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Abstract— This paper presents a short description of the high level and logic synthesis
stages in the digital design automation system DIADES. High level design, namely data path
synthesis and control unit synthesis start from a parallel program-graph, the form of descrip-
tion that includes both the control-flow and the data-flow graph. While the data path is
allocated and scheduled, the control unit is designed to be composed of either a micropro-
grammed units or Finite State Machines. The FSMs are minimized in two dimensions (states
and inputs), assigned and realized in logic. Several logic synthesis procedures, respective to

various design styles and methodologies, can be used to design combinational parts of state

machines, microprogrammed units and data path logic. !

[. INTRODUCTION

The VLSI technology with which modern digital systems are designed has ad-
vanced at such a tremendous pace within the past few years that the engineer is
being outstripped of his ability to design complex state-of-the-art systems. Ini-
tially, various CAD tools (circuit analysis, logic minimization, layout, etc.) were
made available to aid the designer in concurring such increasingly more difficult
design tasks. Technology has now reached a plateau, however, that calls for the
realization of design automation systems in which high-level synthesis is integrated
with logic synthesis.

The main objective of this paper is to present one way in which such integra-
tion can be achieved. We would also like to present the new, exciting practical
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opportunities for CAD given by theoretical research in some adjacent research ar-
eas (microprogramming, scheduling, Reed Muller Forms, spectral meth-
ods). The DIADES design automation system includes four design stages: system
level design, high-level design, logic synthesis and physical design. The first one,
as well as the entire system and the example of its application are discussed in the
companion paper [22]. In this paper, we will, therefore, concentrate only on the
high-level and logic synthesis in DIADES. The High-Level Synthesis in DIADES
includes two stages: Data Path Synthesis and Control Unit Design.

II. DATA PATH SYNTHESIS

The DIADES data path generator, IMPLEM, assumes that there are no resource
restrictions. The descriptive program graph (p-graph) in language GRAPHSS
is, therefore, mapped to a hardware structure in the abstract netlist language
STRUCT, exactly as it is written in ADL language [12, 13, 14], or as it results
from the previous high-level p-graph transformations [15]. It also does not try
to increase the concurrency of operations. The designer, however, can do this
manually by modifying his description.

The new version of DIADES includes a scheduling tool. After the descriptive
format has been converted to p-graph format, the operations in the graph are
scheduled for execution in specific control steps. The scheduling tool tries to
make use of resources and increase the concurrency of the p-graph. The p-graph
is analyzed and the order of execution of operations in it is determined. Those
operations that can be executed at the same time are identified. If the resources
are constrained then the maximum concurrency is not possible and some trade-
offs are investigated. The Scheduler looks for the best sequence of operations,
resulting in the shortest overall control program.

The DIADES Scheduler takes a global approach. A program is divided into
blocks of straight-line code separated by control points. The control points in-
clude if-then-else and while statements. While the local scheduling looks only at
single blocks of code (so called linear programs), the global scheduler can move
operations from one block to other blocks. The DIADES Scheduler first constructs
an operation/data dependency graph with the help of data synchronization state-
ments contained in the high-level program. Then a classical state minimization
technique [21, 25, 16] is used to determine the Mazimum Compatible Groups of
Operations. The heuristic rules are applied to limit the number of compatible
groups as well as their size. The next step uses more heuristic rules to develop a
tree of possible schedules. The tree is then searched using classical tree searching



methods to determine the optimal schedule. We are currently investigating the
heuristic rules to determine which of them give the best results. The output of the
Scheduler, as the output of other High-Level Transformers, is still in the p-graph
notation. All nodes of the p-graph are now assigned to the specific control steps
that satisfy some constraints.

The current Allocator of DIADES does not do intelligent allocation. It rather
allocates variables to registers and detects only few patters of other units such as
adders. When necessary, multiplexers are used to implement the communication
channels between the units. The improved Allocator version includes a sophisti-
cated allocation ability. After scheduling, DTADES assigns variables to registers
and operations to specific functional units. A lifetime analysis is done on the
p-graph variables. The Variable Partitioner program selects the best mapping
of variables to registers. Another partitioning algorithm, Operation Partitioner,
maps the operations to the functional units. The other objective is to minimize
the cost of multiplexers that connect register outputs to functional unit inputs.

After allocation, the design process splits into two separate processes. The data
path unit is generated in program IMPLEM and then in MGEN. Specification of
detailed connections between the elements is created. The output of IMPLEM is in
STRUCT. This format is based on the p-graph. The functional units, registers, and
input /output ports are represented by nodes, while the connections are represented
by arrows. The STRUCT description is detalized by the program MGEN, which
means that abstract descriptions of structural blocks are replaced with lower level
descriptions of blocks and their connections. The output format is in netlist format
called M-language (TM SCS Systems). For instance, the STRUCT description
specifies the "abstract block” BLOCKI - COUNTER modulo 5 with loading input
A, and clock CL. The equivalent M-language description will specify all flip-flops
and NAND gates of this counter and how they are connected, with an accuracy
to each wire and gate input.

III. CONTROL UNIT SYNTHESIS

Two design styles are used in DIADES to design the control unit: the Micropro-
grammed Units [32, 8], and the Finite State Machines (FSMs) [6, 25, 4, 5, 11, 16,
26]. Both of them are designed starting from (parallel or serial) program graphs
in the language GRAPHS88 [6], the main internal data representation language in
DIADES.

The Microprogrammed Unit Synthesizer, MICUS, generates first SIMC (Sym-

bolic Intermediate MicroCode) language description for retargetability. Microin-



Figure 1: The block diagram of the FSM Synthesizer

struction compaction and optimization are necessary for efficient microcode. To
translate SIMC further into object microcode a microassembler is used. Ulti-
mately, a .TT formatted truth table of Control Memory for logic minimization
is generated. Until now, a simple scheme to generate single-way branching verti-
cal microcode was implemented, but parallel microprogrammed /nanoprogrammed
scheme (Baba) with multi-way branching, loop counters, stacks and address arith-
metic is under implementation.

The block diagram of the FSM Synthesizer is presented on Fig. 1. The p-graph
includes the control-flow graph (cf-graph) and some data path specification. The
cf-graph can either be mapped to a network of FSMs or microprogrammed units,
or converted to a single FSM or microprogrammed unit.

High Level Program Graph Transformations can be optionally executed (see
[15, 32, 24]). They serve to optimize the description, investigate area/speed trade-
offs, and also aid in don’t care generation from invariants [23]. The state machines
generated in the well-known design automation systems are either completely spec-
ified or (rarely) have few don’t cares. They do not have all of the don’t cares of
transitions and outputs that could be generated from the knowledge of the system
being designed. We introduced, therefore, a method of generating don’t cares in
FSMs from their high level specifications. The method generates many more don’t
cares than other methods using constraints that exist on the values of predicate
signals and come to the control unit from the data path. For some design examples,
our invariant analysis method evaluates the invariants and finds combinations of
predicate values (predicates are the signals from the data path to the control unit)
that have constrained values for some of the control unit states. Such invariants
are then used to replace the corresponding next-state transitions in the control
unit’s state table with the don’t care transitions. This is beneficial because a table
composed of a large number of don’t cares facilitates state minimization, state
assignment, and logic minimization [26, 6].

Conversion/decomposition. One of approaches to design the control unit is a
conversion of parallel cf-graphs to equivalent sequential graphs and next state ma-
chines, assuming their synchronous interpretation [6]. We use an algorithm that
reduces the number of internal states generated. This problem is not automati-
cally solved in the existing systems as well. The conversion of a parallel cf-graph
to a sequential cf-graph can be used for the verification of the former [6, 26]. Some
other methods for the verification of such programs are in [24]. In the general case,



however, the ADL programmer is responsible for avoiding all deadlocks, variable
conflicts, and other undesired phenomena characteristic to parallel programs. Var-
ious methods can be used to realize parallel cf-graphs as sequential circuits. The
conventional FSM methods, however, such as minimization, assignment, and real-
ization of excitation functions, can only be applied when the parallel cf-graph has
either been converted to an equivalent sequential cf-graph or has been decom-
posed to a sequential cf-graph. The cf-graphs are then converted to FSMs and
FSM-based design procedures are followed. Program FGEN generates non-disjoint
formats of FSMs: .KISS transitions format of the well-known Kiss program, .STAB
format of state tables, and .LISS serial cf-graph format for compatibility with some
control unit tools under design. All those formats are nondisjoint, which means
that cubes can be overlapping. Conversion from nondisjoint to disjoint fromat is
done by program FDISC.

Two-dimensional state minimization is done by program FMINI. Since we can
describe or generate an FSM with many don’t cares, we are able to investigate some
new design methodologies that have not yet been proposed. The minimization of
the number of internal states of an incompletely specified FSM, for example, is a
well known task but it has not yet been incorporated in the comprehensive design
automation systems. We have found it to be useful in some applications. Moreover,
this approach can be extended for the minimization of the number of input symbols
[25]. Input minimization and state minimization are iterated until no further state
joining is possible. We implemented two efficient programs for state minimization.
One of them is used for completely specified machines and uses the well known
algorithm of Ullman/Hopcroft. The other one, for incompletely specified machines,
solves the covering/closure problem [16, 25]. Such a problem is the generalization
of the well-known covering problem. The method of two-dimesional minimization
of FSM, applied in our system generates an FSM with the combinational input
encoder [25]. As any other combinational logic, this encoder is minimized with
any of the existing in DTADES logic synthesizers.

Mealy/Moore Transformations. Since we want the user to have some decisions
regarding trade-offs between speed and area, as well as shape of the FSMs, we give
him additional tools to transform the machines (FTRAN). Each Mealy machine
can be converted to an equivalent Moore machine. Similarly, each Moore machine
can be converted to an equivalent Moore machine [19].

State Assignment. There are several algorithms for state assignment in DIADES,
included in program FASS. Some of them make design with output decoder pos-
sible. In order to solve the dilemma between time of design and the quality of



Figure 2: The logic design subsystem of DIADES

the design better, we give the designer several algorithms again, so he can use
some of them for exact optimization of small machines, and another one for large
ones [26, 4, 5, 11]. One of the algorithms is rule-based, one is based on quadratic
assignment and one on graph embedding to a hypercube. The last one was used
for machines with more than 100 states, inputs and outputs.

FEvaluation. To evaluate the variants of the design, several evaluation functions
are used that do some approximate measurements on the resultant data of the
minimizers as truth tables, netlists or logic equations. It is interesting to observe
how much each of the stages contributes to area minimization, as well the symbiosis
and the contradiction of the various minimizers.

IV. LOGIC SYNTHESIS

A logic design component exists in any of the comprehensive design automation
systems, although in some of them (U.C. Berkeley, IBM) it is more developed
than in the others. It was the DIADES assumption from the very beginning to
include various tools for logic design. Therefore, the TANT design, multi-level
networks and Ashenhurst decomposition were used, even in the earliest versions of
the system, together with various heuristic and optimal PLA minimizers [9, 10, 11,
12, 13, 14]. The logic design tools have been modified many times, improved, and
replaced in the past as the system was growing and crossing the Atlantic ocean.

The logic design subsystem of the current version of DIADES is shown in Fig.
2. Its inputs, coming from the control unit and data path design subsystems, are
truth tables (.TT format), logic equations (.EQN format) and M-language netlists
composed of only logic gates.

From the point of view of the entire DIADES system the logic design subsystem
performs the following functions:

1. Logic minimization. Various logic minimization algorithms are used that
minimize two-, three-, and multi- level networks from various kinds of gates,
independently on the circuit’s technology applied at the next stages.

2. Decomposition and partitioning of logic. Since logic minimization al-
gorithms, especially those that attempt to find the exact minimum solutions,
can be used only for a limited number of inputs/outputs/terms, various means
are used in DIADES to partitionate input logic to functions of smaller dimen-
sions. Another method is to partitionate the logic (array of cubes or netlist)



according to some heuristic graph theoretic and other criteria.

3. Linking various descriptions. Pieces of logic description can come from
control unit design, state machines embedded in data path, data path, or glue
logic. They need to be linked together, and possibly redesigned, to improve
area cost, speed, testability, or other criteria.

4. Format changes. Interfacing various formats, to make our tools mutually
compatible, to make them compatible to outside tools (U.C. Berkeley, U.
Washington), and to allow for redesign.

5. Redesign.  To improve logic descriptions by redesigning linked /partitio-
ned /macrogenerated descriptions using other tools.

6. Technology mapping. To map to the CMOS library cells used for the
given technology (SCS).

Truth tables (arrays of cubes) are used as inputs and outputs to programs for
PLA minimization. Currently Espresso from U.C. Berkeley is used, together with
PalMini [7], Umini [1], and KUAI-Exact [31, 23]. The last program permits to de-
sign PLAs with input and output decoders, and will use new input pairing scheme,
where primary inputs can be shared between the two-input, four-output decoders
and three-input, eight-output decoders. The decomposition program Decomp uses
truth tables as input and generates decomposed truth tables [20]. We use both
Ashenhurst and generalized (Sasao’s like) decomposition, that we generalized for
the case of multi-output functions with don’t cares. State assignment methods
are used for encoding minimized multi-valued symbols of connections between de-
composed PLAs. Each of the PLAs generated in decomposition or partitioning
can be realized with any logic design program discussed below, or mapped to M-
language standard cells. We found that conversion from nondisjoint cube format
to a disjoint one is an useful pre-processing step for many algorithms (program
Disjoint).

Truth tables are also inputs to three programs that realize various multi- level cir-
cuits. TantMini [10] minimizes the TANT networks. Classical TANT networks, in-
troduced by Mc Cluskey and Gimpel were single output, three-level NAND (NOR)
networks where all primary inputs were positive. Qur algorithm assumes certain
extensions to the classical model: the TANT network can have an arbitrary sub-
set of inputs positive or negative, the network is multi-output and don’t cares are
allowed. The algorithm generates the exact minimum solution, so functions with
not more than six inputs/outputs are allowed. We are currently working on a



new program that will apply Espresso-like expansion /reduction/reshaping loop to
generate TANT-implicants, which will allow for obtaining minimal solutions (not
exact) for larger functions.

Program NegMini [17] minimizes two-level networks from negative gates (nega-
tive unate functions). It has the same drawbacks as TantMini, so its new version
is needed in the future as well. It seems to us now that exact minimization is
impossible to achieve for networks of more than six variables, using more than two
levels of AND and OR gates.

Another internal form of Boolean function representation is a Generalized Reed
Muller Form (GRM) (it is an array of cubes as well, but represents EXOR of
products of literals). The program Exorcism [3] finds minimal (not exact) solutions
for networks up to 30 inputs/outputs. It generates Mixed-Polarity Generalized
Reed Muller Forms. Such networks are very good with respect to their testability.
The new program of Helliwell, Rmini, generates an exact minimum solution for
Mixed-Polarity Generalized Reed Muller Forms (can be applied to 6 variables).
A program to generate exact optimum Fixed-Polarity Generalized Reed Muller
Forms as well as quasi-optimal fixed-polarity forms, Firm, is also under preparation
[27]. RM2M translates GRM forms to M netlist.

Yet another general purpose format for Boolean functions is Walsh spectrum [2],
which is created here for incompletely specified multiple-valued input functions.
Program tt2Walsh does forward and program Walsh2tt does the inverse spectral
transform. Again, disjoint cube represenation of SPF was found useful, and even
fundamental. Spectrum is then used by the program Spede to find generalized
spectral-based decomposition for selected types of standard cells.

The netlist in M includes gates that result from macrogeneration of data-path
segments of higher level descriptions in language STRUCT. Such gates can have
inputs equal logic 0 or logic 1. This calls for applying to them recursive logic
transformations based on Boolean algebra, like A * 1 = A, or A + 1 = 1. Such
transformations are executed in program Implem3, being a part of EXPO. The
optimized network can then be optimized or redesigned with other programs.

Linking is performed by the program Link, while partitioning using program
Partition. Program Eqn2tt translates .EQN format files to . TT format files, pro-
gram Tt2eqn translates . TT format files to .EQN format files. Program Eqn2m
translates .EQN format files to .M format files, program M2eqn translates .M for-
mat files to .EQN format files. Such format conversion programs enable linking,
partitioning, and redesign of any kind of logic files.

The technology mapping is done by the heuristic, tree-searching, rule-based pro-



gram EXPO [18, 29, 30].
M language format, together with truth tables and logic equations embedded in

it is an input to SCS layout system, and related cell and macrocell design tools.

V. SYSTEM INTEGRATION

There are several basic principles of integration that we wanted to obey while

designing the system.

1.

Communication of all programs is through user-readable and editable ASCII
files. All formats are relatively easy to learn.

. In order to understand trade-offs better there are several algorithms for the

same design/optimization problems.

The standard languages and the organization of the system permit not only
for the variant driven synthesis mentioned in p.2, but they also permit the
user to select one of several paths through the design flow in order to create
his own methodologies. For instance, he can try or avoid some design stages,
like Mealy-Moore or other p-graph or FSM transformations.

There are several interface formats, both on the input, on the output, and
inside the system, in order for easier interfacing DIADES to other systems as
well as to exchange examples with other systems. Several internal formats,
like GRM forms or Walsh spectrum, allow for efficient implementations of
new methodologies.

To provide some consistency, for most of the design tasks, the multi-purpose
behavioral /functional /structural language ADL has been created. It is, how-
ever, not considered to be an "HDL language achievement” in itself, but rather
a flexible and powerful notation for quick prototyping of description notations
as they become useful for the synthesis programs when they are being added

to DIADES.

The role of don’t cares and multiple-valued input functions is systematically
emphasized on all design stages. An attempt to execute all stages for all kinds
of machines, and integrate these stages required solving many problems that
are not known from the literature. For instance, how to minimize state tables
with nondisjoint columns [19, 6].

It is our belief that powerful and flexible control unit design techniques are
the key to the future successes of comprehensive design automation systems.
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It is there, in the control unit design, where everything: the system level
design, microprogramming, micro-architecture design, state machine design,
data path synthesis, and logic design comes together, and also in the most
complex and mutually related ways. Control unit design takes most of the
design time. Therefore, DIADES considers control unit design to be the most
important immediate and long-term task.

Other issues are design for speed and design for testability. We are working on
several ways of achieving these goals in DIADES, few of them are implemented
now. They include algorithms to design logic networks with few levels, but
other than PLAs. This goal also causes our interest in designs that have many

EXOR gates, like fixed or mixed Reed Muller Forms.

For such complex systems as DIADES, the teaching of the potential users is a
key issue. As one of the industrial CAD authorities mentioned: “teaching the
engineer how to use these tools is becoming a most important issue from the
practical point of view”. In the DIADES Group we are trying to address this
problem by developing a HyperCard-based Help/Tutorial/CAI environment
to teach about DIADES for Macintosh II [26], as well as video taped tutorials.
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