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MAIN CONTRIBUTIONS OF THIS PAPER

� Generalizations of the Generalized Kronecker representations.

� New canonical AND/EXOR forms.

� Interrelated hierarchies of canonical AND/EXOR trees, decision

diagrams, lattice diagrams, canonical forms and regular layouts.

� The new diagrams and forms can be used for synthesis of

quasi-minimum Exclusive Sum of Products (ESOP) circuits,

� Highly testable multi-level AND/EXOR circuits, that through the

"EXOR-related technology mapping" are adjusted to

AND/OR/EXOR custom VLSI, standard cell, or other

technologies.

� Applications in Fine Grain Field Programmable Gate Arrays.
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MAIN CONTRIBUTIONS OF THIS PAPER (cont)

� The new diagrams can represent large functions.

� Lattice Hierarchy generalizes and extends the Universal Akers

Array to expansions other than Shannon and neighborhoods other

then 2-inputs, 2-outputs.

� These Lattice Diagrams �nd many applications in layout-driven

logic synthesis, particularly for XILINX FPGAs.
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ACKNOWLEDGE CONTRIBUTIONS OF

ZHEGALKIN

� Zhegalkin in 1927 discovered the forms, now attributed to Reed

and Muller and invented by them in 1954.

� His contributions are not properly acknowledged.

� As a community, it is fair to acknowledge him, as we had

acknowledged Davio, Reed and Muller.

� We propose to call all these new forms that properly include both

KRO and GRM, as well all the future AND/EXOR forms including

these two families concurrently, the Zhegalkin forms.
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PLAN

� Various kinds of trees with multi-variable nodes.

� Review the concept of the Generalized Kronecker Trees.

� Generalized Kronecker Diagrams and their "pseudo"-like

generalizations.

� Generalized Kronecker Forms.

� Extended Green/Sasao hierarchies of trees, forms and Diagrams.

� New Hierarchy of Zhegalkin Lattice Diagrams.

� Current and Future work.

� Conclusions.
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KRONECKER FAMILIES OF REPRESENTATIONS

� Decision Diagrams (DDs).

� Used in logic synthesis, veri�cation and simulation.

� Main internal representation of functions, on which all meaningful

operations are executed.

� DDs originate from binary decision trees (binary expansion trees,

Shannon trees), which in turn are based on the fundamental

expansion theorem of Shannon that is applied in every node of

a tree.

� Every node is related to one input variable of the function.

� "Reduced", and "Ordered".

� Disadvantage - large functions cannot be represented.
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� Generalise the concept of a binary tree!!

� Green/Sasao hierarchy of representations characterizes these

representations in an uniform way that we will use here in our

generalizations.

� All these representations can be used in the �rst stage of logic

synthesis - the "technology independent, EXOR synthesis" phase,

which is next followed by the "EXOR-related technology

mapping".
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DAVIO EXPANSIONS

� The hierarchy is based on three expansions:

f(x1; x2; :::; xn) = x1f0(x2; :::; xn)� x1f1(x2; :::; xn)

in short f = x1f0 � x1f1; called Shannon, (1:1)

f(x1; x2; :::; xn) = 1 � f0(x2; :::; xn)� x1f2(x2; :::; xn)

in short f = f0 � x1f2; called Positive Davio, (1:2)

f(x1; x2; :::; xn) = 1 � f1(x2; :::; xn)� x1f2(x2; :::; xn)

in short f = f1 � x1f2; called Negative Davio, (1:3)

where f0 is f with x1 replaced by 0 (negative cofactor of variable

x1), f1 is f with x1 replaced by 1 (positive cofactor of variable

x1), and f2 = f0 � f1.
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ORDERED EXOR-BASED REPRESENTATIONS

� By applying recursively expansions (1.1) - (1.3) (or any subset of

them) to the function various types of binary decision trees can be

created.

� The concepts of:

{ Shannon Trees, Positive Davio Trees,

{ Negative Davio Trees,

{ Kronecker Trees,

{ Reed-Muller Trees,

{ Pseudo-Kronecker Trees,

{ Pseudo Reed-Muller Trees,

{ as well as of the corresponding decision diagrams,

{ and 
attened (two-level) canonical forms.
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FREE EXOR-BASED REPRESENTATIONS

� Free Kronecker Trees use S, pD and nD nodes disregarding

any order of variables and expansions (Ho/Perkowski).

� At every tree level, di�erent variables and expansions can occur.

� Thus, the order of variables in every branch can be di�erent, and

such diagrams are also called non-ordered.

� Similarly, one can also de�ne Free Binary Decision Trees (leading

to Free BDDs) and Free Positive Davio Trees (leading to Free

FDDs).

� Free Kronecker Trees lead to Free KFDDs (FKFDDs)

(Ho/Perkowski).
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OUR NEW GENERALIZATIONS

� Use binary operators, so useful for logic synthesis.

� Generalized Kronecker Trees, Forms and Decision unify

Kronecker and Generalized Reed Muller representations

(Perkowski/Jozwiak/Drechsler).

� Here we further generalize the Generalized Kronecker Trees,

Forms and Decision Diagrams.

� These representations are better then all Kronecker-like

representations because they did not allow to create GRM forms

after 
attening.

� We create an enhanced Green/Sasao hierarchy.

� Because of the superioriority of new representations, the circuits

are also never worse than the AND/EXOR circuits obtained from

the previous representations, (including the GKTs).
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Figure 1: Generalized Kronecker Tree
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GENERALIZED REED MULLER

EXPANSION WITH CONSTANT

COEFFICIENTS

� f(x1; : : : ; xn) = a0 � a1^x1 � a2^x2 � : : :� an^xn � a12^x1^x2 �

a13^x1^x3 � : : :� an�1;n^xn�1^xn � : : :� a12:::n^x1^x2^x3 : : : ^xn (2:1)

where ai's are either 0 or 1, and ^x denotes variable x or its

negation, x.

� By assigning a variable or a negation of a variable to each of the

^xi in (2.1) we create 2n2
n�1

di�erent expansion formulas.

� Each of them is called a polarity expansion, i.e., an expansion of

a certain polarity.
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GRM EXPANSION WITH FUNCTIONAL COEFFICIENTS

� In every node of GKT, the formula for expansion (2.2) is applied which

generalizes the formula (2.1) for a Generalized Reed-Muller expansion.

� The expansion formula (2.2) for function f(x1; x2; :::; xm; :::; xn) is the

same as GRM expansion, (2.1), with respect to variables x1; :::; xm and

coe�cients ai replaced with subfunctions SFi of remaining variables

xm+1; :::xn:

f(x1; x2; :::; xm; :::; xn) = SF0(xm+1; :::; xn)�

^x1SF1(xm+1; :::xn)�^x2SF2(xm+1; :::; xn)�: : :�^xmSFm(xm+1; :::; xn)

�^x1^x2SF12(xm+1; :::; xn)�^x1^x3SF13(xm+1; :::; xn)

� : : : ^xm�1^xmSFm�1;m(xm+1; :::; xn)

� : : :�^x1^x2^x3 : : : ^xmSF12:::n(xm+1; :::; xn) (2:2)
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GRM EXPANSION (cont)

where the so-called Data Functions SFi are calculated as coordinates

of a vector CV = M�1 � FV, in which:

FV (xm+1; :::; xn) is a vector of cofactors of F with respect to

variables from the set fx1; :::; xmg.

� A 2m � 2m nonsingular matrix M has as its columns all the

products of literals ^xi that have been used in one of 2m2
m�1

particular polarity expansion forms speci�ed by (2.2).

� The columns of the matrix are linearly independent with respect

to the bit-by-bit exoring operation.
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De�nition 1. The Generalised Kronecker Tree is a multi-branch tree

created as follows:

1) The set of all n input variables is partitioned into disjoint and

nonempty subsets Sj such that the union of all these subsets forms the

initial set. (If each subset includes just a single variable, the tree

reduces to the special case of a KRO tree. If there is only one subset

that includes all variables, the tree corresponds to the special case of a

GRM.)

2) The sets are ordered, each of them corresponds to a level of the tree.

3) When the set has one variable: S, nD, or pD expansion is selected for

all its nodes.

4) When the set is multi-variable: the formula for expansion (2.2) is

applied with the same polarity for all variables from Sj .
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PSEUDO GENERALIZED KRONECKER TREE

De�nition 2. The Pseudo Generalised Kronecker Tree is a tree with

multi-variable expansion nodes created as follows

1) The set of all n input variables is partitioned to disjoint and

nonempty subsets Sj such that the union of these subsets forms

the initial set (If each subset has just a single variable, the special

case of PKRM is considered.)

2) For every node of the tree, in a level with variable subset Sj , any

GRM expansion for all variables from Sj can be performed.
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nD S pD nD pD S pD nD

S level of    x1

level of x2, x4

level of  x3

f

f f 10

x1 x1

1 x2 x4
x2 x4 1 x2 x4 x2 x4

1 x3 1 x3 x3 x3

of polarity (x2x4,x4, x2)

=[11,0,1]

of polarity (x2x4,x4, x2)

=[00,1,0]

GRM(2)-13 expansion GRM(2)-2  expansion

Figure 2: Example of Pseudo Generalized Kronecker Tree
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NOTATION

� Number 13 in expansion name (polarity) "GRM(2)-13" is a natural

number corresponding to the binary number 1101, called a polarity.

� The expansion of the node GRM(2)-13 is described by the following

formula:

f0(x2; x3; x4)= SF (f0)1(x3)�x2SF (f0)x2(x3)

�x4SF (f0)x4(x3)�x2x4SF (f0)x2x4(x3)

where notation SF (f)i(X) denotes function SFi, with arguments from

the set X of variables, applied to argument function f .

� The GRM expansion in node GRM(2)-2 (for polarity [00,1,0]) is

described by the formula:

f1(x2; x3; x4) =SF (f1)1(x3)� x2SF (f1)x2(x3)� x4SF (f1)x4(x3)�

x2x4SF (f0)x2x4(x3)
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Figure 3: Pseudo Generalized Kronecker Tree
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MIXED PSEUDO GENERALISED KRONECKER TREE

De�nition 3. The Mixed Pseudo Generalised Kronecker Tree

(MPGKT) is any multi-branch tree created as follows.

1) The set of all n input variables is partitioned to disjoint subsets

(blocks) Sj of variables.

2) For every multi-variable set, either apply to a root node in the

level an arbitrary GRM expansion of all its variables or create a

subtree of single-variable expansions of variables from Sj .

Ordered sets Sj are assumed. For a single-variable level of the tree,

any combination of the S, nD and pD nodes can be applied.
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Figure 4: Mixed Pseudo Generalized Kronecker Tree
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ORDERED GENERALISED KRONECKER TREE

� De�nition 5. The Ordered Generalised Kronecker Tree

(OGKT) is any multi-branch tree created as a Free Tree, with the

additional constraint that every branch has the same order of

variables.

� In OGKT the sets of variables in di�erent branches may have

di�erent sizes and overlap, but the order must be the same.

� For instance, in one branch the �rst set is fx0; x1; x2g the second

set is fx3; x4g, and the third set is fx5; x6g. In another branch

the sets are: fx0g, fx1g, fx2; x3g, and fx4; x5; x6g.
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Figure 5: Ordered Generalized Kronecker Tree
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FREE GENERALIZED KRONECKER TREES

De�nition 4. The Free Generalised Kronecker Tree (FGKT) is any

multi-branch tree created as follows:

� For every node of the tree, an arbitrary size subset of input

variables can be selected.

� For single variable sets - an S, pD or nD node can be created, for

multi-variable sets - the GRM expansion of its variables of any

polarity is calculated.

� The levels are no more associated with variables or their sets,

various local orders and partitions of variables may exist in the

branches.
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ZHEGALKIN FORMS

� Zhegalkin forms are all AND/EXOR forms that properly include both

the KRO and the GRM forms.

� All Zhegalkin forms are de�ned here for the �rst time.

� The simplest Zhegalkin form is the Generalized Kronecker form.

� Of course, every particular GRM or KRO form, being a special case of a

Generalized Kronecker form, is in this sense also a Zhegalkin form.

� We propose, however, that when we will be talking about existing

families of forms, we will keep the known names without the name

\Zhegalkin"

(Similarly, every FPRM form is a Kronecker form, but the Fixed-Polarity Reed-Muller

family of forms is distinguished from the broader Kronecker family of forms).

� The forms presented here are straightforward generalization of the

known families.
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DEFINITION OF ZHEGALKIN FORMS

� De�nition 7. The canonical AND/EXOR Form corresponding to

each of the above de�ned types of trees, the Zhegalkin Form, is

obtained by 
attening the respective tree.

� Flattening means �nding the AND-terms by following all the

paths from the root to all the leafs. This way, an AND/EXOR two

level expression is created, that is equivalent to the tree and that

is a canonical form.
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REDUCED ZHEGALKIN FORMS

� GKT families in which for the "Kronecker-type" variables not all

expansion types S, pD and nD are executed, but only a subset of them.

� De�nition. The pD/nD Fixed/Mixed Reed-Muller Expressions

(forms) (FMRMEs) are canonical forms obtained analogously to GKE,

but instead of all Shannon, positive and negative Davio expansions,

only positive and negative Davio expansions are used for the variables

from the "Kronecker-type" set of variables.

� Because of the existence of e�cient FPRM minimization algorithms,

calculation of FMRME forms can be made more e�ciently.

� Expansions for any non-empty subset of fS,pD,nDg expansions for

"Kronecker-type" variables can be de�ned; fS,pD,g, fS,nDg, fSg,

fpDg, and fnDg.

� De�ne FMRM Trees and FMRM DDs, analogously to the general

cases of GKTs and GK DDs.



New Hierarchies of Representations RM'97, September 1997 30'
&

$
%

GENERALIZED KRONECKER DECISION DIAGRAMS

� De�nition 8. Canonical AND/EXOR Decision Diagrams

corresponding to each of the above de�ned types of trees are

obtained by combining isomorphic nodes (i.e, the nodes that

correspond to logically equivalent, tautological, subfunctions), and

removing nodes that are redundant in the same sense as the one

discussed for GKTs.

� For instance, a node with two inputs originating from the same

node is removed for binary nodes.

� Similarly, a node with four inputs originating from the same node

is removed for quaternary nodes.
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GENERALIZED KRONECKER DECISION DIAGRAMS (cont)

� Transformations for S, pD and nD nodes (Drechsler) are applied

to single-variable nodes.

� The transformations for multi-variable nodes are their

straightforward generalizations.

� All these transformations generalize the OKFDD transformations.

� This way, the precise de�nitions of all GK decision diagrams and

respective 
attened (Zhegalkin) forms can be obtained.
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APPLICATIONS OF NEW REPRESENTATIONS

(1) Synthesis of easily testable, two-level and multilevel,

AND/EXOR circuits.

(2) Representation of large functions.

(3) Synthesis of circuits with predictable and controllable timing.

(4) Synthesis for Fine Grain FPGAs (Atmel) and standard FPGAs

(XILINX).

(5) Exact and approximate ESOP minimization.
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Type of Tree Expression generated Decision Diagram

from the tree Generated from Tree

Shannon Tree Minterm Expansion Binary Decision Diagram (BDD)

Positive Davio Tree Positive Polarity Functional Decision

Reed-Muller (PPRM) Diagram (FDD) Kebschull et al

Reed-Muller Tree Fixed Polarity Reed-Muller

Reed-Muller (FPRM) Decision Diagram

Kronecker Tree Kronecker Expansion (KRO) Ordered Kronecker Functional

Decision Diagram (OKFDD)

Perkowski et al, Drechsler et al

Pseudo Reed-Muller Tree Pseudo Reed-Muller Expansion (PSDRM) Pseudo Reed-Muller Decision Diagram

Pseudo Kronecker Tree Pseudo Kronecker Pseudo Kronecker Decision

Expansion (PSDKRO) Diagram (PKDD) Sasao

Free Kronecker Tree Free Kronecker Free Kronecker Decision

Expansion (FKE) Diagram (FKFDD) Perkowski/Ho

Table 1: Relations of Known Canonical AND/EXOR Trees, Expressions and Decision Dia-

grams.
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Type of Tree Expression generated Decision Diagram

from the tree Generated from Tree

pD/nD Fixed/Mixed pD/nD Fixed/Mixed pD/nD Fixed/Mixed

RM Tree Expansion Lattice Diagram

Generalized Kronecker Generalized Kronecker Generalized Kronecker

Tree (GKT) Expansion (GKE) Decision Diagram (GKDD)

Pseudo Generalized Pseudo Generalized Pseudo Generalized Kronecker

Kronecker Tree (PGKT) Kronecker Expansion (PGKE) Decision Diagram (PGKDD)

Mixed Pseudo Generalized Mixed Pseudo Generalized Mixed Pseudo Generalized

Kronecker Tree (MPGKT) Kronecker Expansion (MPGKE) Kronecker Decision Diagram (MPGKDD)

Ordered Generalized Ordered Generalized Ordered Generalized

Kronecker Tree (OGKT) Kronecker Expansion (OGKE) Kronecker Decision Diagram (OGKDD)

Free Generalized Free Generalized Free Generalized

Kronecker Tree (FGKT) Kronecker Expansion (FGKE) Kronecker Decision Diagram (FGKDD)

Table 2: Relations of New Canonical AND/EXOR Trees, Expressions and Decision Diagrams.

An example of Fixed/Mixed representations is in italic, Zhegalkin forms are in bold.
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Figure 7: Set-theoretical relationship among known and new (Zhegalkin)

classes of AND/EXOR canonical forms
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Type of Tree Lattice Diagram Where lattices are

Generated from Tree and type of regular layout discussed in more detail

Shannon Tree Universal Akers Array Akers

Pseudo-Symmetric BDD (PSBDD) Chrzanowska

Positive Davio Tree Functional Perkowski et al

Lattice Diagram

Reed-Muller Tree Reed-Muller Perkowski et al

Lattice Diagram

Kronecker Tree Ordered Kronecker Perkowski et al

Lattice Diagram

Pseudo Reed-Muller Tree Pseudo Reed-Muller Lattice Diagram Perkowski et al

Pseudo Kronecker Tree Pseudo Kronecker Perkowski et al

Lattice Diagram

Free Kronecker Tree Free Kronecker Perkowski et al

Lattice Diagram

pD/nD Fixed/Mixed pD/nD Fixed/Mixed

RM Tree RM Lattice Diagram

Table 3: Relations of Canonical AND/EXOR Trees and Lattice Dia-

grams (PART I)
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Type of Tree Lattice Diagram Where lattices are

Generated from Tree and type of regular layout discussed in more detail

Generalized Kronecker Generalized Kronecker similar, even more general diagrams

Tree (GKT) Lattice Diagram are presented in

Lattice Diagram Perkowski/Pierzchala/Drechsler

Pseudo Generalized Pseudo Generalized Kronecker Example 4.1 with canonical expansion,

Kronecker Tree Lattice see also

(PGKT) Diagram Perkowski/Pierzchala/Drechsler

Mixed Pseudo Generalized Mixed Pseudo Generalized

Kronecker Tree (MPGKT) Kronecker Lattice Diagram

Ordered Generalized Ordered Generalized

Kronecker Tree (OGKT) Kronecker Lattice Diagram

Free Generalized Free Generalized

Kronecker Tree (FGKT) Kronecker Lattice Diagram

Linearly Independent Linearly Independent Perkowski

Kronecker Tree Decision Lattice Diagram /Pierzchala/Drechsler

Boolean Ternary Boolean Ternary

Decision Tree Lattice Diagram

Pair-Symmetry Ternary Pair-Symmetry Ternary Example 4.2. - Non-canonical

Decision Tree Regular Lattice Diagram expansion, regular layout

Pair-Symmetry Ternary Pair-Symmetry Ternary Non-canonic expansion,

Decision Tree Generalized Lattice Diagram non-regular layout

Table 4: Relations of Canonical AND/EXOR Trees and Lattice Dia-

grams (PART II.)
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CANONICAL AND/EXOR DECISION DIAGRAMS

� Canonical AND/EXOR Decision Diagrams are obtained by combining

isomorphic nodes and removing redundant nodes.

� For instance, a node with two inputs originating from the same node is

removed (Drechsler).

� Similarly, a node with four inputs originating from the same node is

removed.

� Transformations for S, pD and nD nodes are applied to single-variable

nodes.

� Their multi-variable node generalizations are applied to multi-variable

nodes.

� All these transformations generalize the OKFDD transformations.

� This way, the de�nitions of all 
attened forms and decision diagrams

can be obtained.
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EXAMPLE WHEN PGKT IS BETTER THAN GKT

� The PGKT for fi has Shannon node for variable a on top, GRM node

for cofactor fia for expansion variables b; c, and GRM node for cofactor

fia for expansion variables b; c.

� The expansion diagram is

fi = a(1 � x � b � y � c � z � bc � v) �

a(1 � v � c � y � b � z � b c � x):

� Thus, it has two GRM nodes, and 5 nodes for variables a; x; y; z; v (the

variable-nodes for variables x; y; z; v are shared).

� Observe that in the subdiagram for fia the polarity is [11,1,1] and in

the subdiagram for fia the polarity is [00,0,0].
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EXAMPLE WHEN PGKT IS BETTER THAN GKT (cont)

� It can be shown, that it is not possible to have a smaller diagram for

fia, because each change to another polarity would require exoring

some of variables x; y; z; v and this would lead some extra exor nodes,

which is to more nodes than four for only the variable-nodes.

� Similarly, changing the polarities in the subdiagram for a will always

lead to diagrams with more nodes than in the above solution.

� Since both subdiagrams are worse, the entire diagram is worse by

having the same expansion in both subdiagrams.

� Similarly it can be shown that the variable a must be on top, and, in

general, there exists no GKT that is better or equal to fi.
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CREATING NEW HIERARCHY

� Similarly it can be shown that:

� free GKT is better than the ordered GKT.

� .........

� all possible changes of orders in the subtrees to the same order in

both subtrees will always result in higher total node costs.

� Examples of forms with special properties, like superiority of GKE

with respect to PSDKRO, PGKE with respect to GKE, MPGKE

with respect to PGKE, and so on, can be created.

� This way, the hierarchy from Fig. 4 has been also created.
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APPLICATIONS

� Create very fast cube-based ESOP minimizers based on the idea

of separating variables to "Kronecker-type" variables and

"GRM-type variables".

� The concepts presented here can be applied for the synthesis of

easily testable two-level AND/EXOR circuits.

� There are many other new canonical expansion forms resulting

from the 
attening of the new trees.

� Furthermore, variants of non-ordered sets Sj can also be

considered.
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APPLICATIONS (cont)

� Much research on minimal ESOP circuits.

� So far, the exact solution can be obtained only for a very small

number of input variables.

� The quality of AND/EXOR circuits from these expansions should

be better that those corresponding to GRMs or (Pseudo) KROs

because the search space of GKTs is much larger than the search

space of the GRM expansions.

� The size for which exact solutions can be found remains an opern

problem.

� Quality of search heuristics to partition and to order the input

variables.
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ZHEGALKIN LATTICE DIAGRAMS AND

REGULAR LATTICE LAYOUTS

� Akers introduced the so-called Universal Akers Arrays in 1972.

� They are regular lattices and look like BDDs for symmetric

functions.

� It was proven that every binary function can be realized with such

structure, but an exponential number of levels was necessary

(which means, the control variables in diagonal buses were

repeated very many times).

� Sometimes the only way to implement a function is to repeat the

same variable subsequently, without other variables interspersed.
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ZHEGALKIN LATTICE DIAGRAMS AND

REGULAR LATTICE LAYOUTS (cont)

� The arrays of Akers were universal and they were unnecessarily

large, because they were calculated once for all for the worst case

functions.

� No e�cient procedures for �nding order of (repeated) variables

were given, and some functions were next shown for which this

approach is very ine�cient.
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LATTICE DIAGRAMS

� Because of the progress of hardware and software technologies

since 1972, our approach is quite di�erent from that of Akers.

� We do not want to design a universal array for all functions,

because this would be very ine�cient for nearly all functions.

� Instead we create a logic/layout functions' generator that gives

e�cient results for many real-life functions, not only symmetrical.

� As shown by Ross et al that, in contrast to the randomly

generated "worst-case" functions, 98% of functions from real-life

are decomposable.

� Therefore, the functions are either decomposable to the easy

realizable functions, or they do not exist in practice.
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LATTICE DIAGRAMS (cont)

� Analysis of realizations of arithmetic, symmetric, unate and

standard benchmark functions and new technologies (Concurrent

Logic, Atmel).

� Our generalizations of expansions:

1. S,pD and nD expansions.

2. All Linearly-Independent expansions, the Boolean Ternary

expansions, all Zhegalkin expansions.

3. All Kronecker, Pseudo-Kronecker, Mixed, and other Decision

Diagram concepts that are used in Reed-Muller logic.
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LATTICE DIAGRAMS (cont)

� More powerful neighborhood geometries.

� 2x2 Lattices, 3x3, 4x4 lattices.

� In essence, the 2x2,3x3,4x4 and 8x8 neighborhoods are used in

patents and published works.

� We allow to mix control variables in diagonal buses. This permits

to realize Free diagrams.
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LATTICE DIAGRAMS (cont)

� Calculation of data input functions to lattice nodes for any type of

expansions and any lattice neighborhoods is performed by the

same technique of solving logic equations for a given structure,

as one used for Linearly Independent logic.

� In contrast to LI logic, the structural equations can have one,

many, or no solutions.

� When there are many solutions, the one evaluated as best is taken.

� When there are no solutions, the backtrack to another structure,

another expansions, or another blocks of input variables is

executed.
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LATTICE DIAGRAMS (cont)

� Selection of the order of (usually repeated) variables is done using

the concept of the best separation of most di�erent-value

minterms, using the Repeated Variable Maps.

� Variable ordering (repeating) and variable partitioning.

� In contrast to the worst-case randomly generated functions, for

real-life benchmark functions only few repetitions of variables

are enough.

� It is especially easy to symmetricize the weakly speci�ed

functions and Boolean relations.
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CONCLUSIONS AND FUTURE WORK

The generalization of the DDs can be done in several ways, which

can be combined together to create various new representations.

� D1. Creating new and more powerful expansion types for nodes

(also non-canonical), thus departing from the standard S, pD, nD

set of expansions.

� D2. Allowing for several types of expansions in every level of the

expansion tree,

� D3. Allowing more freedom in ordering variables in branches of

the tree (including the case of no ordering at all),
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CONCLUSIONS AND FUTURE WORK. (cont)

� D4. Combining not only isomorphic nodes in trees to create

Directed Acyclic Graphs but also combining arbitrary nodes

together, thus modifying functions realized by these nodes. Nodes

are combined using joining operations from [?, ?, ?]. This

approach, in general, leads to the need of repetitions of

variables (as in Regular and Generalized Lattices).

� D5. Creating generalized expansions for sets of variables,

instead for single variables.
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CONCLUSIONS AND FUTURE WORK. (cont)

� Some of these generalized types of decision diagram

representations have already been introduced, investigated

theoretically, and implemented in CAD tools to mention only

those used for Exor Logic.

� Many more, however, remain still to be analysed and evaluated

experimentally.

� Many types that may result from the above dimensions of

generalization have not even been de�ned yet.

� Considering the Green/Sasao hierarchy, the new representations

will be not worse than the known ones in terms of complexity.
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CONCLUSIONS AND FUTURE WORK. (cont)

� We expect the new representations to �nd applications in logic

synthesis for ESOP circuits, �ne grain FPGAs, and representation

of large functions.

� Symmetric functions.

� Zhegalkin Lattices are superior to Universal Akers Arrays when

realizing all totally symmetric functions, partially symmetric

functions, or easily symmetrizable functions for which only few

variables require repetitions in the structure.

� They should be combined with Ashenurst/Curtis

decompositions, for the layout-driven synthesisk the realization

of arbitrary functions.
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CONCLUSIONS AND FUTURE WORK. (cont)

� All these researches have applications to submicron technology

� They can be all used for custom logic/layout synthesis.

� To develop new types of FPGAs and synthesis for FPGAs.

� K*BMDs (Drechsler,Becker) use arithmetic operations of addition

and multiplication instead of binary logic operations, and �nd

applications in veri�cation of digital systems, and for solving

general problems in discrete mathematics.

� Here another approach to the generalization of Kronecker

diagrams was proposed.

� All ideas here can be further extended to multiple-valued logic,

integers, and word-level diagrams.
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CONCLUSIONS AND FUTURE WORK. (cont)

� The diagrams and lattices introduced here can also be generalized

to integer arithmetic (and also for rational arithmetic realized with

continuous logic), where + and * arithmetic operators and more

general linearly independent operations would be used.

� These "word-level" expansions can be derived.

� The word-level expansions together with the generalization types

D1-D5 can be used to create trees, forms, diagrams, lattices, and

layouts.

� Lattices have been also proposed for continuous logic and MV

logic (Perkowski,Pierzchala,Drechsler).


