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Abstract: In this paper we focus on a general approach of using
genetic algorithm (GA) to evolve Quantum circuits (QC). We
propose a generic GA to evolve arbitrary quantum circuit specified
by a (target) unitary matrix as well as a specific encoding that
reduces the time of calculating the resultant unitary matrices of
chromosomes. We demonstrate that, in contrast to previous
approaches, our encoding allows synthesis  of small quantum
circuits of arbitrary type, using standard genetic operators.

1. Introduction

While quantum mechanics and quantum computing are quite established research
areas, automated quantum circuit synthesis is still only at the beginning of its
exploration [2,4,6,7,8]. In quantum computation we use quantum bits (q-bits) instead
of classical binary bits to represent information. This gives the advantage of being
able to perform massively parallel computations in one time step. The design of
quantum circuits of practical size is still technologically impossible, but the progress
is fast and there are no arguments based on physics against the possibility of building
powerful quantum computers in future. Therefore quantum computing area of
research is recently flourishing. Finding an  effective and efficient method of
designing QC can be used for two applications: (1) modeling quantum computers in
FPGA-based reconfigurable hardware for speeding-up computations that are very
inefficient on standard computers [9], and (2)  designing new optimized gates and
circuits for theoretical investigations and for use in future quantum computers.

The major difference between quantum logic and binary logic is the concept of the
information itself. While the classical (binary or multi-valued) representations of
information are precise and deterministic, in Quantum Computing the concept of bit is
replaced by the q-bit. Unlike classical bits that are realized as electrical voltages or
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currents present on a wire, quantum logic operations manipulate q-bits [7].  Qubits are
microscopic entities such as a photon or atomic spin.  Boolean quantities of 0 and 1
are represented by a pair of distinguishable different states of a qubit.  These states
can be a photon’s horizontal or vertical polarization denoted by |�> or |�>, or an
elementary partice’s spin denoted by |�> or |�> for spin up and spin down,
respectively.  After encoding these distinguishable quantities into Boolean constants,
a common notation for qubit states is |0> and |1>.

Qubits exist in a linear superposition of states, and are characterized by a
wavefunction ψ.  As an example, it is possible to have light polarizations other than
purely horizontal or vertical, such as slant 45° corresponding to the linear
superposition of ψ=½[√2|0>+√2|1>].  In general, the notation for this superposition is
α|0>+β|1>.  These intermediate states cannot be distinguished, rather a measurement
will yield that the qubit is in one of the basis states, |0> or |1>.  The probability that a
measurement of a qubit yields state |0> is |α|2, and the probability is |β|2 for state |1>.
The absolute values are required since, in general, α and β are complex quantities.

Pairs of qubits are capable of representing four distinct Boolean states, |00>,
|01>, |10> and |11>, as well as all possible superpositions of the states.  This property
is known as “entanglement”, and may be mathematically described using the
Kronecker product (tensor product) operation ⊗ [7].  As an example, consider two
qubits with ψ1=α1|0>+β1|1> and ψ2=α2|0>+β2|1>.  When the two qubits are
considered to represent a state, that state ψ12 is the superposition of all possible
combinations of the original qubit, where

ψ12= ψ1⊗ψ2 = α1α2|00> + α1β2|01> + α2β1|10> + β1β2|11>. (1)
Superposition property allows qubit states to grow much faster in dimension

than classical bits.  In a classical system, n bits represents 2n distinct states, whereas n
qubits corresponds to a superposition of 2n states.

In terms of logic operations, anything that changes a vector of qubit
states can be considered as an operator. These phenomena can be modeled using the
analogy of a “quantum circuit”. In a quantum circuit wires do not carry Boolean
constants, but correspond to pairs of complex values, α and β.  Quantum logic gates
of this circuit map the complex values on their inputs to complex values on their
outputs.  Operation of quantum gates is described by matrix operations. Probabilistic
calculations based on this representation are used in only very small quantum
computers so far, but it was verified that information can be represented as a
superposition of states of single q-bits, and that in one time step operations can be
performed on several q-bits. Beside this useful effect of quantum computing, various
other effects resulting from q-bit encoding emerge, such as q-bit entanglement.
Moreover it was shown [7] that any QC has to be reversible. In this paper we focus
only on the synthesis of arbitrary quantum circuits (and quantum gates in particular)
of small size. We propose a generalized approach to the problem of QC synthesis by
using a simple encoding and a generic GA without any problem-specific operators.
Our results show that, in contrast to published work [4,6], any kind of genetic
operators can be used by using the proposed encoding.

This paper is divided into seven sections. Section 2 gives a brief overview of  genetic
algorithm and quantum gates used in our experiments. Section 3 explains the new
problem encoding that we devised, and section 4 the fitness function. Section 5
discusses our selection method and section 6 the experimental results. Finally section
7 concludes the paper.



1. GA for QC synthesis

This section presents a brief description of the GA as the generator of QC. GA is one
of a widely used search heuristics; it is based on the principle of evolutionary
computation. For each problem we define a population (a set of solutions) that are
evolved under certain constraints. Here, each individual in the population will be a
QC. The quality of each solution is evaluated by a fitness function. Here the fitness
function is based on an entry-by-entry comparison between the entries of the
individual's unitary matrix and the entries of the matrix of the target gate or circuit.
Each individual in the population represents a chromosome. It encodes a particular
QC. To evolve the initial population to a set of individuals with better properties, GA
uses three types of genetic operators on chromosomes: mutation, crossover and
reproduction. Each of these operators is applied to one or more individuals in order to
increase their fitness values. In the GA presented here only three operators have been
implemented, but we experimented with larger sets of operators.

Mutation represents a completely random operator that introduces noise in the current
population by randomly modifying a part of a chromosome. This operator is very
important while searching the problem space in order to avoid being trapped in local
minima of the fitness function F. In a standard bit-wise encoding of the solution
candidate as a chromosome, the mutation operator acts by inverting values of
individual bits. Here units of the chromosome are the (elementary) quantum gates
(QG) such as Hadamard Gate or Swap Gate. The mutation can change gates. With the
encoding used here, possible results of this operator are the following:  changing one
QC to another one, adding a new QG, removing an existing QG, changing the
placement of an existing QC in the QC, and changing one QG to another one.

Crossover operator is a tool that directly recombines existing QCs in order  to explore
a larger problem space. It cuts two chromosomes (two individuals) in one or more
locations and swaps their parts.

Selection is based on the Stochastic Universal Sampling rule, [1]. Mutation and
crossover are executed sequentially, based on two randomly generated numbers;
mutation is applied with the probability exceeding 0.4 and crossover with the
probability exceeding  0.7.

2. Encoding

While encoding a QC as a string of objects one encounters the following question:
how to encode the number of wires and the position in the circuit of a gate in the least
complex data structure possible? The encoding of the individual's chromosome is, in
addition to the fitness function, one of the most important aspects of designing a well-
converging GA. For that purpose we considered various encoding schemes [4,7], to
finally come up with a simple and effective encoding for basic QC. This encoding is
however powerful enough to allow describing any possible configuration of a QC. In
contrast to the previous work, we do not use any additional specifications or
parameters to specify the chromosome-defined QC. The order  of consecutive
quantum gates as well as special parsing of the chromosome contain all information
about the represented circuit. In this paper, there is no particular attention paid to



explore the problem of changing parameters for certain gates (control bit) [4], but the
focus is more on the global synthesis aspects of QC and the generality of the
approach. While most of previous works use genetic programming, ours is only the
second one that uses a GA and the first in which a standard GA is applied. An
efficient encoding of each individual that can be then computed  in parallel can
consequently lead to the decrease of the computation time, thus making the GA more
adapted to real-time quantum circuit design tasks. This encoding will have therefore
applications in parallel computing and Evolvable Hardware accelerators for quantum
circuits synthesis [9]. The conditions imposed on our encoding are the following:
preservation of equal probabilities of presence of each type of gate, fast encoding and
decoding of an individual gene in the chromosome and no parameters beside basic
definitions (no control bits).

An example of our encoding is shown in Figure 1.

Figure 1: Transformation of a QC from the encoded chromosome  (on the left) to
a final quantum circuit notation representation of this QC (on the right). Here S is
a Swap gate, H is a Hadamard gate, W is a wire. In  the middle there is one
CCNOT (Toffoli) gate.

On the left side of Figure 1 it is shown how the circuit on the right of the same figure
is encoded. As can be seen, there is no free space in the proposed encoding. Each
place in the circuit is presented as a symbol of a unitary matrix of certain elementary
quantum gate. A wire has a unitary identity matrix representation. While evaluating
the fitness function, Kronecker products (tensor products) are executed on matrices of
parallel gates (blocks, circuits), and standard matrix multiplications are performed on
serial connections of gates. Each QC is parsed in parallel blocks, evaluated separately
and finally multiplied together to give the final unitary matrix representation of the
QC. This final matrix is next compared with the target matrix to evaluate their
distance as a part of fitness function calculation. The example shown in Figure 1
illustrates a common inconvenience of encoding quantum circuits for genetic
algorithms. A quantum gate CCNOT  can be placed over three different arbitrary
wires in a quantum circuit. However with the encoding used, there is no information
indicating what gates are connected to what wires, beside the order of the gates. To
solve this problem we insert two Swap gates (one before and one after) the CCNOT.
This implies that outside of the Swap gates the CCNOT seems like being on wires 2,4
and 5, but the real CCNOT gate uses wires 3,4 and 5. In order of being able to encode
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a QC without any additional parameters, the circuit is split into parallel blocks where
each block can be evolved separately.

Figure 2: Exam
circuit.

 
This implies the fact, that
where each block contains
and can be used for mutat
than calculations of unitary
in the population, its chrom


















−
−

=







⊕









−
1010

0101
1010
0101

2
1

10
01

11
11

2
1

ples of Kronecker product ⊕, and of Matrix product * on a sample of a

 each quantum circuit can be parsed into parallel blocks,
 a series of ordered QC. Each parallel block is a small QC
ion or crossover. No additional evaluations of blocks other
 matrices are necessary. For the above particular individual
osome representation (encoding)  will be as in Figure 3.



Figure 3 : Representation of an individual in the population (upper field), The
chromozome encoding (on the left and bottom) and each parallel segement
representation. W is wire, S swap gate, H Hadamard gate, CN Cnot (Feynman) gate.
Letters P determine the border of each parallel segment. As QC does not have fan out
or fan in, each parallel  segment has the same number of input and outputs.

The mutation operator is not acting upon the gate definition itself, but can only move
blocks of input/output vectors inside the chromosome. In the reported work we used
only some of the possibilities of this operator, as presented above. Other possibilities
will be investigated in the forthcoming work.

The genetic operators defined here will have the following properties:

� Mutation can change any gate to arbitrary other gate, with the same or
different number of inputs/outputs.

� Mutation can induce a removal of a gate by changing it to a wire, or can
simply remove an entire parallel block.

� Mutation changing a gate with n inputs to a gate with m inputs can add
more gates or remove more gates in order to satisfy the number of
inputs/outputs of the whole QC.

� Mutation plays here a major role. As the described below, the Crossover
operator is quite constrained, the probability of mutation is very high [0.2,
0.8].

� Crossover can act upon a whole parallel block (from one chromosome) by
interchanging it with another parallel block (from another chromosome)
of the same number of inputs, i.e. with same number of wires. Crossover
was used in this paper with probabilities [0.2, 0,8].

Figure 4: Example of results of a mutation on a chromosome. The complexity of the
individual matrix of each circuit depends directly on the length of the chromosome and
the number of wires.

5 P W S W W P P H W CN P

Mutation

5 P W S W W P
5 P W S W W P P CN W H P

5 P W S W W P P CN CN P



3.  Fitness function

Another important aspect of GA is the fitness function. Good design of the fitness
function  is crucial to the convergence of the whole quasi stochastic search process. It
assigns fitness to each individual (chromosome) according to the evaluated error.
Example: for a minimization of a function the individual whose chromosome has the
smallest value error, will have the highest fitness. There is a magnitude of possible
ways how to select the fitness function. Here we have the advantage that we know the
goal (the “target matrix” or the matrix of the circuit to be synthesized), so we can
easily determine the maximum fitness value. The result of this evaluation will be a
“1” if all elements of the final matrix are the same as in a individual's chromosome,
and less than 1 otherwise, proportional to the operator Λ, as described below.

The evaluation of an individual is done here similarly to [4,6] using an entry by entry
comparison of the unitary matrices. However instead of looking for the global
minimum we search for the global maximum by searching for the maximum value of

Λ−
+ error

=F
1

1 . The evaluation function for error is similar to [4,6]:

with ijU is the ij
th

  element of the requested unitary matrix for the
searched circuit, and S i j is the same element in the current matrix. We add another
operator Λ to the fitness function, a direct factor influencing the fitness of the current
circuit.

with Φ is the number of minimum parallel segments, and n is the total number of
segments in the chromosome i. Note the minimum number of segments is a user-
modifiable parameter to investigate trade-offs between the components of the fitness
function F. Its function is to adjust fitness of an individual regarding its length. With
respect to the evaluation process of any QC, an infinite number of circuits can be
found with the same unitary matrix but with different structures; here we want to find
the minimal circuit, that satisfies error equal zero. Value of Φ here was taken from the
following value interval [1 - 5].

4.   Selection Operator

With the selection operator, the GA chooses individuals for applying replication. Each
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individual selected by this operator will be either a parent for possible offsprings
(using crossover) or will be just used in the next generation. Roulette Wheel rule is
based on the fitness of each individual in the population, selecting the most fit
individuals. The weakness of this rule is that it contributes to a faster elimination of
the non-fit individuals, and thus provides a fast convergence but with the weakness of
sometimes not exploring the unknown part of the problem space. Stochastic universal
sampling [1] is a method similar to the Roulette Wheel, but the selection of
individuals is less biased by the fitness of the individuals. To select n as the number of
individuals, n pointers, each spaced by 1/n pointers, are placed over the chromosome.
The position of the first pointer is selected randomly. This method ensures the
offspring selection which is closer to what is deserved then the roulette wheel
selection method. We compared both types of selection operations, resulting in
stochastic universal sampling being used for most experiments.

5.  Experimental  results

The difficulties of applying GA for designing correct (and hopefully minimal)
quantum circuits are the following. (1) A high time of evaluation of QC matrix,
especially due to the calculation of Kronecker (tensor) product with sizes of matrices
growing exponentially for larger circuits. This means that for the computation of large
matrices one needs chromosome encoding that would allow for parallel computation.
(2) If a high number of individuals are used for the total population, then  the result
can be find out in less generations [3] but with longer times of fitness evaluation. (3)
Using a precise encoding for each specific configuration of a particular q-gate is
obviously a big loss of time. To avoid extreme time consumption for calculations, the
GA was limited to a relatively small population of individuals (50 – 100). Next we
limited our explorations to circuits with the maximum of 4 wires, so that we can
observe the time difference between the calculation of big (4 wires) and small (1 wire)
unitary matrices. Finally to speed up the whole process we used OOP (object oriented
programming) language so as to homogenize the programming and genetic operators.

We set up a set of tests, described below as the first step of setting up a basic library
of benchmarks for automated QC design methods to be publicly available by
researchers in this area. Our goal was to test evolutionary techniques for  automated
design of an arbitrary q-gate in the minimum  time.

In all examples discussed here, a one-point crossover approach is used. The mutation
operator can erase, add, increase or decrease the chromosome length. To test the
settings, all results have been averaged over 20 runs total, for each type of q-gate.

Table 2 shows the result for the first benchmark. For each GA run, one randomly
selected  quantum gate was used to create its unitary matrix, to be next used as a
target matrix for the algorithm. The goal of the GA was to find at least the same gate,
if not a similar and smaller but of the same functionality. The starting set of available
gates to the GA was non-restricted  (Table 1) and any number of gates was used. This
test was set to test the convergence of our approach.



Number of
inputs

Gates

1 Wire, Hadamard, Pauli (X, Y,Z), Phase
2 Cnot, Swap, C-Z, C-phase
3 Ccnot(Toffoli), C-swap(Fredkin)

Table 1:  Quantum Gates used in this experiment. (as building blocks of the
chromosome and target gate)

The results are quite encouraging. In every case the GA found the requested gate,
however in no case the automatically created chromosome was  better than the circuit
for which the corresponding target unitary matrix was created. Summary of results is
shown in Table 2.

Number of
inputs per q-gate

Number of
generations

pM pC
Real time

(average 20
runs)

pM<0.2
Number of
generations

Real time
(average 20

runs)
Population

size

1 - input <50 0.4 0.6 < 30 seconds <100 < 1 minute 50
2 - inputs <50 0.6 0.4 < 30 seconds <100 < 1 minute 50
3 - inputs 50 - 200 0.6 0.6 <1 minutes <200 <3 minutes 60

Table 2: Results of experiments. Due to the similarity of results we
grouped the results by the number of inputs/outputs of the requested
q-gate. PM and PC are probability of mutation and crossover.

All circuit evolved were exact copies or at least had same number of wires, of the
searched circuit. For small gates the convergence is logically faster, because of the
restricted recombination between different gates. A gate with more inputs than the
number of wires in the circuit was not tested. The 3 input gates test shows the same
result, however with exponential time. The results are measures of average values
over 20 runs. Depending on the circuit we were looking for, the times are, as
predicted, increasing very fast with the increase of the number of QC inputs. Two
configurations were tested. First, high probabilities of mutation (0.4-0.7) and
crossover (0.4-0.6) were applied. The results are surprising because of so high
mutation probability. The size of the GA population was set in range [50,100]. The
local very high probability of mutation allows a fast dangerous search. However the
runs were stopped as soon as a good solution was found and the best individual
examined. A large random search with mutation used on a recombination problem
seems to have a positive effect in a restricted search. The solution was found also
when the mutation was of a small order, however the time of search raised as well.



Next step was to test composite circuits proposed by [4,6]. We selected three of them
shown in Figure 4. The first two are both circuits to produce EPR as in [4], the last is
the “send” circuit originally proposed by [10] and evolved in [6].

Figure 4: 3 types of circuits searched with the GA.

The results are shown below in Table 3. We were able to find all searched circuits,
however in this part of experimentation the starting set of gates was open. Our GA
found for all benchmarks at least similar, if not better, results compared to the
published results of the studied cases. Even if the number of generations grows
exponentially, the real time still remains reasonable.

Table 3: Results of benchmark tests for assembled circuits.

The 3- and 4- input circuit search was made under similar conditions as the first part
of experiments. Results from both tables shows that GA can be very successfully used
to synthesize circuits. The time can be reduced by appropriate hardware and
consequently used for still larger designs.

This allows us to claim that our algorithm is better then those previously proposed.

Number of
inputs per q-

gate

Number of
generations

pM pC
Real time

(average 20
runs)

pM<0.2
Number of
generations

Real time
(average 20

runs)
Population

size

3 - input <150 0.4 0.6 < 1 minutes <300 < 2 minute 50
4 - inputs <350 0.6 0.4 < 2 minutes <900 < 3 minute 50
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6.   Conclusion

We have shown that the evolutionary computation can be used for automated QC
development in real time using standard PC computers. Designed as shown, this
algorithm can be also easily implemented on parallel computers or in classical binary
FPGA-based evolvable hardware. An interesting research will be to implement
evolutionary learning in future truly quantum hardware which will lead to a new area
of Evolutionary Quantum Hardware (EQH). Our program found one new circuit that
was earlier came across by Williams [7] and three circuits located by Rubinstein [4].
In all cases that we studied the program was faster than the results previously
published. In contrast to previous works that concentrated on some particular types of
circuits such as teleportation [7] and entanglement [4] our approach is fully general.
For instance the optimized version of the “send” circuit found by Williams was
created. We will further experiment with the algorithm trying to find various
realizations for gates and circuits from [8,9,10,12,13,14].

Our algorithm and its data structure can be applied without any modification to
reversible circuits from “pseudo-classical” circuits [14]. Such circuits are used for
instance in the famous Grover’s Quantum Search Algorithm [11]. Reversible gates
realizing Boolean operations can be realized not in quantum but in several other
reversible technologies such as DNA, single-electron transistor, mechanical nano-
switches, quantum dots or CMOS.

Although all benchmarks proved the convergence of our GA and results were better
than previous ones,  the goal of our approach is not only to benchmark a GA, but
mainly to explore various evolutionary and other approaches [Alan,Andrey] to
reversible and quantum circuit synthesis. Next step is to apply different Evolutionary
algorithms such as Baldwinian or Lamarckian GA, genetic engineering or
Evolutionary strategies. The encoding used here fits well also the design of reversible
logic, where each parallel block in the chromosome is a small sub-circuit, with same
number of wires as its neighbors.  Obtained results also show the problem of
scalability of any designing method. Here for 5 wires the time of search is small, and
as previously said hardware implementation of a GA will speed the process up.
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