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Introduction - layout-driven synthesis.
Expansions and expansion nodes.

Max-type versus LI-type lattices.

Binary LI-type lattices.

Ternary lattices.

Quaternary lattices.

Butterfly algorithm to find best expansions.

Applications to Fuzzy and analog circuits.
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‘ LATTICE DIAGRAMS. I

Review Binary Lattice Diagrams.
Introduce Ternary and Quaternary Lattice Diagrams.

Such diagrams are applicable to submicron design and designing
new fine-grain digital, analog and mixed FPGAs.

Diagrams presented here expand the ideas of Lattice diagrams
(Perkowski, Jeske) and Linearly Independent (LI) Logic
(Perkowski, Falkowski, Beyl, Sarabi).
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THE GOAL OF LATTICE DIAGRAMS

e The goal of Lattice Diagrams is layout-driven logic synthesis
in cellular structures with mostly local connections.

e The concept of a lattice diagram involves three components:

(1) expansion of a function (the function corresponds to the
initial node in the lattice), which creates several successor
nodes of this node,

(2) joining of several (not necessarily tautologic) nodes of a tree
level to a single node, which is in a sense a reverse operation
to the expansion,

(3) a regular geometry to which the nodes are mapped, this
geometry guides which nodes of the level are to be joined. /
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‘ REGULAR LAYOUT GEOMETRY FROM LATTICE DIAGRAMS I

e In a regular layout, every cell is connected to 4 (binary lattice), 6

(ternary lattice) or 8 (quaternary lattice) neighbors and to a
number of vertical, horizontal and diagonal buses.

e Cell with n inputs and m outputs is said to have n x m
connectivity pattern.

e Ternary lattices have 3 inputs and 3 outputs from a node.

e Quaternary lattices have 4x4 connectivity pattern, it means, 4
inputs and 4 outputs from a node.

o /
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‘ REGULAR LAYOUT GEOMETRY FROM LATTICE DIAGRAMS. I I‘

e Expansions are: Shannon, Davio, nonsingular, fuzzy and analog.

e For each type of expansion on nodes, there exists type of
joining operation for nodes.

e The procedure of building the lattice diagram, i.e. the layout of a
function, consist in expanding and joining nodes in levels

iteratively for (repeated) variables until all node functions
become variables or constants.

o /
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EXPANSION NODES FOR BINARY, MULTI-VALUED AND FUZZY FUNCTIONS

L4
— By
- b3
4 C
(g) I b2 b MIN |
) B
literal
4 a 21 MIN
4 b2
C o literal i\ (h)

~




Ternary and Quaternary Lattice Diagrams Singapur, September 1997

4 N

SHANNON EXPANSION NODES.
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® Shannon (S) expansion: a multiplexer, and a general notation of a 2x2 cell in

a Lattice.

e When input a is inverted, the so-called Reversed Shannon (S’) expansion is

executed, which means that the role of inputs b and c is reversed.

o /
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DAVIO EXPANSION NODES.

(b) &
(C) b s

® (b) shows the positive Davio expansion node (pD), and (c) the negative Davio
node (nD).

e Such nodes are used in Positive-Polarity, Fixed-Polarity, Kronecker and

Pseudo-Kronecker Lattices and their generalizations.
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MULTI-VALUED EXPANSION NODES.
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e (e) presents Shannon node for ternary logic, (f) Shannon node for quaternary

logic, and (g) realization of the quaternary Shannon node from (f) in binary
logic.

e Two binary signals routed together simulate a 4-valued signal.

/
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FUZZY LOGIC EXPANSION NODES.
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(d) DFL (Disjoint Fuzzy Logic) with 2 literals.

(h)
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e \We denote max-type operations by 4, min-type operations by -.

e It can be observed, that a fundamental condition for existence of

e In binary, this property reduces toa - a = 0.

e Existence of joining operations is the condition of being able to

e This condition leads to binary and multiple-valued (MV) Max-type

e The principle of operation of binary max-type lattices is that any

EXISTENCE OF JOINING OPERATIONS AS
A CONDITION OF BUILDING LATTICES

joining operations is that in the underlying algebraic structure
any two literals are disjoint.

create lattice diagrams.

lattices.

path in a diagram that includes x and z cancells. /
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EXISTENCE OF JOINING OPERATIONS
FOR LI-TYPE LOGIC

EXOR functionis: a & b=a - b +a - b.
Thus, a & a =aa +aa = O.
This leads to Linearly-Independent type (LI) lattices.

The principle of operation of LI-type lattices is that any two
identical paths to the root in the diagram cancel one another

(z & z = 0).

13
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COMPARISON OF THREE TYPES OF LATTICES FOR TWO-OUTPUT
EXOR/XNOR FUNCTION

exor x¢nor(a,b,c,d) exor  xnor(ab,c,d)

(a) 2x2 lattice with S, (b) 3x3 lattice with S and S,

(c) 2x2 lattice with pD and pD’.

exor(a,b,c,d)

~
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‘ CREATION OF A POSITIVE DAVIO LEVEL IN A LATTICE I

Figure 1: (a) two expanded nodes before joining, (b) layer of lattice after
Joining operation on nodes g» and hg, (c) Fixed-Polarity RM Lattice for
functions f, g, h.

o /
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BINARY LI-TYPE LATTICES FOR SYMMETRIC AND
NON-SYMMETRIC FUNCTIONS

When a function is symmetric, variables are not repeated.

Figures clearly demonstrate an advantage of having higher
connection patterns and more general expansion types.

Predictability and equality of delays should be appreciated in all
lattices.

But what about lattice realization of non-symmetric functions?
— Polarized Pseudo-Kronecker symmetries (Drucker/Perkowski) are

much more general than known symmetries of functions. Using

them, more functions can be realized without repeating variables.
— functions that do not have the Polarized Pseudo-Kronecker

symmetries can be still realized in lattices with repeated variables

(Perkowski/Jeske). /
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‘ JOINING OPERATION FOR LI-TYPE LATTICES I

hz@ >

Figure 2: (a) two expanded nodes before joining, (b) layer of latti
fter joining operation on nodes g- and hy.

«,
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JOINING OPERATION FOR LI-TYPE LATTICES. 1l

e Although shown here only for pD nodes and an ordered lattice,
the same principle is used for more complex expansions and lattice
diagrams of the LI type.

e The joining rule is: go JOIN hy = ags & hg, which means
that nodes representing functions go = g9 & ¢1 and hg are
joined together to create a new node with function ago & hy.

e The correction terms ahy and ag, are propagated to left and
right, respectively.

/
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CREATING A DIAGRAM BY EXPANDING AND JOINING
OPERATIONS. |

~

19



Singapur, September 1997

\_

f 9 h (©)

Figure 3: Fixed-Polarity RM Lattice for functions f, g, h.

/
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CREATING A DIAGRAM BY EXPANDING AND JOINING
OPERATIONS. 1l

e Fixed-Polarity Reed-Muller Lattice Diagram (expansions pD and
nD) for functions:

f = a & abcd,
g =1& bed & acd ¢ abd & abcd,
h = ¢cd & bd & abed & acd & abd D ad.

e Variable a is repeated once more in the bottom level of the lattice.

e [he expansion in this level is pD’, which means, a reversed pD,
that is a pD expansion with reversed role of data inputs.

/
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CREATING A DIAGRAM BY EXPANDING AND JOINING
OPERATIONS. 11l

e |In some types of expansions the propagation of correction terms is
only to right, or only to left.

e In some other expansions, especially the non-canonical ones, more
powerful corrections types are created, and the algorithm selects
the correction rule evaluated as the one leading to the simplest

next level of the lattice.

e Selecting the order of (repeated) variables and the expansion
type in each node are the most important and difficult problems

to be solved.

/
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TERNARY AND QUATERNARY LATTICES.

Binary Shannon expansions can be easily generalized to 3-valued
and 4-valued Shannon expansions.

Lattices for them require 3 inputs and 3 outputs from a node, and
4 inputs and 4 outputs from a node, respectively.

3- and 4- valued counterparts of S’ are created.

Ternary and quaternary lattices can be created using
corresponding “expansion” and “join” formulas.

This way, Post-type and Galois-type lattices are created in an

uniform way.

/
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TERNARY AND QUATERNARY LATTICES. Il

e However, the two kinds of principles, of creating the expansion
and of the joining rules, remain the same: disjoint literals for
max-type lattices, and a + (—a) = 0 term cancelling for LI
lattices (which generalizes the rule a & a = 0 of Galois Field (2)
given earlier).

e The lattices have advantages especially for (nearly) symmetric
functions and strongly unspecified functions that can be

completed to symmetric functions.

o /
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REGULAR LAYOUT

By a regular layout we understand a layout of indentical cells
that connect by abutting.

By a complete layout structure we understand connection
pattern between cells, that allows to realize every symmetric
function without repeating variables.

It can be proved that in a 2x2 lattice every binary symmetric
function can be realized without variable repetitions, and with
connections between cells having the same length.

Thus, lattice layout for binary logic is regular and complete.

~

/
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WHEN REGULAR LAYOUT CAN BE CREATED.

In contrast to binary functions, symmetric ternary functions
cannot be realized in regular 2-dimensional 3x3 lattices.

Although we created 3x3 lattices that can realize every symmetric
ternary function without variable repetitions, it is not possible to
find regular layouts for realizing them.

Thus the cells distances in subsequent levels grow.

Hopefully, it is not a practical problem for small functions realized
in MV logic, but the beautiful simplicity of binary realizations does
not longer exist.

/
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WHEN REGULAR LAYOUT CAN BE CREATED. II

e Thus, if mapped to a 2-dimensional space, the ternary lattices are
either regular and not complete, or complete but not regular.

e |t is still possible to obtain regular and complete 3x3 lattices
assuming layout of cells in a three-dimensional space.

e But it is not possible to create regular layout for 4x4 lattices,
because our Universe is 3-dimensional.

27
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QUATERNARY LI LATTICES.

As shown before, pairs of binary variables correspond to
4-valued variables.

Although here we discuss LI lattices for only two variables in each
variable block, all concepts and algorithms can be expanded to
variable blocks of arbitrary size.

Next Figure shows an example of a circuit obtained by substituting
nodes of a quaternary LI lattice diagram with their circuits.

The LI Lattice diagrams for pairs of variables are created similarly
to lattices for single variables.

Nodes are now for pairs of variables, and nonsingular expansions
of LI logic are used.

Every node has at most 4 inputs. /
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LI PSEUDO-KRONECKER DECISION
LATTICE DIAGRAM FOR VARIABLE
BLOCKS {a,b},{c,d},{e,f} to function H, G.

~
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QUATERNARY LI LATTICES. Il

Instead selecting among only three expansions, S, pD and nD, the
choice in every level of nodes is among all 840 nonsingular
expansions in exact algorithm.

This is the maximum number of nonsingular expansions for a pair
of variables

Or, some subset of the expansions.
The same type of expansion is selected in Kronecker type lattices.

Various expansions are selected in nodes of Pseudo-Kronecker type
lattices.

The joinings are based on the same principles as before.

/
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QUATERNARY LI LATTICES. Il

The lattices for all single outputs of a multi-output function are
created together, level-by-level from their root nodes (outputs).

In every level, the possible expansions are evaluated based on the
complexity of the next level (look-ahead strategy).

The best expansion found by the Polarity Selecting Algorithm for
a level is next applied to all nodes (Kronecker types) from the
level of the multi-output diagram.

In Pseudo type of lattices, the expansion decision for each node is
done separately.

The algorithm below is used for small functions, approximate
algorithms for larger functions.

/
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o Butterfly diagrams in Reed-Muller Logic allow to create all fixed

e They do this just by incremental exoring of some terms from the

e This way, all forms of certain type are systematically created

e The concept of Gray-code ordering of all Generalized Reed-Muller

BUTTERFLY DIAGRAMS TO FIND BEST
LI EXPANSIONS

polarity expansions by transforming from polarity to polarity.
forms.

without even creating their expansion matrices M and without
calculating their inverse matrices M 1.

polarities was applied to find the exact minimum GRM form
(Zeng/Perkowski).

\o Similar ideas proposed here for the LI forms. /
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PROPERTIES FOR BUTTERFLY DIAGRAM
ALGORITHMS

Property 1. The following rule BR holds
fi(x1,x2)SFo (3, .oy n)B fa(w1, x2)SFy(x3, .. cixy) =
[f1(x1,22) @ f3(x1,22)|SFo(x3, ..., x0)

D fz(xy, x2)[SFa(x3, ..., 20) B SFy(x3, ..., 24)]

where f1(x1,x2) and f3(x1,x2) are arbitrary LI functions, and
SFy(x3,...,x,) and SFy(x3,...,z,) are the corresponding to them
data input (DI) functions.

\_

~

/
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PROPERTIES FOR BUTTERFLY DIAGRAM

ALGORITHMS. I

Property 2. Any nonsingular expansion can be obtained by a repeated
application of Rule BR to pairs of functions

[ f1<2131,5132>, SFQ(CIfg, ..,Zlﬁn>],[f3<ZC1,ZC2>, SF4<2133, ,Zlfn>]

This way, rule BR describes simultaneous EXOR-ing of columns in
matrix M and corresponding columns in M1

But how to select the pairs of functions?

Property 3. In matrix M, as well as in matrix M1 any column can
be replaced by a linear combination of itself with other columns.

Thus, any polarity expansion can be obtained by a repeated

Qpplication of the basic rule BR to certain selected columns. /
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BUTTERFLY DIAGRAMS TO FIND BEST
EXPANSIONS

e In general, there is no recursive way to define the universal
Butterfly-like diagram for arbitrary LI matrix.

e A specific diagram can be once created for a set of variables with
certain number of elements and for any set of expansion

polarities.

e This diagram can be stored in memory, and next used for
evaluations for each particular function of the respective number

of variables.

e We will call this a ” pre-computed” Butterfly diagram.

o /

36



Ternary and Quaternary Lattice Diagrams Singapur, September 1997

BUTTERFLY DIAGRAMS TO FIND BEST EXPANSIONS
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‘ LATTICES FOR FUZZY LOGIC. I

e Because in standard fuzzy logica - @ # 0,anda & a =
aa + aa # 0, both the Max-type and LI methods would not
work for it.

e One can define a negation-less fuzzy logic, which we call a
Disjoint Fuzzy Logic (DFL), in which all fuzzy logic axioms
besides those related to negation are satisfied, and negation is
simulated by using special type of literals.

e In DFL logic, any two literals literal;, literal; can have arbitrary
shapes, but must be disjoint; for any value of x € [0, 1]
literal;(x) - literal;(x) = 0.

/
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LATTICES FOR FUZZY LOGIC.

MAX

(h)

e The literals literaly, literals, literals are all mutually disjoint.

e DFL expansions are realized in ternary fuzzy lattices, similar to

MV ternary lattices.

e Because of disjoint literals, joining operation can be always
performed.

/
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REALIZATION OF ANALOG FUNCTIONS

l const2
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‘ REALIZATION OF ANALOG FUNCTIONS I. I

(&)

expansion node
for analog logic

(b)

cos(y)

d

\, C
! ! ¢
>

¢ j

Piecewise-linear expansion
of a continuous function
In a2x2 - type regular layout

sin(y)

~

/
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REALIZATION OF ANALOG FUNCTIONS II.
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expansion cell for sorting applications
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Regular 2x2 layout
for max(h1,h2,h3,...n5)

/
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ITERATIVE CIRCUITS AND ANALOG FPGAS.

Hierarchical design of iterative one- and two-dimensional structures.
Cellular connections of logic blocks, each block realized as a
multi-output lattice.

Created also for discrete circuits with memory.

Analog counterparts use sample-hold analog memories, which play the
same role as flip-flops in discrete technologies.

Lattices allow thus the realization of cellular memory-less functions,
finite state machines, and infinite state machines; realized in analog,
binary, or multivalued logic.

Digital and analog: filters, pipelined image processors, or systolic
processors.

An elliptic ladder filter was mapped to this structure (Pierzchala).

Rank and median filters, cellular neural nets, equation solvers, and

(analog and digital) image processing circuits. /
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e Presented methods allow for layout-driven synthesis approaches
to binary, multivalued, linearly-independent, Galois, fuzzy, analog
and mixed functions.

e They unify many known expansions, decision diagrams, regular
layout geometries and FPGA/FPAA structures.

e Of special interest to various new technologies based on
regularity and locality of connections:

~

CONCLUSION.

deep sub-micron technology,
binary and MV pass-transistor designs,
quantum logic devices,

OTA circuits,
new fine grain digital and analog FPGAs.
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CONCLUSION. (cont.)

Ternary and quaternary lattices for binary, multi-valued, DFL and
analog logic.

Such diagrams are the most general lattice diagrams introduced
so far.

Algorithm for creation of quaternary lattices for binary LI logic.

Methods applicable to completely specified and incompletely
specified functions; single-, and multi-output.

Kronecker-like and Pseudo-Kronecker-like generalizations.

/
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