
Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 1'
&

$
%

LAYOUT-DRIVEN SYNTHESIS FOR

SUBMICRON TECHNOLOGY: MAPPING

EXPANSIONS TO REGULAR LATTICES

Marek A. Perkowski, Edmund Pierzchala, and Rolf Drechsler +,

Dept. Electr. Engn., Portland State University, Portland, USA

+ Inst. Comp. Sci., Albert-Ludwigs-University,

Freiburg in Breisgau, Germany



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 2'
&

$
%

PLAN OF TALK

� Introduction - layout-driven synthesis.

� Expansions and expansion nodes.

� Max-type versus LI-type lattices.

� Use of Shannon expansions to create a lattice.

� SOP expansions.

� Regular layout.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 3'
&

$
%

MAIN IDEAS

� Lattice Structure - new concept in VLSI layout.

� Applications in submicron design, quantum devices, and designing

new �ne-grain FPGAs.

� In the regular arrangement of cells, every cell is connected to 4, 6

or 8 neighbors and to vertical, horizontal and diagonal buses.

� Methods for expanding arbitrary binary and multi-valued

combinational functions to this layout are illustrated.

� This is a new approach to layout-driven logic synthesis of

combinational functions.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 4'
&

$
%

BINARY DECION DIAGRAMS FOR SYMMETRIC FUNCTIONS

� Expansions of functions, are operators that transform a function to a

few simpler functions.

� For instance, in canonical Shannon expansion function f is expanded

with respect to input variable a as follows: f = afa + �af�a, where

fa = f ja=1, and f�a = f ja=0 are positive and negative cofactors of

function f with respect to variable a, respectively.

� Tautological cofactor functions are combined to single nodes.

� Nodes for functions fa and f�a and bus for variable a are mapped to

layout, and procedure is repeated for the next input variable.

� Any single-output symmetrical binary function can be directly mapped

to regular layout with 1,2,3,4,... nodes in successive levels

corresponding to input variables.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 5'
&

$
%

WHAT IF FUNCTION IS NOT SYMMETRIC?

� We show hot to extend this approach to arbitrary binary

functions, not necessarily symmetrical.

� Other expansions of functions can also be used.

� The expansion nodes are mapped to neighborhood structures

which are more powerful than those investigated theoretically in

the past (Akers, Chrzanowska-Jeske).

� The proposed here structures are similar to those from commercial

Fine Grain FPGAs (Atmel - Concurrent Logic, Xilinx - Algotronix,

Motorola - Pilkington).



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 6'
&

$
%

THREE COMPONENTS OF LATTICE DIAGRAMS

� The concept of a lattice diagram involves three components:

(A) Expansion of a node function creates several successor nodes of

this node. Function f corresponds to the initial node in the

lattice, initially a tree.

(B) Joining operation joins several nodes of a bottom of the lattice

(this level before joinings looks like a tree). This is in a sense a

reverse operation to expansion.

(3) Regular geometry, to which the nodes are mapped, guides which

nodes of the level are to be joined.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 7'
&

$
%

USE OF MULTI-VALUED LOGIC

� Every signal in the Lattice can be treated as multi-valued

(particularly, binary).

� A multivalued (MV) connection for logic with 2k values can be

realized by k binary wires which comprise a bus.

� This makes the lattice "fat" and encodes the multi-valued signal

to binary.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 8'
&

$
%

SPECIAL CASES OF LATTICE DIAGRAMS

� Some special cases of Lattice Diagrams are theoretical models

of cellular logic:

{ Akers Arrays.

{ Fat Trees,

{ Generalized PLAs,

{ Maitra cascades,

� Another special cases of Lattice Diagrams are industrial

structures from several patents of �ne grain FPGAs (Motorola,

Atmel, Plessey, Pilkington).



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 9'
&

$
%

OUR GENERALIZATIONS

� In addition to structure, we show constructive and e�cient

methods of designing discrete functions in these structures.

� The methods were also extended to continuous functions.

� We showed on many examples that this geometry is very powerful

and more universal than the previously investigated general cellular

structures.

� Here we will further extend and unify these notions to expansions

with more than 2 successor functions, and geometries with

more than 4 neighbors.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 10'
&

$
%

EXPANSION AND JOINING OPERATIONS



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 11'
&

$
%

afa a’+a’g

fa’b’ abg

a’ a a’ a

b b’ bb’bb’

f g

agfa’

a a’+a’g )a a’+a’gb’(af )
+bfa’

b (af
+b’ga

ag +a g 0a0a fa11

(a)

f g
(b)

a0
a

a a a
a1 1

2 20

2 +a gaa 112fa 0 a f2

Figure 1: (a) Shannon, (b) Ternary Post.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 12'
&

$
%

TYPES OF EXPANSIONS

� Two types of expansions:

{ maximum-type,

{ Linearly-Independent (LI) type.

� Maximum-type expansions use the MAX gate (in binary logic -

OR), and disjoint literals or subfunctions for cofactors.

� They include binary Shannon (S) and Sum-of-Products (SOP)

(Perkowski ULSI'97) expansions and their multiple-valued logic

generalizations, such as in Post logic.

� Below we will present only the maximum-type expansions:

Shannon, SOP, and Post (MV Shannon).



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 13'
&

$
%

STANDARD COFACTORS VERSUS V-COFACTORS

� Each binary function f is represented by a pair [ON(f),OFF(f)].

� Thus all cofactors fa for the product of literals a, are pairs:

fa = [ON(fa),OFF(fa)].

� Every cofactor fa of the product a of an (in)complete function f can

be interpreted as intersecting f with a and replacing all K-map cells

outside product a with don't cares.

� A standard cofactor fx where x is a variable does not depend on this

variable.

� Our cofactor, vacuous cofactor, denoted by v-cofactor, though, fx is

still a function of all variables including x, but as a result of cofactoring

the variable x becomes vacuous.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 14'
&

$
%

STANDARD COFACTORS VERSUS V-COFACTORS

� Standard cofactors are in general not disjoint.

� For any two disjoint products a1 and a2, the v-cofactors fa1 and

ga2 are disjoint.

� Therefore functions fa1 and ga2 are in an incomplete tautology

relation, and functions f and g are not changed when fa1 and ga2

are joined (OR-ed) to create a new function:

a1fa1 + a2ga2 , as in Fig. 1a (where: a1 = a2 = a, and �a is

denoted as a0).

� This way, the entire lattice is created level-by-level, Fig. 1a.

� Functions in lattice nodes become more and more unspeci�ed

when variables in levels are repeated.

� Ultimately nodes become constants.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 15'
&

$
%

STANDARD COFACTORS VERSUS V-COFACTORS. II

� Every variable cuts a Kmap into two disjoint parts.

� Thus, arbitrary two functions f and g can always be expanded together to a

Shannon lattice, with OR-ing as a join operation, provided that:

{ the same variable x
i

is used in the level,

{ and all expansions use negated literal �xi in the left, and positive literal xi

of the variable in the right.

� New functions in levels are created by rearranging the cofactors in joinings.

� This process can increase the number of nodes in comparison with a shared

OBDD of these functions.

� But, a regular structure is created, thus simplifying layout and making delays

predictable.

� In case when the products a1 and a2 are not disjoint, the v-cofactors fa1 and

ga2 can, in some cases, still form an incomplete tautology of functions.

� When these two cofactors satisfy a tautology relation, then functions fa1 and

ga2 can be joined (OR-ed) without changing functions f and g.

� Obviously, the same method works for arbitrary number of output functions.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 16'
&

$
%

EXAMPLES OF REGULAR LATTICES. I



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 17'
&

$
%

a b c d

a

b

b

c

c

c

d

d

d

d

e

e

e

f

f

g

d

e

e

f

g

a

d

(a) (b) (c)

(d) (e) (f)

b

c

e f g

a

b

c

b

d

e

g

e

h

0 c

e h

1 12



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 18'
&

$
%

EXAMPLES OF REGULAR LATTICES. II

Akers Array
and standard 2x2 lattice one diagonal connection added

3x3 lattice, 



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 19'
&

$
%

EXAMPLES OF REGULAR LATTICES. III

a b c d

a

b

b

c

c

c

d

d

d

d

e

e

e

f

f

g

d

e

e

f

g

a

d

b

c

e f g

Array without diagonal buses 

horizontal and vertical buses
used for connections are not repeated

Symmetric function,

Variables on diagonals 



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 20'
&

$
%

MULTI-VALUED SHANNON EXPANSIONS AND JOININGS

� The method to create Shannon Lattices can be easily expanded to

MV Shannon expansions for multi-output incomplete functions

(see Fig. 1b).

� In ternary logic, each single-variable expansion cuts a function's

map to three v-cofactors, and any two of them can be next

recombined by a joining operation MAX - Fig. 1b.

� MAX is the maximum operation denoted by +.

� Let us observe that disjointness of literals a0; a1; a2 is the

fundamental condition that must be satis�ed to create

maximum-type lattices.

� It is a special case of Linear Independence of functions used in LI

expansions.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 21'
&

$
%

SOP EXPANSIONS

� In binary SOP expansions a branching from node f is for any

subset of literals lj that their union covers the node function f .

The SOP expansion is: f = ljflj + lrflr :::: + lsfls .

� The method to create ordered Shannon lattices presented above

can be expanded to free (non-ordered) Shannon Lattices and SOP

Lattices.

� Any two nodes from the expansion that form an incomplete

tautology can be joined as shown above.

� S and SOP expansion types can be mixed in levels, thus creating

"pseudo" type of lattices.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 22'
&

$
%

LINEARLY-INDEPENDENT EXPANSIONS AND JOININGS

� Linearly Independent expansions for binary case use EXOR gates.

� Generalizations of Davio expansions.

� For �nite multiple-valued logic they are based on Galois Field Addition

gate.

� For arbitrary algebras, they should have at least one linear (group)

operation.

� Usually based on the algebraic structure of an arbitrary �eld.

� In particular, they include:

{ S (OR can be replaced with EXOR in Shannon expansion),

{ Positive and Negative Davio (pD and nD, respectively),

{ general Linearly Independent (binary and MV),

{ EXOR Ternary expansions.

� Joining operations for these expansions are more complicated.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 23'
&

$
%

THE PROCESS OF LATTICE CREATION

� One level of function f is expanded to an assumed type of the

Lattice for a selected variable (or a group of variables in case of LI

expansion).

� The level of the tree is mapped to the assumed type of Lattice.

� This means joining together some nodes of the tree-like lower part

of the lattice.

� The procedure requires repeating some variables in the lattice, the

key point was thus to �nd good methods of variable and

expansion types selections.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 24'
&

$
%

THE PROCESS OF LATTICE CREATION. II

� One approach to the variable order and expansion types selection

is based on generalized partial symmetries for cofactors.

� We demonstrated that for real-life binary benchmark functions,

and starting from the decompositional hierarchy of partitioning

variables, the overhead of variable repeating in planary lattices

was not excessive in each decomposed block.

� This is because symmetric and nearly symmetric blocks are

preferred by our Curtis-like decomposer.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 25'
&

$
%

OTHER REGULAR LATTICES. I

1 2

2

3

3

4

1

2

2

3

3

3

4

4

4

4

5

5

5

5

6

6

61

b1a1
a2

a0 b0 c0 d0

b1
b0

b2

c2

b2

b2

b0

b1

c0

c1

c0

c1c2

a

b

c

c

b

c d

d

d e

e fd

ed

ed

ed

c1

b

c

d

c

c

e

e

d

a

b c c

c d b e g

g e c e g

o

g’ e’

o

o o

a

b

b

c

c

pD

pD pD pD

S S

S

SS

S

S

S

SS

nD

nD

nD

nD nD

nD

nD

c

d

b

a

f1 f2 f3 (b)(a)

(c)

(d)

(e) (f)



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 26'
&

$
%

BINARY LATTICE WITH REPEATED VARIABLES IN DIAGONAL BUSES

a

b

b

c

c



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 27'
&

$
%

3x3 LATTICE, 3-OUTPUT FUNCTION, PSEUDO-KRONECKER

pD

pD pD pD

S S

S

SS

S

S

S

SS

nD

nD

nD

nD nD

nD

nD

c

d

b

a

f1 f2 f3



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 28'
&

$
%



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 29'
&

$
%

b1a1
a2

a0 b0 c0 d0

b1
b0

b2

c2

b2

b2

b0

b1

c0

c1

c0

c1c2

a

b

c

c

b

c d

d

d e

e fd

ed

ed

ed

c1

b

c

d

c

c

e

e

d

Figure 2: Ternary Lattice in Three-Dimensional Universe, and a way of



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 30'
&

$
%

2x2 footnotesize REGULAR LAYOUT GEOMETRIES

� In case of 4 neighbors, 2x2 cells, the lattice is planar and it is based

on a rectangular grid.

� Cell has two inputs and two outputs.

� The structure generalizes the known switch realizations of symmetric

binary functions, based on Shannon expansion.

� The same structure for Positive and Negative Davio expansions,

negated variables and constants as control variables of the nodes,

nodes controlled not by variables but by functions, and inverted edges

between nodes.

� Lattice diagram counterparts of Kronecker, Pseudo-Kronecker, and Free

Decision Diagrams.

� Theorem Every non-symmetric function can be symmetrized by

repeating variables.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 31'
&

$
%

� The selection of the next variable explained using the Repeated

Variable Maps.

� Modern technological realizations allow to have more than one control

variable in a level.

� All three types of buses (vertical, horizontal and diagonal) are used to

lead any variable to the circuit's levels.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 32'
&

$
%

GENERALIZATIONS TO 2x2 LATTICE DIAGRAMS

� Structures without diagonal buses are possible.

� Inputs and outputs can occur at avery point inside the lattice.

� Pairs or triplets of binary control variables can be used in nodes.

� Multivalued controls can be used.

� For a 4-neighbor lattice geometry, any canonical form of Reed-Muller

logic and its Linearly Independent generalizations can be realized.

� Any MV logic (for instance in GF(4)) can also be realized in the

4-neighbor lattice, but this would often require many repetitions of

variables.

� Continuous and fuzzy functions can also be realized.

� Ternary and quaternary lattices for binary, multiple-valued and

continuous functions.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 33'
&

$
%

3x3 REGULAR LAYOUT GEOMETRIES

� Every cell has three inputs (from N, NE and E) and three outputs

(to W, SW and S).

� This allows for realizations of:

{ generalized ternary diagrams (for binary EXOR logic).

{ arbitrary expansion-based Post logic.

{ GF(3) logic functions.

{ Any binary, or MV logic can be mapped as in the case of the

4-neighbor lattice, but now larger full trees are mappable to

subsets of lattices.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 34'
&

$
%

4x4 REGULAR LAYOUT GEOMETRIES

� Every cell has four inputs (from N,NE,NW, and E), and four

outputs (to S, SW, SE, and W).

� This allows realizations of:

{ generalized quaternary diagrams (for GF(4)),

{ arbitrary expansion-based Post or GF(k), k < 4 functions.

{ Any binary or MV logic can be mapped, and more e�ciently so.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 35'
&

$
%

APPLICATIONS OF LATTICE DIAGRAMS

� The families of lattice diagrams we introduced are counterparts

and generalizations of several diagrams known from the

literature (BDDs, FDDs, KFDDs).

� Due to this property, our diagrams can provide a more compact

representation of functions than either of the standard decision

diagrams, because they do not require any placement or routing.

� Placement and routing come as a side-e�ect of logic synthesis.

� Design methods are very e�cient especially for strongly

unspeci�ed functions, the more unspeci�ed the function, the

better the results.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 36'
&

$
%

CONCLUSION

� New methods introduced, of interest to deep sub-micron

technology and pass-transistor design for binary and MV gates.

� starting from all possible neighbor geometries in two and three

dimensional spaces, we create all possible regular structures.

� This extends previous planar geometries (Akers,

Chrzanowska-Jeske).

� We design arbitrary expansions for the new structures.

� New expansions can be constructed based on the

Linearly-Independent function theory, or any other canonical or

non-canonical function expansions.

� There exists a very high number of various new expansions.



Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 37'
&

$
%

� The same, layout-driven synthesis approaches are created for

binary, multivalued, linearly-independent, Galois and continuous

functions.

� The presented approach generalizes and uni�es many known

expansions, decision diagrams, and regular layout geometries.


