
A New Approach to the Decomposition of Incompletely Specified Multi-Output
Functions Based on Graph Coloring and Local Transformations

and Its Application to FPGA Mapping

Wei Wan* and Marek A. Perkowski

Department of Electrical Engineering, Portland State University,

Abstract

The paper presents a new approach to the decomposi-
tion of incompletely specified Boolean functions and its
application to LUT-based FPGA mapping. Three methods
were developed: the fast Graph Coloring to pe?form a
quasi-optimum don’ t care assignment, the Variable Parti-
tioning to quicklyjind the “best” partitions, and the Local
Transformation to tran~orm a nondecomposable function
into several decomposable ones. The presented methods
perform global optindzation of the input function, while
most of the other existing methods recursively perform
only local optimization on some kinds of network-like
graphs and few of them can handle incompletely specijied
functions. A short description of a FPGA mapping pro-
gram (TUDE) and an evaluation of its results are also
provided.

1. Introduction

Decomposition is a general approach for simplifying
large problems in logic synthesis applications. Decompo-
sition involves breaking a large logic function, which is
difficult to implement, into several smaller ones, which
can be implemented with ease. In most existing logic syn-
thesis systems, the don’t care (DC) outputs are mistreated
as O’s (or 1‘s) during the process of constructing the
Truth-tables (or Boolean equations). This leads to results
which are far away from the optimum ones. How to
decompose an incompletely specified function and how to
assign the DCS as O or 1 to simplify the result are the main
topics of the paper. As a direct application, the decompo-
sition method is applied to the FPGA mapping, especially
to Xilinx’s Lookup-Table (LUT) based FPGA architec-
tures [1].

The LUT-based FPGA consists of a matrix of
Configurable Logic Blocks (CLBS). A CLB can be pro-
grammed to function as one LUT with up to five inputs, or
two LUTS with up to four inputs each and under the res-
triction that three out of these four inputs must be the
same, A K-input (K = 5 for Xilinx architecture) LUT is a

* This research was suppted in part by the NSF Grant MIP-9100772.

Portland, OR 97207

digital memory with K adjress lines and a one-bit output.
This memory contains 2K bits and is capable of imple-

menting any Boolean function of up to K input variables.

2. Current research on FPGA mapping
versus our approach

Technology mapping is a process of transforming a
technology independent Boolean network into a
technology-based circuit. For LUT-based FPGAs, the
teehnology-based circuit is a network of basic logic blocks
which can implement any Boolean function of up to five
input variables. The traditional library-based technology
mapping techniques can not be used because the size of
the library increases exponentially with the number of
inputs of the components in the library. Several technol-
ogy mapping approaches for LUT-based FPGAs have
been reported.

MIS-PGA(new) [2] applies a variety of decomposition
methods, such as cube packing, Roth-Karp decomposition,

AND-OR decomposition, Cofactoring decomposition,
decomp-d and kernel extraction decomposition, to decom-
pose the input network into a feasible network. Then, it
uses a maxjlow algorithm to generate all possible super-
nodes and solves the binate covering problem to minimize
the cardinality of the supernode set which covers the
entire network. Finally, by solving the w.mum match-
ing problem, itmerges all possible nodes into the FG
mode CLBS. Hydra [3] uses an approach similar to MLS-
PGA, but puts more attention on the FG mode CLB.
Chortle-c@ [4] divides the DAG into a forest of trees.
Then, it carries out technology mapping on eaeh tree to
find the minimum cost circuit. Several techniques, such as
hvo_level decomposition, multi-level decomposition,
exploiting reconvergent paths and replication of logic at

fanout nodes, are used in the program. X-map [5] converts

Blif format into an if-then-else DAG, then, goes through a
marking and a reduction process to minimize the network.
VISMAP [6] partitions the input network into several sub-
graphs of reasonable size and goes through a pre-
processing and a w.n processing step to determine the
invisible edges to reduce each subgraph.

230
0-8186-2780-8/’92 $3.00@ 1992 IEEE

The FPGA mapping approaches mentioned above con-

sist, in general, of four major steps graph construction,
decomposition, reduction and packing. In the graph con-
struction step, a special kind of network-like graph or a set
of subgraphs is created. The graph (or network) can be
feasible or infeasible. Feasible means that the number of
inputs of each node is limited. For Xilinx architecture,
this input number is up to five. In the decomposition step,
a variety of decomposition methods are appIied to
transform an infeasible network into a feasible one. Dur-
ing the process, the decomposition algorithms try to
minimize the number of nodes in the decomposed network
as well as the number of input variables per node. In the
Reduction step, some covering algorithms are applied to
try to find a set of minimum number of CLBS which cov-
ers the entire network. In the Packing step, according to a
specific FPGA architecture, some algorithms are used to
merge the possible nodes to further decrease the area.
Most of the operations used in the four steps above are
local operations. The dynamic programming algorithm
allows the local operations to traverse across the network.
The program is recursively invoked until a satisfactory
result is miched.

We developed a FPGA mapping technique which
applies global operations and has the following asset.x

●

●

●

●

●

The input data to the program is an incompletely
specified Boolean function described by sets of ON and
OFF cubes. It is the property of this method that the
more DC cubes exist, the more efficient the method
becomes.

The decomposition methods are specifically adapted to
the LUT-based FPGA architectures.

A Variable Partitioning method is used to quickly find
the “best” partitions, avoiding an exhaustive test of all
possible decomposition charts.

A fast Graph Coloring method is used to perform a
quasi-optimum don’t care assignment to minimize the
column multiplicity.

A Local Tmnsformation method is used to make the
decomposition possible for all kinds of Boolean func-
tions.

3. Basic definitions

Decomposition means breaking a large logic block into
several rclativel y smaller ones.

A decomposition chart [7] is simitar to a Karnaugh
map with the only difference being that the column and
row indexes of a decomposition chart are in straight

binary order, while those of a Karnaugh map are in Gray
code order. Figure 2b shows an example of a decomposi-
tion chart. The corresponding Karnaugh map is shown in
Figure 2a. Because there is no essentiaI difference
between a Karnaugh map and a decomposition chart, Kar-
naugh map is used instead of decomposition chart later in
the paper.

The bond set is a set of variables forming the columns

of the decomposition chart. The free set is a set of vari-
ables forming the rows of the decomposition chart. In
Figure 2b, (c, d, e} is a bond set, {a, b) is a free set.

The column multiplicity, denoted by v(BIA), is the
number of different columns in a decomposition chart. In
@BIA), B stands for the free set, A stands for thebond set.
For example, in Figure 2b, v(BIA) = v(ablcdc) = 3.

If the horizontally corresponding cells of two columns
in the decomposition chart are (0,0), (1,1), (O,x), (1,x),
(x,O), (x,1) or (x,x), these two cells are compatible. (x
stands for DC output.) If all corresponding cells in two
columns are compatible, these two columns are compati-
ble. Otherwise, they are incompatible. l[n Figure 2b
columns 1 and 6 are compatible, while columns 5 and 6
are incompatible. The formula [8] to test the compatibility
of two columns (columns i and j) is:

~ {ON(i) ●0FF(j)} = $

{ON(j) ●0FF(i)) =$
=> i-th and j-th column compatible

$ stands for empty set. The formula states that if the Inter-
section of the ON set of column i and the OFF set of
column j is empty, and the Intersection of the ON set of
column j and the OFF set of column i is empty as well,
these two columns are compatible. Otherwise, they are
incompatible.

The incompatibility graph is a graph whlich illustrates
the relationship among the columns of a decomposition
chart. Each node in the graph represents a column in the
decomposition chart. If two columns are incompatible,
there is an edge between the corresponding nodes. If they
are compatible, there is no edge. Figure 2d shows an
incompatibility graph corresponding to the decomposition
chart in Figure 2b. In Figure 2d, the number in each node
(denoted by a circle) is the column number. The letter
beside the circle is the color assigned to the node (column)
after Graph Coloring.

4. How to perform decompositions?

In this section, the generalized Boolean decomposition
of incompletely specified single and multi-output func-
tions are presented. The basic ideas follow [7] [9] [10]
and the general approach based on Graph Coloring is pat-
terned after [8] [11].

4.1. Decomposition of the incompletely specified
single output functions

Curtis had described the decomposition of completely
specified functions in [9]. Curtis proved the fundamental
theorem

v(B IA) S 2t <=> f(A, B)= F[$, (A), I+*(A), . . . , &.(A), B]

Which states that if the column multiplicity v(BJA) is less
than or equal to 2k, then the function f can be decomposed
into the F form as given above. The graph representation

of this theorem is shown in Figure 1.

231

A
{

{ I f

B

‘C==qJ
Figure 1. Curtis decomposition.

From Figure 1, we observe that after decomposition,
the big block f is broken into several smaller subblocks

01, $2, @ ~d F. If we restrict the numWr Of vfiables
in the bond set A to be less than or equal to five,

01,.42, ..., ~ could be implemented by CLBS of the Xilinx
chip. If we further decompose subblock F until the input
variables of each subblocks are less than or equal to five,
the function f would be totally realized by Xilinx chip(s).

The generalization of the Ashenhurst decomposition
for incompletely specified functions based on proper
Graph Coloring was presented in [8]. Perkowski used
Graph Coloring to minimize the column multiplicity and
used multiplexed to realize the circuit.

The essential problem of the decomposition of incom-
pletely specified function is how to assign DC outputs as O
or 1 to minimize the column multiplicity. Because the
number of colors in a properly colored incompatibility
graph is same as the number of different columns (column
multiplicity) in a decomposition chart [8], we can transfer
the problem of finding the smallest column multiplicity
into one of performing Graph Coloring to find the smallest
number of colors. We use the following criterion:

Set an integer of value (n), which is the expected number
of output variables from the bond set and is less than the
variable number of the bond set. If the column multipli-
cityy is equal to or less than 2k, and k is less than or equal
to n, the decomposition is succes.@l (or the function is
decomposable) for that bond set under the expected value
of n. Otherwise, the function is nondecomposable for
that bond set under the expected value of n.

After a successful decomposition, the input variable
number of each subfunction (decomposed blocks, like
$1, @z ~ and Fin Figure 1) is decreased. This will be
illustrated with an example.

Figure 2a shows a Karnaugh map of the function f with
DC outputs. We intend to decompose the function f into
several subfunctions with the number of input variables

for each subfunction no more than four. For example, L,
M and N as shown in Figure 2c. According to the rules
presented above, the incompatibility graph is created as
shown in Figure 2d. After Graph Coloring, thrm colors
(therefore, v =3) which group the nodes as A = {O, 1,3,
6}, B = {2, 5, 7} and C = {4} are obtained. The columns
with the same color are combined horizontally by the
rules: (0,0) + O, (O, x) + O, (x, O) + O, (1, 1) + 1, (1, x)
+ 1, (x, 1) + 1 and (x, x) + x. For example, columns O,

1, 3 and 6 in Figure 2a are combined and replaced by a
new vector [1, 1, 1,0] as shown in Figure 3a.

cde Cde

0)

f

T
a

Nf

: Lx
e

My
(c)

~&B

@

2 6A

5
A3 ~ B

c
(d)

Figure 2. Decomposition example.

In the above example, we have chosen the variables a
and b as the free set and variables c, d and e as the bond
set. This partition resulted in a successful decomposition
in the sense that the column multiplicity is less than or
equal to three. In Figure 2c, x and y are the encoded out-
puts of the bond set. We developed a Variable Partition
method to quickly find the “best” partitions. The detailed
procedure can be found in [12] [13].

There are many methods [14] to produce the decom-
psed blocks (blocks L, M and N in Figure 2c). The
authors developed a Bond Set Encoding algorithm which
aims at simplifying the block N. Block L and M will be
implemented by CLBS, it doesn’t matter then how com-
plex these two blocks are as long as the number of their
input variables is no more than four. (we assume that the
CLBS have up to four inputs for this example.) The
encoding algorithm assigns adjacent codes (Gray code) to
similar columns. This will make block N have more large
cubes. The encoding results are shown in Figure 3b, 3C
and 3d. The detailed procedure can be found in [12] [13].

de

(a) Don’t care assignment

Figure 3.

dew ,1 ~1 ,0

k

Coooo
10
(b)Block!Lx

c
0

Final results.

c
f

(d) Block N

Two variables can encode up to four columns (22= 4).
There are only three columns that need to be encoded in
our example. We MI the remaining column (column 10 in
Figure 3d) with don’t cares (DC coh.unn). The newly
introduced DC column will further simplify the block N.
This example illustrates that even if the input function is
completely specified, our algorithm may introduce DCS in
the middle of the process. These are very useful for me
minimization of later stages.

232

4.2. Decomposition of the incompletely specified
multi-output functions

The above techniques can be easily expanded to mr.dti-
output functions with only a minor difference in perform-
ing the compatibility test of the columns. For a multi-
output function:

Two columns are compatible if and only if no & exists in
alt bitwise Intersections of the binary output vectors from
the corresponding cells of the two columns. (A cell has
an m-bit vector for a function with m outputs.)

This statement is consistent with that for the single out-

put case. Figure 4 shows an example of a multi-output
function (two outputs). We observe that columns O and 3
are compatible, while columns 1 and 3 are incompatible.
All other operations for multi-output functions are similar
to those of the single output ones.

a~m~f
Column O1326 754

Figure 4. A multi-output function.

5. Two basic speedup approaches

There are three fundamental problems in the efficient
implementation of a FPGA mapping program which is

based on the Boolean decomposition of incompletely
specified functions: (1) How to chose the bond set to
minimize the column multiplicity? (2) How to minimize
the column multiplicity for a given bond set? and (3) How
to transform a nondccomposable function into several
decomposable ones? The solution for the first one can be
found in [12] [13]. The last two will be presented in more
detaif here.

5.1. Graph Coloring

Graph Coloring is a procedure in which every two
nodes linked by an edge are assigned with different colors.
Minimum Graph Coloring is one with the minimum
number of colors in the final colored graph. There has
been a substantial research on Graph Coloring in order to
find algorithms for a quasi-optimum solution with the
fastest possible speed.

Here the authors present a fast Graph Coloring method
which is catled the “Color Znj’luence Method”. The main
idea of this method is to evaluate the influence of the color
assignment to a node over the entire graph, and chose the
color which results in a minimum influence. The
m“nimum injluence means that the color assignment to a
node will produce a minimum increase in the number of
color-in-bar’s. The color-in-bar’s (restrictions) are the

colors that tJe Node cannot be assigned with, which are—. —.
denoted by A, B..., AB,AC, ... as in Figure 5. After each
color assignment to a node, the complexity of the graph is
decreased. This is a greedy method with gllobal evalua-
tion. The next example is used to illustrate this method.

Figure 5a shows the graph to be colored. Start from the
node with the most number of edges, that is node 2, assign

color A to it. This color assignment means that nodes 1,3,
5 and 6 cannot be assigned with color A. Denote this res-

triction on those nodes by color-in-bar ~’s, and remove alf
corresponding edges as shown in Figure 5b. Next, color
the node with the most number of color-in-bar’s. If there
is more than one node with the same number of color-in-

bar’s, color the node with the most number of edges. If
there is still more than one node, evaluate the influence of
the color assignment on each node, and assign the node
with a color which results in a minimum influence. If a
node can be assigned with more than one color, the
evaluation of the influence of each color assignment is
also required. According to the rules stated above, nodes
5 and 6 are selected because they have the same number
of color-in-bar’s and the same number of edges. Assign-——
ing color B to node 6 will result in a restriction AB on
node 1 and a restriction ~~ on node 5. While assigning--—
color B to node 5_will result in a restriction ~!@ on node 6

and a restjction B on node 4. Because one AB restriction
and one B restriction result in less influence than two fi–
restrictions, assigning a color to node 5 produces less
influence than assigning a color to node 6. Node 5 is
colored with the color B as shown in Figure 5c. The same
way, assign color C to node 6 as shown in Figure 5d,

color B to node 1 as shown in Figure 5e. Nodes 3 and 4
are in the same condition. If node 3 is assigned with color
B, node 4 can be assigned with color A or C. The final

color assignment is shown in Figure 5f.

Figure 5. Graph Coloring examplle.

In summary: first, color the node with the most number
of color-in-bar’s. If there is more than one node, color the
node with the most number of edges. If there is still more
than one node, evaluate the influence and color a node
with a color which results in a minimum influence. If a
node can be assigned with more than one color, the
evaluation of the influence of each color a~signment is
also required.

The above algorithm has been incorporated into a pro-
gram, named COLOR, and was run on a networked SUN
4/370 (a 12.5 mips machine). The program Iwas tested on

graphs with different number of nodes (N = 100+ 1000)
and different edge percentages (P = 10% + 90%). The
maximum number of edges in a graph is N(N - 1)/2. The

233

edge percentage is the percentage of this maximum
number of edges. Edges in the graph were randomly gen-
erated. Figure 6 shows the results.

T

4
1IY30

900 .

800

700
Imo.
300.
400.
300.
mo .
100

0 100 ‘Z303C04~503010701J 81X1 w 1030

Figure 6. Graph Coloring results.

T is the running time of the program measured by the
time command of the UNIX system. The units of T are
seconds. By statistic analysis, it is found that the time (T)
is proportional to the number of nodes (N) in a polynomial
form T cc N*”5. Therefore, our algorithm executes in poly-
nomial time (not in exponential time). For smalt graphs,
we are able to verify that the algorithm gives the minimum
solutions. Therefore we hope that it will give good results
for larger graphs as well. But we were not able to verify
this claim since we were not able to access an exact
minimal optimizer.

5.2. Local Transformation

The known decomposition methods are passive in the
sense that they only test whether a function is decompos-
able or not. If it is, the decomposition is carried out. But
what do we do if the function is not decomposable?

The authors developed a decomposition approach
which is called the Local Transformation Method. This
method can transform a nondecomposable function into
several decomposable ones. The basic idea of this method
is to modify some columns in the original Karnaugh map
to make them identical to some other columns in order to
decrease the column multiplicity. Figure 7 shows an
example.

cde
a

1[q q
.
—

aaa
f

(a) @) (c)

Figure 7. Local Transformation.

Figure 7a shows the original Karnaugh map (f) with a
column multiplicity of four. First, the output value of the
cube -10-1 and -1101 of the original Karnaugh map in
Figure 7a are complemented, which leads to a Karnaugh
map (f.d) with a column multiplicity of two as shown in
Figure 7b. Next, a compensation is made. Another Kar-
naugh map (fhg) is created with the positions correspond-

ing to the complemented cubes in the original Karnaugh
map set to 1‘s and the others set to O’s as shown in Figure
7c. Finally, the EXOR operation of f~ and fhg produces
the original function. That is:

‘I%e presented method transforms a nondecomposable

function (in sense of the column multiplicity less than or
equal to two) into two decomposable functions (with the
column multiplicities of both equal to two). The detailed
procedure can be found in [12] [13].

6. Program TRADE and its evaluations

The techniques presented in the previous sections have
been incorporated into a program named TRADE
(Tflnsformation and Decomposition) which reads in an
input file written in Espresso (type fr) format and outputs
the result in Bhf format with the input variables of each
node no more than five. Cube Calculus is used in TRADE
for all operations. We ran TRADE on a networked SUN
4/370 (a 12.5 mips machine). The results are listed in
Table 1.

Table 1. Comparison table.

I
TRADE hlIS-PGA(phase1) MIS-PGA(new)

E c L T c L T c T

alu2 22 3 12.2 122 6 42.6 109 773.8

9sym 6 3 4,9 7 3 15.2 7 339.7

9svmml 6 3 4.7 7 3 9.9 7 127.2
)

rd73 5 2 3.7 8 2 4.4 6 24.0

rdS4 8 3 11.6 13 3 9.8 10 73.7

@l. 9 3 2.3 23 4 5.9 17 14.4

5xpl 11 2 4.3 21 2 3.5 18 22.4

z4ml 4 2 2.0 10 2 2.1 5 5.0

sao2 27 3 13.8 45 5 9.5 28 41.9
bw* 27 1 0.3 28 1 8.3 28 17.3

root 21 3 9.8

bench* 2 1.0
‘fouP : 2 4.3

testl * 66 3 21.1

t-m 166 5 81.6

t-lo* 152 5 64.6

r-30* 125 5 50.6

t-50* 83 5 32.8
t- 70* 7614 18.1 I I I
t-$xy

I 4613 10.2 I

* Incompletely specified functioo.

All results are verified by the “verify” command of
MLS-fl system. The results listed under MLS-PGA(phase
1) are from [15]. The Esults listed under MIS-PGA(new)
are from [2]. Both of them were run on the DEC 5500 (a
28 mips machine). The~ is no delay information pro-

234

vialed in [2]. The examples “root”, “bench, “fout” and
“testl” are taken from the Espresso package, and all of
them are incompletely specifted functions except “root”.
“t-00 is obtained by changing all DC outputs in “testl” to
OFF outputs, therefore, it is a completely specitied func-
tion. “t-IO” is obtairted by randomly changing 10 percent
of the OFF outputs in “t-00” to DC outputs. The same
way, “t-20 to “t-90 is obtained by randomly changing 20
to 90 percent of the OFF outputs in “t-00” to DC outputs,
respectively. Because we were not able to access the
MtS_PGA(phase 1) and MIS_PGA(new) programs, we
couldn’t make comparisons of the incompletely specified
functions. In Table 1, E is the mme of the example. C is
the number of CLBS in the find mapped circuit. T is the
running time of the program measured by the time com-
mand of the UNIX system. The units of T are seconds. L
is the longest path (number of CLBS) that a signal must go
from the primary input to the primary output in the final
mapped circuit.

From Table 1, we observe that if the DC outputs are
maintained, the number of CLBS can be greatly decreased.
However, even for the completely specified functions, our
program found better results than MIS-PGA(phase 1) and
MIS-PGA(new) with respect to both the delay and area
minimizations.

7. Conclusions and future work

A new general approach to the decomposition of
incompletely specified functions and its application to the
FPGA mapping have been presented. Variable Partition-
ing, Graph Coloring and Local Transformation are the
outstanding features of this approach. One of the main
advantages of this approach is that it is intended for
incompletely specified functions, thus giving for such
functions much better results than the other existing
methods. Compared with the existing FPGA mapping
approach, our method is totally new. We developed a fast
Graph Coloring method for the don’t care assignment,
therefore, the program can accept an incompletely
specified function and perform a quasi-optimum assign-
ment to the unspecified part of the function. We
developed a high quality heuristic method to chose the
“best” partitions, avoiding an exhaustive test of all possi-
ble decomposition charts which is impractical when there
are many input variables in the input function. We intro-
duced the Local Transformation concept, which can
transform a nondecomposable function into several
decomposable ones, making it possible to apply decompo-
sition method to the FPGA mapping.

The program has been successfully verified and ben-
chmarked on severrd MCNC examples and some incom-
pletely specified functions. It is still possible to further
improve both its speed and quality of the generated solu-
tions. Currently we are working with two-dimensional
Karnaugh maps. A possible extension would be to
develop algorithms to operate on three-dimensional or
multi-dimensional Karnaugh maps.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Xilinx, Inc., Xilinx Progrmable Gate Array Data Book,

1992.

R. Murgai, N. Shenoy, R. K. Brayton, and A,, Shangiovanni-
Vincentelli, “Improved Logic Synthesis Algorithms for Table

Look Up Architectures,” lCCAD 1991, pp. 564-567, Santa
Chq CA, NOV. 1991.

D. File, J. C. Yang, F. Maitho~ and G. D. Micheli, ‘ ‘Technol-
ogy Mapping for a Two-Output RAM-based Field-

Programmable Gate Array,” European DAC, pp. 534-538,

Feb. 1991.

R. Francis, J. Rose, and Z. Vrsnesic, “Chortle-crE Fast Tech-
nology Mapping for Lookup Table-Baaed FPGAs,” Proc.

28th ACMtIEEE DAC, pp. 227-233, San Francisco, CA, June

1991.

K. Karplus, “Xmap A Technology Mapper for Table-lookup
Field-Programmable Gate Arrays,” Proc. 28th ACMIIEEE
DAC, pp. 240-243, San Francisco, CA, June 1991.

N. S. WOO, “A Heuristic Method for FPGA Technology
Mapping Based on the Edge Visibility,” Proc. 28th
ACM/IEEE DAC, pp. 248-251, San Francisco, CA, June
1991.

R. L. Ashenhurs~ “The Decomposition of Switching Func-

tions,” Proc. Int’1 Symp. Theory of Switching Function, pp.
74-116, 1959.

M. A. Perkowski and J. E. Brown, “A Unified Approach to
Designs Implemented with Multiplexer and To the Decom-

position of Boolean Functions,” Proc. ASEE Annual Conf,

pp. 1610-1618, 1988.

H. A. Curtis, “Generalized Tree Circuit-The Basic Buildkg

Block of an Extended Decomposition Theory, ” J. ACM, vol.

10, pp. 562-581, 1963. ‘

10.J. P. Roth and R. M. Karp, “Minimization over Boolean

Graphs,” IBM J. of Research and Development, vol. 6, no. 2,

pp. 227-238, April, 1962.

11.L. B. Nguyen, M. A. Perkowski, and N. B. Goldstein, “PAL-

MINI - Fast Boolean Minimizer for Personal Computers,”
Proc. 24th ACMIIEEE DAC., pp. 615-621, 19:B7.

12. W. Wan, “A New Approach to the Decomposition of Incom-

pletely Specified Functions Based on Graph Coloring and

Local Transformation and Its Application [to FPGA Map-
ping,” Thesis, Portland State University, Po&n4 OR, May
1992.

13. W. Wan and M. A. Perkowski, “TRADE: A Lookup Table

FPGA Mapper Based on a Generalized Boolean Decomposi-
tion,” EE Dept. Report Portland State University, Portland,
OR, April 1992.

14. S. Yang and M. J. Ciesielski, “Optimum and Suboptimum
Algorithms for Input Encoding and Its Relationship to Logic
Minimization,” IEEE Trans. CAD, vol. 10, no. 1, pp. 9-12,
Jan. 1991.

15.R. Murgai, N. Shenoy, R. K. Brayton, and A. Shangiovanni-
Vincentelli, “Performance Directed Synthesis for Table Look
Up Programmable Gate Arrays,” ICCAD 19!)1, pp. 572-575,

Santa Clar~ CA, Nov. 1991.

235

