Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

LAYOUT-DRIVEN SYNTHESIS FOR
SUBMICRON TECHNOLOGY: MAPPING
EXPANSIONS TO REGULAR LATTICES

Marek A. Perkowski, Edmund Pierzchala, and Rolf Drechsler +,

Dept. Electr. Engn., Portland State University, Portland, USA

+ Inst. Comp. Sci., Albert-Ludwigs-University,
Freiburg in Breisgau, Germany

~

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

PLAN OF TALK

Introduction - layout-driven synthesis.

Expansions and expansion nodes.

Max-type versus LI-type lattices.

Use of Shannon expansions to create a lattice.

SOP expansions.

Regular layout.

~

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

4 N

MAIN IDEAS

e Lattice Structure - new concept in VLSI layout.

e Applications in submicron design, quantum devices, and designing
new fine-grain FPGAs.

e In the regular arrangement of cells, every cell is connected to 4, 6
or 8 neighbors and to vertical, horizontal and diagonal buses.

e Methods for expanding arbitrary binary and multi-valued
combinational functions to this layout are illustrated.

e This is a new approach to layout-driven logic synthesis of

combinational functions.

o /

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

BINARY DECION DIAGRAMS FOR SYMMETRIC FUNCTIONS

e Expansions of functions, are operators that transform a function to a

few simpler functions.

e For instance, in canonical Shannon expansion function f is expanded
with respect to input variable a as follows: f = af., + afa, where
fo = fla=1, and fz = f |a=0 are positive and negative cofactors of

function f with respect to variable a, respectively.
e Tautological cofactor functions are combined to single nodes.

e Nodes for functions f, and fz and bus for variable a are mapped to
layout, and procedure is repeated for the next input variable.

e Any single-output symmetrical binary function can be directly mapped

/

to regular layout with 1,2,3,4,... nodes in successive levels

corresponding to input variables.

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

WHAT IF FUNCTION IS NOT SYMMETRIC?

We show hot to extend this approach to arbitrary binary
functions, not necessarily symmetrical.

Other expansions of functions can also be used.

The expansion nodes are mapped to neighborhood structures
which are more powerful than those investigated theoretically in
the past (Akers, Chrzanowska-Jeske).

The proposed here structures are similar to those from commercial
Fine Grain FPGAs (Atmel - Concurrent Logic, Xilinx - Algotronix,

/

Motorola - Pilkington).

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

g R

THREE COMPONENTS OF LATTICE DIAGRAMS

e The concept of a lattice diagram involves three components:

(A) Expansion of a node function creates several successor nodes of
this node. Function f corresponds to the initial node in the
lattice, initially a tree.

(B) Joining operation joins several nodes of a bottom of the lattice
(this level before joinings looks like a tree). This is in a sense a
reverse operation to expansion.

(3) Regular geometry, to which the nodes are mapped, guides which
nodes of the level are to be joined.

o /

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

4 N

‘ USE OF MULTI-VALUED LOGIC I

e Every signal in the Lattice can be treated as multi-valued

(particularly, binary).

e A multivalued (MV) connection for logic with 2* values can be

realized by k binary wires which comprise a bus.

e This makes the lattice ”fat” and encodes the multi-valued signal

to binary.

o /

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

4 N

‘ SPECIAL CASES OF LATTICE DIAGRAMS I

e Some special cases of Lattice Diagrams are theoretical models

of cellular logic:
— Akers Arrays.
— Fat Trees,
— Generalized PLAs,
— Maitra cascades,
e Another special cases of Lattice Diagrams are industrial

structures from several patents of fine grain FPGAs (Motorola,
Atmel, Plessey, Pilkington).

o /

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

4 N

OUR GENERALIZATIONS

e In addition to structure, we show constructive and efficient
methods of designing discrete functions in these structures.

e [he methods were also extended to continuous functions.

e \We showed on many examples that this geometry is very powerful
and more universal than the previously investigated general cellular

structures.

e Here we will further extend and unify these notions to expansions
with more than 2 successor functions, and geometries with
more than 4 neighbors.

o /

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

EXPANSION AND JOINING OPERATIONS

~

10

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

1

ad
a'fy +a0gyp

\ Figure 1. (a) Shannon, (b) Ternary Post.

11

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

‘ TYPES OF EXPANSIONS I

Two types of expansions:
— maximum-type,
— Linearly-Independent (LI) type.

Maximum-type expansions use the MAX gate (in binary logic -
OR), and disjoint literals or subfunctions for cofactors.

They include binary Shannon (S) and Sum-of-Products (SOP)
(Perkowski ULSI'97) expansions and their multiple-valued logic
generalizations, such as in Post logic.

Below we will present only the maximum-type expansions:
Shannon, SOP, and Post (MV Shannon).

~

/

12

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

STANDARD COFACTORS VERSUS V-COFACTORS

Each binary function f is represented by a pair [ON(f),OFF(f)].

Thus all cofactors f, for the product of literals a, are pairs:

fa = [ON(fa),OFF(fa)].

Every cofactor f, of the product a of an (in)complete function f can
be interpreted as intersecting f with a and replacing all K-map cells
outside product a with don't cares.

A standard cofactor f. where x is a variable does not depend on this
variable.

Our cofactor, vacuous cofactor, denoted by v-cofactor, though, f. is
still a function of all variables including x, but as a result of cofactoring

the variable x becomes vacuous.

/

13

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

14

\
STANDARD COFACTORS VERSUS V-COFACTORS

Standard cofactors are in general not disjoint.

For any two disjoint products a; and a9, the v-cofactors f,, and
Ja, are disjoint.

Therefore functions f,, and g,, are in an incomplete tautology
relation, and functions f and g are not changed when f,, and g,,
are joined (OR-ed) to create a new function:

a1 fa, + @29a,, as in Fig. 1a (where: a; = a3 = a, and a is
denoted as a').

This way, the entire lattice is created level-by-level, Fig. 1a.

Functions in lattice nodes become more and more unspecified
when variables in levels are repeated.

Ultimately nodes become constants. /

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

STANDARD COFACTORS VERSUS V-COFACTORS. I

Every variable cuts a Kmap into two disjoint parts.

Thus, arbitrary two functions f and g can always be expanded together to a

Shannon lattice, with OR-ing as a join operation, provided that:
— the same variable x; is used in the level,
— and all expansions use negated literal @; in the left, and positive literal z;

of the variable in the right.
New functions in levels are created by rearranging the cofactors in joinings.
This process can increase the number of nodes in comparison with a shared
OBDD of these functions.
But, a regular structure is created, thus simplifying layout and making delays
predictable.
In case when the products a1 and as are not disjoint, the v-cofactors f,; and
da, C€an, in some cases, still form an incomplete tautology of functions.
When these two cofactors satisfy a tautology relation, then functions f,; and

ga, can be joined (OR-ed) without changing functions f and g.

Obviously, the same method works for arbitrary number of output functions./

15

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

EXAMPLES OF REGULAR LATTICES. |

~

16

17

Singapur, September 1997

Layout-Driven Logic Synthesis Based on Lattices

5\

O
_ N’
Q) Y
v— = h = OH O
i H—o
O H H O
SRS o
_ O
roln OH + (O H
I @©
u O
N
(©
N’

()

(€)

(d)

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

~

Akers Array
and standard 2x2 lattice

_

‘ EXAMPLES OF REGULAR LATTICES. Il I

3x3 lattice,
one diagonal connection added

/

18

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

g
d e=t fHIg -
’ —— f
crod EHle [f
b Hc Liid H e
d ; I . e
L a-Hb] e g

a bc de

Array without diagonal buses

horizontal and vertical buses
\used for connections

‘ EXAMPLES OF REGULAR LATTICES. Il I

d

e fo 9

\

Symmetric function,
Variables on diagonal s

N\

are not repeated /

19

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

MULTI-VALUED SHANNON EXPANSIONS AND JOININGS

The method to create Shannon Lattices can be easily expanded to
MV Shannon expansions for multi-output incomplete functions
(see Fig. 1b).

In ternary logic, each single-variable expansion cuts a function’s
map to three v-cofactors, and any two of them can be next
recombined by a joining operation MAX - Fig. 1b.

MAX is the maximum operation denoted by +.

L a? is the

Let us observe that disjointness of literals a°, a
fundamental condition that must be satisfied to create

maximum-type lattices.

It is a special case of Linear Independence of functions used in LI

expansions. /

20

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

SOP EXPANSIONS

In binary SOP expansions a branching from node f is for any
subset of literals /; that their union covers the node function f.
The SOP expansion is: f = [;fi, + L. fi..... + lsfi,.

The method to create ordered Shannon lattices presented above

can be expanded to free (non-ordered) Shannon Lattices and SOP

L attices.

Any two nodes from the expansion that form an incomplete
tautology can be joined as shown above.

S and SOP expansion types can be mixed in levels, thus creating

" pseudo” type of lattices.

~

/

21

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

LINEARLY-INDEPENDENT EXPANSIONS AND JOININGS

Linearly Independent expansions for binary case use EXOR gates.
Generalizations of Davio expansions.

For finite multiple-valued logic they are based on Galois Field Addition
gate.

For arbitrary algebras, they should have at least one linear (group)
operation.

Usually based on the algebraic structure of an arbitrary field.

In particular, they include:

— S (OR can be replaced with EXOR in Shannon expansion),
— Positive and Negative Davio (pD and nD, respectively),

— general Linearly Independent (binary and MV),

— EXOR Ternary expansions.

Joining operations for these expansions are more complicated.

22

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

THE PROCESS OF LATTICE CREATION

One level of function f is expanded to an assumed type of the

Lattice for a selected variable (or a group of variables in case of LI

expansion).

The level of the tree is mapped to the assumed type of Lattice.

This means joining together some nodes of the tree-like lower part

of the lattice.

The procedure requires repeating some variables in the lattice, the

key point was thus to find good methods of variable and
expansion types selections.

~

/

23

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

_

~

THE PROCESS OF LATTICE CREATION. II

e One approach to the variable order and expansion types selection
is based on generalized partial symmetries for cofactors.

e \We demonstrated that for real-life binary benchmark functions,
and starting from the decompositional hierarchy of partitioning
variables, the overhead of variable repeating in planary lattices

was not excessive in each decomposed block.

e This is because symmetric and nearly symmetric blocks are
preferred by our Curtis-like decomposer.

24

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

‘ OTHER REGULAR LATTICES. | I

W

(d)

‘
ERSAZ AR }\:“\
A
k\‘ LT
Y

~

25

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

BINARY LATTICE WITH REPEATED VARIABLES IN DIAGONAL BUSES

26

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

3x3 LATTICE, 3-OUTPUT FUNCTION, PSEUDO-KRONECKER

27

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

~

28

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 29

Ficure 2: Ternary Lattice in Three-Dimensional Universe, and a way of

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997 30

/- ~

\
2x2 footnotesize REGULAR LAYOUT GEOMETRIES

e In case of 4 neighbors, 2x2 cells, the lattice is planar and it is based

on a rectangular grid.
e Cell has two inputs and two outputs.

e The structure generalizes the known switch realizations of symmetric
binary functions, based on Shannon expansion.

e The same structure for Positive and Negative Davio expansions,
negated variables and constants as control variables of the nodes,
nodes controlled not by variables but by functions, and inverted edges
between nodes.

e Lattice diagram counterparts of Kronecker, Pseudo-Kronecker, and Free
Decision Diagrams.

e Theorem Every non-symmetric function can be symmetrized by

\ repeating variables. /

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

e The selection of the next variable explained using the Repeated
Variable Maps.

e Modern technological realizations allow to have more than one control
variable in a level.

e All three types of buses (vertical, horizontal and diagonal) are used to
lead any variable to the circuit’s levels.

31

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

GENERALIZATIONS TO 2x2 LATTICE DIAGRAMS

Structures without diagonal buses are possible.

Inputs and outputs can occur at avery point inside the lattice.
Pairs or triplets of binary control variables can be used in nodes.
Multivalued controls can be used.

For a 4-neighbor lattice geometry, any canonical form of Reed-Muller
logic and its Linearly Independent generalizations can be realized.

Any MV logic (for instance in GF(4)) can also be realized in the
4-neighbor lattice, but this would often require many repetitions of
variables.

Continuous and fuzzy functions can also be realized.

Ternary and quaternary lattices for binary, multiple-valued and

continuous functions. /

32

Layout-Driven Logic Synthesis Based on Lattices

Singapur, September 1997

-~

_

‘ 3x3 REGULAR LAYOUT GEOMETRIES I

e Every cell has three inputs (from N, NE and E) and three outputs

(to W, SW and S).

e [his allows for realizations of:

generalized ternary diagrams (for binary EXOR logic).
arbitrary expansion-based Post logic.
GF(3) logic functions.

Any binary, or MV logic can be mapped as in the case of the
4-neighbor lattice, but now larger full trees are mappable to
subsets of lattices.

~

/

33

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

_

~

‘ 4x4 REGULAR LAYOUT GEOMETRIES I

e Every cell has four inputs (from N,NE,NW, and E), and four
outputs (to S, SW, SE, and W).

e This allows realizations of:
— generalized quaternary diagrams (for GF(4)),
— arbitrary expansion-based Post or GF(k), k£ < 4 functions.

— Any binary or MV logic can be mapped, and more efficiently so.

/

34

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

APPLICATIONS OF LATTICE DIAGRAMS

The families of lattice diagrams we introduced are counterparts

and generalizations of several diagrams known from the
literature (BDDs, FDDs, KFDDs).

Due to this property, our diagrams can provide a more compact
representation of functions than either of the standard decision
diagrams, because they do not require any placement or routing.

Placement and routing come as a side-effect of logic synthesis.

Design methods are very efficient especially for strongly
unspecified functions, the more unspecified the function, the
better the results.

/

35

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

~

CONCLUSION

New methods introduced, of interest to deep sub-micron
technology and pass-transistor design for binary and MV gates.

starting from all possible neighbor geometries in two and three
dimensional spaces, we create all possible regular structures.

This extends previous planar geometries (Akers,
Chrzanowska-Jeske).

We design arbitrary expansions for the new structures.

New expansions can be constructed based on the
Linearly-Independent function theory, or any other canonical or
non-canonical function expansions.

There exists a very high number of various new expansions. /

36

Layout-Driven Logic Synthesis Based on Lattices Singapur, September 1997

-~

e The same, layout-driven synthesis approaches are created for
binary, multivalued, linearly-independent, Galois and continuous
functions.

e The presented approach generalizes and unifies many known
expansions, decision diagrams, and regular layout geometries.

~

37

