 25 0 18 122 448 0.53 13.52
rnd_m5 5 0 5 40 156 0.09 36.62 rnd_m35 5 0 5 38 148 0.07 26.75
rnd_m50 50 0 34 250 996 0.16 52.12 rnd_m50 50 0 27 169 680 3.12 22.97
rndl 122 0 50 324 1320 0.41 62.91 rnd1l 122 0 39 212 812 7.3 56.77
rnd2 124 0 47 292 1164 0.39 61.35 rnd2 124 0 34 179 684 9.82 57.37
rnd3 134 0 49 306 1240 0.5 59.56 rnd3 134 0 39 213 812 8.63 63.05
substrl 142 0 6 18 68 0.13 12.8 substrl 142 0 14 69 272 0.4 66.63
substr2 79 0 5 20 76 0.1 14.93 substr2 79 0 6 28 108 0.18 37.6
subtractionl 104 0 34 200 796 0.28 47.26 subtractionl 104 0 20 98 404 2.52 47.32
subtraction3 128 0 2 4 12 0.11 0.8 subtraction3 128 0 2 2 4 0.14 59.38
TABLE I TABLE II

EsPRESSO ON MACHINE LEARNING BENCHMARKS.

kdd5:  (x1 x2 x4")4+(x3 x5’ x7 x8)+(x1 x2 x5 x6
x8)+(x3" x57); kdd6: x2 + x4 + x6 + x8; kdd7 (x1 x2)
+ (x3 x4) + (x5 x6) + (x7 x8); kdd8: (x1 x2’) XOR (x1
x5); kdd9: (x2 XOR x4)(x1” XOR (x5 x7 x8)); kdd10: (x1
—x4) XOR ( NOT (x7 x8) )(x2 + x3).

multiplezer, used in [12], this is a 2-address bit, 4-data
bit multiplexer with two vacuous variables (x0 and x1) to
make 8 inputs.

STRING FUNCTIONS. Palindrome acceptor, pal,
palindrome output, paloutput, randomly generated 128
bits then mirror imaged them to create the outputs of
an 8 variable function. Doubly palindromed output,
pal_dbl_output, as above but generated 64 bits and flipped
them twice. 2 interval acceptors from FLASH, intervall
accepts strings with 3 or fewer intervals (i.e. substrings
of all zeros or all ones). interval? accepts strings with 4
or fewer intervals 2 sub-string detectors. substri accepts
strings with the sub-string ”101”. subsir?2 accepts strings
with the sub-string ”1100”.

IMAGES. chXfY means character X from font Y of
the Borland font set. All were generated with the Pascal
program charfn.exe. ch8f0 - kind of a flat plus sign, ch15f0
- an Aztex looking design, ch22f0 - horizontal bar,

EXORCISM oN MACHINE LEARNING BENCHMARKS.

ch30f0 - solid isosceles triangle, ch47f0 - slash, ch176f0 -
every other column of a checker board, ch177f0 - checker
board, ch74{f1 - triplex J, ch83f2 - small S (thin strokes),
ch70f3 - sans serif F, chH2f] - gothic 4.

SYMMETRIC FUNCTIONS. parity.
tains_{_ones, (f(x)=1 iff the string x has 4 ones).
Jority_gate, f(x)=1 iff x has more 1’s than 0’s.

NUMERICAL FUNCTIONS. «addition, addo0,
add?, addj - outputs bits of a 4 bit adder, 0 is the most
significant bit. greater_than: f(x1,x2)=1 iff x1 > x2. sub-
traction: subtractionl, subtraction3 - output bits 1 and
3 of the absolute value of a 4-bit difference. 0 is most
significant bit. modulus?2, output bit 2 of 4-bit modulus
0 is the most significant bit. remainder?2, output bit 2 of
4-bit remainder 0 is the most significant bit.

con-
ma-

VIII. PRoPOSED IMPROVEMENTS TOo EXORCISM
FOR STRONGLY UNSPECIFIED FUNCTIONS.

In data with very many don’t cares, EXORCISM is
unable to find the best pattern. As an example, let us
consider function f; defined as follows: ON = {0X10,
1X01}, OFF = {0X01, 1111, 1010}. When cube 0X10 is
extended to 0X1X, and cube 1X01 is extended to 1X0X,



these two extended cubes can be correctly exorlinked.
However, when there are many don’t cares surrounding
an ON-cube, the program does not know which of them
to select. (FEztension cube of cube Ck is cube Cg with
any subset of literals removed - including none and all ).
For instance, if cube 1X01 is extended to 1X0X and cube
0X10 is extended to 0XXO0, the minimization is more diffi-
cult. If DC-cubes 0011 and 0111 were merged to DC-cube
0X11, then this DC-cube can be exorlinked with 0XXO0 to
cubes 0XXX and 0X01. Next 0X01 and 1X0X can be re-
shaped to 0X00 and XX0X. Finally it can be found using
disjoint sharp operation that 0X00 is included in DC set,
so the final result is XX0X and 0XXX.

We separate cubes used in synthesis into ON cubes,
ON/DC cubes and OFF/DC-cubes. ON cube includes
only true minterms. It is then a cube Cj such that Cj
# ON = ¢. ON/DC cube includes true minterms and
don’t cares. It is then a cube C} such that C; N OFF =
¢. OFF/DC cube includes false minterms, and possibly
don’t cares. # denotes sharp operation.

In this section we propose a new method of combining
Espresso and EXORCISM into a single program, called
EXORCISM_DC.

The algorithm given below, using Espresso, creates
larger ON, DC and ON/DC cubes to be used by EXOR-
CISM. It iterates for several starting points and finally,
when no improvement is possible, it returns the best of
all ESOP and SOP solutions. Thus, its result is never
worse than that of either Espresso or EXORCISM.

EXORCISM_DC
Given: ON, OFF.
1. DC := Espresso[ 1 # (ON U OFF ].
2. SOP := Espresso(ON, OFF).
3. ON := Random Disjoint(Espresso(ON)).
4. ESOP := Random Disjoint(SOP).
ON/DC := ON U Random_Choice(DC,ON,ESOP).
ESOP_new := Exorcism(ON/DC,DC).
Remove from ESOP_new all OFF/DC cubes.
if cost(ESOP_new) < cost(ESOP)
then ESOP := ESOP_new.
. [ON/DC, DC] := Random_Reshape[ON, DC, ESOP].
. Iterate k; times steps 4 - 5.
. If improvement in steps 4 - 6 then go to 4.
. Iterate ko times steps 3 - 7.
. If improvement in steps 3 - 8 then go to 3.
0. If cost(SOP) < cost(ESOP)
then return [ ”SOP”, SOP, cost(SOP) ].
else return [ "ESOP”, ESOP, cost(ESOP) ].

= O 00 =1 Oy Ut

Above, Espresso is the well-known U.C. Berkeley mini-
mizer that can be called with several data formats, includ-
ing completely specified format with set ON, and incom-
pletely specified format with sets ON and OFF. Ezorcism
is our minimizer that can be called with any ESOP (in-
cluding disjoint ON) as the first argument and any set DC
as the second argument. Random_Disjoint is a program

that takes a set of cubes and transforms it to random
set of disjoint cubes. Every time this program is called
it produces different set of disjoint cubes which is func-
tionally equivalent to its argument. Random_Choice takes
a random subset of cubes from DC that are expected to
be exorlinked with cubes from ESOP. Random_Reshape
reshapes each set ON and DC separately.

IX. ConcLUsIONS AND FUTURE RESEARCH.

This work proved that EXORCISM performs well as a
machine learning program on functions with a small and
a medium percentage of don’t cares. The data support
the conclusion that EXORCISM compares favorably to
Espresso in general and fills in some of its weaknesses.
While EXORCISM in its present form does not minimize
partial functions well, we outlined some proposed changes
and have further developed the algorithm in [16]. We can
then conclude that EXORCISM has potential as a viable
ML method that would especially complement existing
ML techniques.

Our goal is the creation of a practical “machine learn-
ing” algorithm, which means at the minimum, 30 binary
input variables but more likely, about 100 multiple-valued
variables. As presented above, in machine learning, with
the increase in the number of input variables there is only
a small increase in the number of both positive and neg-
ative samples, but a dramatic increase in the number of
don’t cares. For instance, it is reasonable to expect that
for a function of 100 variables there will not be more than
10,000 cares.

The program must be robust across various classes of
data from the learning benchmarks. Combining SOP and
ESOP minimizers, like Espresso and EXORCISM, into a
single program will create a program that would be su-
perior to both of them. We believe that this analysis
pinpoints strengths and weaknesses of all analyzed ap-
proaches: AFD is clearly superior on small functions but
it is not yet tractable on larger ones; Espresso has trou-
ble with “counting” type of dependencies such as par-
ity and arithmetic circuits but handles don’t cares rela-
tively well; EXORCISM is superior to Espresso and C4.5
on some functions, in spite of the uncorrected problem
of very strongly unspecified functions. C4.5; the defacto
standard machine learning tool, can handle more special
cases of data, such as noise and missing input values.

The observation that functions in Machine Learning are
very strongly unspecified and thus none of the known ap-
proaches work well, makes the requirements on the mini-
mization programs in circuit design and machine learning
very different, a point that has not yet been sufficiently
observed and appreciated. This fact calls for the de-
velopment of totally new approaches to synthe-
sis, and is a very positive opportunity for people working
in the area of “Reed-Muller logic.” Instead of adapting
the algorithms created for circuit design, new algorithms



should be created from scratch, and from the very begin-
ning they should take into account the problem specifics.
Moreover, since these algorithms run only in software,
EXOR gates are as good as any other and there is no
problem of its realization or speed.

Missing values, and especially noise, are still not ade-
quately part of the circuit design world but are a reality
in KDD and ML. It will be necessary to find solutions to
these issues if we are to use logic synthesis tools in these
fields.

We believe that machine learning will become a new
and fruitful area for logic synthesis research, and an ap-
plication territory for logic minimizers. There exist big
challenges, but also great wins for successful programs.
The first research results that appreciate this synergy and
try to link the two worlds of the “machine learning com-
munity” and the “design automation community” already
start to appear: new decision-diagram approaches were
presented in 1994 by Ron Kohavi [10, 11], and Arlindo
Oliveira [15]. Tt is our hope that the participants of this
Workshop will also partake in this challenge, develop new
theories and software, and will test them on the machine
learning benchmarks. It is quite possible, that problems
with an unusually high percent of don’t cares will also
occur in circuit design, when more sophisticated VHDL
compilers start to appear.

REFERENCES

[1] Y.S. Abu-Mostafa, “Complexity in Information Theory”,
Springer-Verlag, New York, 150pp, ISBN 0-387-96600-5, 1988.

[2] A.R. Barron, and R.L. Barron, “Statistical Learning Net-
works: A Unifying View”, Symposium on the Interface:
Statistics and Computing Science, 1988.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth,
“Occam’s Razor”, Information Processing Letters, Oct. 1987,
pp. 377-380.

[4] M.A. Breen, T.D. Ross, M.J. Noviskey, and M.L. Axtell, “Pat-
tern Theoretic Image Restoration,” Proc. SPIE’98 Nonlinear
Image Processing, Intern. Soc. for Optical Engineering, Jan-
uary 1993.

[5] H.A. Curtis, “A New Approach to the Design of Switching
Circuits”, Princeton, N.J., Van Nostrand, 1962.

[6] J. A. Goldman, “Machine Learning: A Comparative Study
of Pattern Theory and C4.5,” Wright Laboratory, USAF,
Technical Report, WL-TR-94-1102, WL/AART, WPAFB, OH
45433-6543, August 1994.

[7] J. A. Goldman and M. L. Axtell, “On Using Logic Synthe-
sis for Supervised Classification Learning,” 7th IEEE Interna-
ttonal Conference on Tools with Artificial Intelligence, IEEE,
November 1995.

[8] J.A. Goldman, T.D. Ross, and D.A. Gadd, “Pattern Theo-
retic Learning”, AAAI Spring Symposium Series on System-
atic Methods of Scientific Discovery, AAAI, March 1995.

[9] S. J. Hong, “R-MINI: A Heuristic Algorithm for Generating
Minimal Rules from Examples”, Pacific Rim International
Conference on Artificial Intelligence, PRICAI, 1994.

[10] R. Kohavi, and B. Frasca, “Useful Feature Subsets and Rough
Set Reducts”, Third International Workshop on Rough Sets
and Soft Computing, 1994.

. Kohavi, ottom-up Induction o 1vious Read-Once De-

11] R. Kohavi, “B Inducti f Oblivi Read-O D
cision Diagrams,” In European Conference on Machine Learn-
ing, 1994.

[12] J. Koza, “Genetic Programming,” MIT Press, 1992.

[13] T. Kozlowski, E.L. Dagless, J.M. Saul, “An Enhanced Algo-
rithm for the Minimization of Exclusive-Or Sum-Of-Products
for Incompletely Specified Functions”, private information,
1995.

[14] M. Li and P. M. B. Vitanyi, “Inductive Reasoning and Kol-
mogorov Complexity”, Journal of Computer and System Sci-
ences, Vol. 44, pp. 343-384, 1992.

[15] A.L. de Oliveira, “Inductive Learning by Selection of Min-
imal Complexity Representations,” Ph.D. Thesis, University
of California at Berkeley, Dec. 1994.

[16] M. A. Perkowski, T. Ross, D. Gadd, J. A. Goldman, and N.
Song, “Application of ESOP Minimization in Machine Learn-
ing and Knowledge Discovery,” Report, Department of Elec-
trical Engineering, Portland State University, 1995.

[17] J. R. Quinlan, “C4.5: Programs for Machine Learning”, Mor-
gan Kaufmann, 1993, Palo Alto, Ca.

[18] T. D. Ross, M.J. Noviskey, T.N. Taylor, D.A. Gadd, “Pattern
Theory: An Engineering Paradigm for Algorithm Design,” Fi-
nal Technical Report WL-TR-91-1060, Wright Laboratories,
USAF, WL/AART/WPAFB, OH 45433-6543, August 1991.

[19] T.D. Ross, M.L. Axtell, M.J. Noviskey, “Logic Minimization as
a Robust Pattern Finder”, International Workshop on Logic
Synthesis, May 1993.

[20] T.D. Ross, M.J. Noviskey, M.L. Axtell, D.A. Gadd, “Flash
user’s guide,” Technical report, Wright Laboratory, USAF,
WL/AART, WPAFB, OH 45433-6543, December 1993.

[21] T.D. Ross, J.A. Goldman, D.A. Gadd, M.J. Noviskey, and
M.L. Axtell, “On the Decomposition of Real-Valued Func-
tions”, “Third International Workshop on Post-Binary ULSI
Systems n affiliation with the Twenty-Fourth International
Symposium on Multiple- Valued Logic”, 1994.

[22] T.D. Ross, “Variable Partition Search for Function De-
composition,” Technical report, Wright Laboratory, USAF,

WL/AARA-3, WPAFB, OH 45433-6543, November 1994.

[23] T. Sasao, “Exmin2: A Simplification Algorithm for Exclusive-
Or Sum-of-Products Expressions for Multiple-Valued-Input
Two-Valued-Output Functions”, IEEE Trans. on CAD., Vol.
12, No. 5, pp. 621-632, 1993.

[24] N. Song, and M.A. Perkowski, “Minimization of Exclusive
Sum of Products Expressions for Multi-Output Multiple-
Valued Input Switching Functions,” accepted to IEEE Trans.
on CAD.



