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PLAN

� Introduction - layout-driven synthesis.

� Expansions and expansion nodes.

� Max-type versus LI-type lattices.

� Binary LI-type lattices.

� Ternary lattices.

� Quaternary lattices.

� Butter
y algorithm to �nd best expansions.

� Applications to Fuzzy and analog circuits.
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LATTICE DIAGRAMS.

� Review Binary Lattice Diagrams.

� Introduce Ternary and Quaternary Lattice Diagrams.

� Such diagrams are applicable to submicron design and designing

new �ne-grain digital, analog and mixed FPGAs.

� Diagrams presented here expand the ideas of Lattice diagrams

(Perkowski, Jeske) and Linearly Independent (LI) Logic

(Perkowski, Falkowski, Beyl, Sarabi).
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THE GOAL OF LATTICE DIAGRAMS

� The goal of Lattice Diagrams is layout-driven logic synthesis

in cellular structures with mostly local connections.

� The concept of a lattice diagram involves three components:

(1) expansion of a function (the function corresponds to the

initial node in the lattice), which creates several successor

nodes of this node,

(2) joining of several (not necessarily tautologic) nodes of a tree

level to a single node, which is in a sense a reverse operation

to the expansion,

(3) a regular geometry to which the nodes are mapped, this

geometry guides which nodes of the level are to be joined.
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REGULAR LAYOUT GEOMETRY FROM LATTICE DIAGRAMS

� In a regular layout, every cell is connected to 4 (binary lattice), 6

(ternary lattice) or 8 (quaternary lattice) neighbors and to a

number of vertical, horizontal and diagonal buses.

� Cell with n inputs and m outputs is said to have n x m

connectivity pattern.

� Ternary lattices have 3 inputs and 3 outputs from a node.

� Quaternary lattices have 4x4 connectivity pattern, it means, 4

inputs and 4 outputs from a node.
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REGULAR LAYOUT GEOMETRY FROM LATTICE DIAGRAMS. II

� Expansions are: Shannon, Davio, nonsingular, fuzzy and analog.

� For each type of expansion on nodes, there exists type of

joining operation for nodes.

� The procedure of building the lattice diagram, i.e. the layout of a

function, consist in expanding and joining nodes in levels

iteratively for (repeated) variables until all node functions

become variables or constants.
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EXPANSION NODES FOR BINARY, MULTI-VALUED AND FUZZY FUNCTIONS
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SHANNON EXPANSION NODES.
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� Shannon (S) expansion: a multiplexer, and a general notation of a 2x2 cell in

a Lattice.

� When input a is inverted, the so-called Reversed Shannon (S') expansion is

executed, which means that the role of inputs b and c is reversed.
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DAVIO EXPANSION NODES.
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� (b) shows the positive Davio expansion node (pD), and (c) the negative Davio

node (nD).

� Such nodes are used in Positive-Polarity, Fixed-Polarity, Kronecker and

Pseudo-Kronecker Lattices and their generalizations.
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MULTI-VALUED EXPANSION NODES.
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� (e) presents Shannon node for ternary logic, (f) Shannon node for quaternary

logic, and (g) realization of the quaternary Shannon node from (f) in binary

logic.

� Two binary signals routed together simulate a 4-valued signal.
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FUZZY LOGIC EXPANSION NODES.
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(d) DFL (Disjoint Fuzzy Logic) with 2 literals.

(h) DFL with 3 literals.
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EXISTENCE OF JOINING OPERATIONS AS

A CONDITION OF BUILDING LATTICES

� We denote max-type operations by +, min-type operations by �.

� It can be observed, that a fundamental condition for existence of

joining operations is that in the underlying algebraic structure

any two literals are disjoint.

� In binary, this property reduces to a � �a = 0.

� Existence of joining operations is the condition of being able to

create lattice diagrams.

� This condition leads to binary and multiple-valued (MV) Max-type

lattices.

� The principle of operation of binary max-type lattices is that any

path in a diagram that includes x and �x cancells.
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EXISTENCE OF JOINING OPERATIONS

FOR LI-TYPE LOGIC

� EXOR function is: a � b = a � �b + �a � b.

� Thus, a � a = a�a + �aa = 0.

� This leads to Linearly-Independent type (LI) lattices.

� The principle of operation of LI-type lattices is that any two

identical paths to the root in the diagram cancel one another

(x � x = 0).
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COMPARISON OF THREE TYPES OF LATTICES FOR TWO-OUTPUT

EXOR/XNOR FUNCTION
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(a) 2x2 lattice with S, (b) 3x3 lattice with S and S',

(c) 2x2 lattice with pD and pD'.
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CREATION OF A POSITIVE DAVIO LEVEL IN A LATTICE
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Figure 1: (a) two expanded nodes before joining, (b) layer of lattice after

joining operation on nodes g2 and h0, (c) Fixed-Polarity RM Lattice for

functions f; g; h.
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BINARY LI-TYPE LATTICES FOR SYMMETRIC AND

NON-SYMMETRIC FUNCTIONS

� When a function is symmetric, variables are not repeated.

� Figures clearly demonstrate an advantage of having higher

connection patterns and more general expansion types.

� Predictability and equality of delays should be appreciated in all

lattices.

� But what about lattice realization of non-symmetric functions?

{ Polarized Pseudo-Kronecker symmetries (Drucker/Perkowski) are

much more general than known symmetries of functions. Using

them, more functions can be realized without repeating variables.

{ functions that do not have the Polarized Pseudo-Kronecker

symmetries can be still realized in lattices with repeated variables

(Perkowski/Jeske).
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JOINING OPERATION FOR LI-TYPE LATTICES
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Figure 2: (a) two expanded nodes before joining, (b) layer of lattice

after joining operation on nodes g2 and h0.



Ternary and Quaternary Lattice Diagrams Singapur, September 1997 18'
&

$
%

JOINING OPERATION FOR LI-TYPE LATTICES. II

� Although shown here only for pD nodes and an ordered lattice,

the same principle is used for more complex expansions and lattice

diagrams of the LI type.

� The joining rule is: g2 JOIN h0 = ag2 � h0, which means

that nodes representing functions g2 = g0 � g1 and h0 are

joined together to create a new node with function ag2 � h0.

� The correction terms ah0 and ag2 are propagated to left and

right, respectively.
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CREATING A DIAGRAM BY EXPANDING AND JOINING

OPERATIONS. I
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Figure 3: Fixed-Polarity RM Lattice for functions f; g; h.
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CREATING A DIAGRAM BY EXPANDING AND JOINING

OPERATIONS. II

� Fixed-Polarity Reed-Muller Lattice Diagram (expansions pD and

nD) for functions:

f = a � ab�cd,

g = 1 � b�cd � a�cd � abd � ab�cd,

h = �cd � bd � ab�cd � a�cd � abd � ad.

� Variable a is repeated once more in the bottom level of the lattice.

� The expansion in this level is pD', which means, a reversed pD,

that is a pD expansion with reversed role of data inputs.
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CREATING A DIAGRAM BY EXPANDING AND JOINING

OPERATIONS. III

� In some types of expansions the propagation of correction terms is

only to right, or only to left.

� In some other expansions, especially the non-canonical ones, more

powerful corrections types are created, and the algorithm selects

the correction rule evaluated as the one leading to the simplest

next level of the lattice.

� Selecting the order of (repeated) variables and the expansion

type in each node are the most important and di�cult problems

to be solved.
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TERNARY AND QUATERNARY LATTICES.

� Binary Shannon expansions can be easily generalized to 3-valued

and 4-valued Shannon expansions.

� Lattices for them require 3 inputs and 3 outputs from a node, and

4 inputs and 4 outputs from a node, respectively.

� 3- and 4- valued counterparts of S' are created.

� Ternary and quaternary lattices can be created using

corresponding \expansion" and \join" formulas.

� This way, Post-type and Galois-type lattices are created in an

uniform way.
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TERNARY AND QUATERNARY LATTICES. II

� However, the two kinds of principles, of creating the expansion

and of the joining rules, remain the same: disjoint literals for

max-type lattices, and a+ (�a) = 0 term cancelling for LI

lattices (which generalizes the rule a � a = 0 of Galois Field (2)

given earlier).

� The lattices have advantages especially for (nearly) symmetric

functions and strongly unspeci�ed functions that can be

completed to symmetric functions.
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REGULAR LAYOUT

� By a regular layout we understand a layout of indentical cells

that connect by abutting.

� By a complete layout structure we understand connection

pattern between cells, that allows to realize every symmetric

function without repeating variables.

� It can be proved that in a 2x2 lattice every binary symmetric

function can be realized without variable repetitions, and with

connections between cells having the same length.

� Thus, lattice layout for binary logic is regular and complete.
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WHEN REGULAR LAYOUT CAN BE CREATED.

� In contrast to binary functions, symmetric ternary functions

cannot be realized in regular 2-dimensional 3x3 lattices.

� Although we created 3x3 lattices that can realize every symmetric

ternary function without variable repetitions, it is not possible to

�nd regular layouts for realizing them.

� Thus the cells distances in subsequent levels grow.

� Hopefully, it is not a practical problem for small functions realized

in MV logic, but the beautiful simplicity of binary realizations does

not longer exist.
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WHEN REGULAR LAYOUT CAN BE CREATED. II

� Thus, if mapped to a 2-dimensional space, the ternary lattices are

either regular and not complete, or complete but not regular.

� It is still possible to obtain regular and complete 3x3 lattices

assuming layout of cells in a three-dimensional space.

� But it is not possible to create regular layout for 4x4 lattices,

because our Universe is 3-dimensional.
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QUATERNARY LI LATTICES.

� As shown before, pairs of binary variables correspond to

4-valued variables.

� Although here we discuss LI lattices for only two variables in each

variable block, all concepts and algorithms can be expanded to

variable blocks of arbitrary size.

� Next Figure shows an example of a circuit obtained by substituting

nodes of a quaternary LI lattice diagram with their circuits.

� The LI Lattice diagrams for pairs of variables are created similarly

to lattices for single variables.

� Nodes are now for pairs of variables, and nonsingular expansions

of LI logic are used.

� Every node has at most 4 inputs.
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LI PSEUDO-KRONECKER DECISION

LATTICE DIAGRAM FOR VARIABLE

BLOCKS fa,bg,fc,dg,fe,fg to function H;G.
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QUATERNARY LI LATTICES. II

� Instead selecting among only three expansions, S, pD and nD, the

choice in every level of nodes is among all 840 nonsingular

expansions in exact algorithm.

� This is the maximum number of nonsingular expansions for a pair

of variables

� Or, some subset of the expansions.

� The same type of expansion is selected in Kronecker type lattices.

� Various expansions are selected in nodes of Pseudo-Kronecker type

lattices.

� The joinings are based on the same principles as before.
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QUATERNARY LI LATTICES. III

� The lattices for all single outputs of a multi-output function are

created together, level-by-level from their root nodes (outputs).

� In every level, the possible expansions are evaluated based on the

complexity of the next level (look-ahead strategy).

� The best expansion found by the Polarity Selecting Algorithm for

a level is next applied to all nodes (Kronecker types) from the

level of the multi-output diagram.

� In Pseudo type of lattices, the expansion decision for each node is

done separately.

� The algorithm below is used for small functions, approximate

algorithms for larger functions.
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BUTTERFLY DIAGRAMS TO FIND BEST

LI EXPANSIONS

� Butter
y diagrams in Reed-Muller Logic allow to create all �xed

polarity expansions by transforming from polarity to polarity.

� They do this just by incremental exoring of some terms from the

forms.

� This way, all forms of certain type are systematically created

without even creating their expansion matrices M and without

calculating their inverse matrices M�1.

� The concept of Gray-code ordering of all Generalized Reed-Muller

polarities was applied to �nd the exact minimum GRM form

(Zeng/Perkowski).

� Similar ideas proposed here for the LI forms.
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PROPERTIES FOR BUTTERFLY DIAGRAM

ALGORITHMS

Property 1. The following rule BR holds

f1(x1; x2)SF2(x3; :::; xn)�f3(x1; x2)SF4(x3; :::; xn) =

[f1(x1; x2)� f3(x1; x2)]SF2(x3; :::; xn)

�f3(x1; x2)[SF2(x3; :::; xn)� SF4(x3; :::; xn)]

where f1(x1; x2) and f3(x1; x2) are arbitrary LI functions, and

SF2(x3; :::; xn) and SF4(x3; :::; xn) are the corresponding to them

data input (DI) functions.
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PROPERTIES FOR BUTTERFLY DIAGRAM

ALGORITHMS. II

Property 2. Any nonsingular expansion can be obtained by a repeated

application of Rule BR to pairs of functions

[ f1(x1; x2); SF2(x3; ::; xn)],[f3(x1; x2); SF4(x3; ::; xn)].

This way, rule BR describes simultaneous EXOR-ing of columns in

matrix M and corresponding columns in M

�1.

But how to select the pairs of functions?

Property 3. In matrix M , as well as in matrix M�1, any column can

be replaced by a linear combination of itself with other columns.

Thus, any polarity expansion can be obtained by a repeated

application of the basic rule BR to certain selected columns.
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BUTTERFLY DIAGRAMS TO FIND BEST

EXPANSIONS

� In general, there is no recursive way to de�ne the universal

Butter
y-like diagram for arbitrary LI matrix.

� A speci�c diagram can be once created for a set of variables with

certain number of elements and for any set of expansion

polarities.

� This diagram can be stored in memory, and next used for

evaluations for each particular function of the respective number

of variables.

� We will call this a "pre-computed" Butter
y diagram.
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LATTICES FOR FUZZY LOGIC.

� Because in standard fuzzy logic a � �a 6= 0, and a � a =

a�a + �aa 6= 0, both the Max-type and LI methods would not

work for it.

� One can de�ne a negation-less fuzzy logic, which we call a

Disjoint Fuzzy Logic (DFL), in which all fuzzy logic axioms

besides those related to negation are satis�ed, and negation is

simulated by using special type of literals.

� In DFL logic, any two literals literali; literalj can have arbitrary

shapes, but must be disjoint; for any value of x 2 [0; 1]

literali(x) � literalj(x) = 0.
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LATTICES FOR FUZZY LOGIC.
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� The literals literal1; literal2; literal3 are all mutually disjoint.

� DFL expansions are realized in ternary fuzzy lattices, similar to

MV ternary lattices.

� Because of disjoint literals, joining operation can be always

performed.



Ternary and Quaternary Lattice Diagrams Singapur, September 1997 40'
&

$
%

REALIZATION OF ANALOG FUNCTIONS
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REALIZATION OF ANALOG FUNCTIONS I.
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REALIZATION OF ANALOG FUNCTIONS II.
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ITERATIVE CIRCUITS AND ANALOG FPGAS.

� Hierarchical design of iterative one- and two-dimensional structures.

� Cellular connections of logic blocks, each block realized as a

multi-output lattice.

� Created also for discrete circuits with memory.

� Analog counterparts use sample-hold analog memories, which play the

same role as 
ip-
ops in discrete technologies.

� Lattices allow thus the realization of cellular memory-less functions,

�nite state machines, and in�nite state machines; realized in analog,

binary, or multivalued logic.

� Digital and analog: �lters, pipelined image processors, or systolic

processors.

� An elliptic ladder �lter was mapped to this structure (Pierzchala).

� Rank and median �lters, cellular neural nets, equation solvers, and

(analog and digital) image processing circuits.
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CONCLUSION.

� Presented methods allow for layout-driven synthesis approaches

to binary, multivalued, linearly-independent, Galois, fuzzy, analog

and mixed functions.

� They unify many known expansions, decision diagrams, regular

layout geometries and FPGA/FPAA structures.

� Of special interest to various new technologies based on

regularity and locality of connections:

{ deep sub-micron technology,

{ binary and MV pass-transistor designs,

{ quantum logic devices,

{ OTA circuits,

{ new �ne grain digital and analog FPGAs.
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CONCLUSION. (cont.)

� Ternary and quaternary lattices for binary, multi-valued, DFL and

analog logic.

� Such diagrams are the most general lattice diagrams introduced

so far.

� Algorithm for creation of quaternary lattices for binary LI logic.

� Methods applicable to completely speci�ed and incompletely

speci�ed functions; single-, and multi-output.

� Kronecker-like and Pseudo-Kronecker-like generalizations.


