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Abstract— This paper presents a new approach to
decomposition of fuzzy functions. A tutorial back-
ground on fuzzy logic representations is first given to
emphasize next the simplicity and generality of this
new approach. Ashenhurst decomposition of fuzzy
functions was discussed in [3] but it was not suitable
for programming and was not programmed. In our
approach, fuzzy functions are converted to multiple-
valued functions and decomposed using an mv decom-
poser. Then the decomposed multiple-valued func-
tions are converted back to fuzzy functions. This ap-
proach allows for Curtis-like decompositions with ar-
bitrary number of intermediate fuzzy variables, that
have been not presented for fuzzy functions by the
previous authors. Extension of the method to fuzzy
relations is also shown. The new approach is suitable
for Machine Learning, where the input data are often

expressed in fuzzy logic.

I. INTRODUCTION

Decomposition of a function is a process of creating an
equivalent composition of other, simpler functions. For
example, if x and y are sets of variables and F(z,y) =
H(G(z),y), then the term to the right is a composition
of functions that are equivalent to the function F'. Thus,
the complexity of F' is reduced by representing function
F in terms of functions G and H. The formulation of
functional decomposition is very simple, but it is a very
complex problem to solve when large data have to be dealt
with in order to find the composing functions of the small-
est total complexity. One problem is in determining how
to group the input variables # and y for functions G' and
H. This process of selecting the input variables to G and
H is called variable partitioning. The input variables go-
ing to G are called the bound set and those going to H
are called the free set.

The need for the introduction of fuzzy functions and
multiple-valued functions is to extend the domain of bi-
nary functions. The world can not always be conveniently
represented in binary terms so the concepts of fuzzy-

valued, multiple-valued, and continuous-valued functions
have been introduced. They find many applications
other than circuit design, primarily Artificial Intelligence
(AT), Machine Learning (ML), Fault Diagnosis, industrial
control, Knowledge Discovery from Data Bases (KDD),
Multi-Objective Optimization and other. Binary func-
tions have only two values, either 0 or 1, while a multiple-
valued function can have many values. In fuzzy functions,
normally defined, the values are continuous in the range
from 0 to 1. Decomposing fuzzy logic functions is a diffi-
cult problem because fuzzy logic is non-disjoint. In other
words, various uses of fuzzy variables cannot be separated
based on their complemented or non-complemented val-
ues.

The definition, operations, identities and differences be-
tween the fuzzy logic and binary logic will be explained
in the sections 2 and 3. Fuzzy maps and S-maps are then
introduced. Next the steps to perform fuzzy logic decom-
position using fuzzy maps as in the Kandel and Francioni
method [3] will be briefly mentioned and some difficulties
pointed out (section 4).

Then the new approach based on converting a fuzzy
function to a multiple-valued function [1, 2] and decom-
posing the multiple-valued function will be explained (sec-
tions 5 and 6). We previously developed several decom-
posers and made use of them to decompose multiple-
valued functions and relations [14, 13, 12]. These pro-
grams allow to deal with hundreds of variables, tens thou-
sands of terms and solve efficiently difficult real-life prob-
lems from ML and KDD. Our approach converts a multi-
output fuzzy function to a multi-output three-valued func-
tion to be given to one of our decomposers.

Finally, the method of converting the multiple-valued
functions back to a fuzzy function will be explained in
section 7 in order to show that the results are a correct
decomposition of the initial function. Section 8 presents
extension of this method to fuzzy relations. Experimen-
tal results are in section 9, and section 10 concludes the

paper.



A. Background on Fuzzy Logic

A fuzzy set, defined as A, is a subset of the universe
of discourse U, where A is characterized by a member-
ship function u4(#). The membership function w4 (%)
is associated with each point in U and is the ”grade of
membership” in A. The membership function wua(x) is
assumed to range in the interval [0,1], 0 corresponding to
non-membership and 1 corresponding to full membership.
The ordered pairs form the set {(x,ua(x))} to represent
the fuzzy set member and the grade of membership [4].

A.1 Operations:

The fuzzy set operations [5] are defined as follows. In-
tersection operation of two fuzzy sets uses the symbols:
N, *, A, AND, or min. Union operation of two fuzzy sets
uses the symbols: UV, +, OR, or max.

e Equality of two sets is defined as A = B & ua(z) =
up(z) for all z € X.

o Containment of two sets is defined as A subset B, A C
B o ug(z) <up(e) forall z € X.

o Complement of a set A is defined as A, where
uz(x) =1 —uy(x) for all 2 € X.

o Intersection of two sets i1s defined as A N B where
tang () =min{(ua(z), up(x))} for all x € X where
CCACCBthen CCANB.

e Union of two sets 1s defined as A U B where
tuaup (2) =max{(ua(x),up(x))} for all x € X where
DDA DDBthen DD AUB.

Example 1: An example of fuzzy operations:
Let X = {1,2,3,4,5} and consider the following fuzzy
sets A and B.

A=1{(3,0.8),(5,1),(2,0.6)} and,
B=1{(3,0.7),(4,1),(2,0.5)}

Then
AnB=1{(3,0.7),(2,05)}
AUB=1{(3,0.8),(4,1),(5,1),(2,0.6)}
A= {(1,1),(2,0.4),(3,0.2),(4,1),(5,0)}

A.2 Identities:

The form of identities use fuzzy variables which are the

same as elements in a fuzzy set. The definition of an

element in a fuzzy set, {(x,u4(x))}, is the same as a fuzzy

variable z and this form will be used in the remainder of

the paper. Fuzzy functions are made up of fuzzy variables.

The identities for fuzzy algebra [6] are:

Idempotency: X + X =X, X« X =X

Commutativity: X +Y =Y + X, X*xY =YV xX

Associativity: (X +Y)+ 72 =X+ (Y + 7),
(X*Y)xZ =X (Y*27)

(@ (b)

Figure 1: Non-linear membership function and inverse

Absorption: X + (X *«Y) =X, X+« (X+YV)=X
Distributivity: X + (Y * 7)) = (X +Y)* (X + 7),

Xx(Y+2)=(X*Y)+ (X x2)
Complement: X = X

DeMorgan’s Laws: (X +Y) =X Y, (X*Y)=X+Y

A.3 Transformations:

Some transformations of fuzzy sets with examples follow:
Th+ab=(x+T)b£b
zb+ 2Tb = 2b(1 4+ 7) = xb
zh+ xxTh = Eb(l 4+ x) =7zb
at+za=a(l+z)=a
a+Za=a(l+7)=a
a+xxa=a

=

a+0=a
r+0==x
xx0=0
z+1=1
r*xl==x
Example 2:

at+xa+Tb+a2Tb=a(l+z)+ Tb(1+2)=a+Tb

Example 3:
at+ra+ZTa+eZa=a(l+2+T+2T)=a

I1. DIFFERENCES BETWEEN BOOLEAN LOGIC AND
Fuzzy Locgic

In Boolean logic the value of a variable and its inverse
are always disjoint (X * X = 0) and (X + X = 1) because
the values are either zero or one. However, in fuzzy logic
the membership functions can be either disjoint or non-
disjoint. The membership function is determined by the
grade of membership and can be any value in the interval
[0,1]. Fuzzy membership functions can be any function
that can be realized in the interval from zero to one. For
simplicity, the term “grade of membership” of a variable
in a set will be replaced by the term “fuzzy variable”. An
example of a fuzzy non-linear membership function X is
shown in Fig. la with its inverse membership function
shown in Fig. 1b.



0 0 X
(€) (b)

Figure 2: Linear membership function X and inverse
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Figure 3: Intersection X + X #0, Union X + X # 1

The fuzzy intersection of variables X and its comple-
ment X is not empty, or is not always equal to zero be-
cause the membership functions are non-disjoint. From
the membership functions Figures 2a and 2b the intersec-
tion of fuzzy variable X and its complement X is shown
in Fig. 3a. From the membership functions Figures 2a
and 2b the union of fuzzy variable X and its complement
X is shown in Fig. 3b.

III. GRAPHICAL REPRESENTATIONS OF FUzZzYy
FuNncTiONS FOR DECOMPOSITION.

In Karnaugh maps [8] the symbols 1, 0, and - (used to
denote a don’t care) are used to describe minterms and
cubes of a binary function and each cell corresponds to a
minterm. In contrast, in fuzzy maps the whole terms are
represented as cells in the map. Since there is only a finite
number of unique terms in a fuzzy function, a symbol 1
can be used to show if a term is present [7].

A. Fuzzy Maps

As presented by Schwede and Kandel [9], the fuzzy map
may be regarded as an extension of the Veitch diagram
[10], which forms the basis for the Karnaugh map. Fuzzy
maps pictorially describe the set of all fuzzy implicants
which represent a fuzzy function. A K-map of n variables
can be represented by 27 areas (cells) in the map corre-
sponding to care minterms (values 1 and 0) and don’t care
minterms (values -). A fuzzy map of n variables can be
represented by 4" areas (cells) in the map. The symbol
I 18 used in the map to represent a term existing in the

Figure 4: Fuzzy Map with (n = 2)

fuzzy function, F'(x1, 2, ..., ¥pn).

For two variable fuzzy map, the columns are labeled
x1%1, x1, T1, 1 and the rows are labeled 573, #9, Ts, 1
as shown in Fig. 4.

The column and row headings are conventionally re-
placed with quarternary numbers representing the binary
headings. There are four combinations for each variable
x;, 11n 1,2, ..., n variables, to be represented in the head-
ings of the rows and columns as shown in Fig. ba.

1. This heading is vacuous in x;. The pair z;Z; is de-
noted by 00 and is represented by 0.

2. This heading includes Z; but not z;. The pair z;Z; is
denoted by 01 and represented by 1.

3. This heading includes z; but not ;. The pair z;z; is
denoted by 10 and represented by 2.

4. This heading includes z; and ;. The pair z;z; is
denoted by 11 and represented by 3.

The construction of fuzzy maps of max, OR, +, as
union, and min, AND, * as intersection, is shown Iin
Fig. 5. The place where [ is to be placed 1s easy to de-
termine. The function of union f(X71, X2) = X1 + X5 is
shown in Fig. 5a with the X; term that is denoted by the
I in the last row because X5 is vacuous in this term, while
the X, term 1s denoted by I in the second row because
X7 is vacuous. In the Fig. 5b the function intersection
f(X1,X2) = X1 x X3 is shown by placing an [ in the
column X; and row Xs.

Fuzzy map representation have important properties
which distinguish them from Boolean maps. As in
Boolean maps one can form a cube to reduce the func-
tion by circling the ones. In fuzzy maps, the placement of
I can show a reduction of the fuzzy logic function. Also
another placement of I can show the expansion of the
fuzzy logic function (see Fig. 6). Function from Fig. 6a
and Fig. 6b are equivalent, but have symbols I placed
differently. Reduction or canonicization of function cor-
responds then to moving symbols I across the map.

The lattice of two fuzzy variables is shown in Fig. 7a
with the most reduced terms on top. The lattice shows
the relationship of all the possible terms. The lattice also
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Figure 5: Maz and Min representations using fuzzy maps
for two variables.
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Figure 6: (a) F(xy,22) = ®Tize + 217172,  (b)
F(zi,20) =217

shows which two terms can be reduced to a single term.
In the corresponding fuzzy map of two variables shown in
Fig. 7b the highest level is 1 and the lowest is 5. This
fuzzy map shows the level in the lattice. The next sec-
tion defines a rule for reduction and shows all possible
reductions of a two variable fuzzy map.

A.1 The Subsumtion Rule

The subsume rule is a way to reduce a fuzzy logic function,
because rules (X * X # 0) and (X + X # 1) are not valid
for fuzzy logic. The subsumtion rule is based on the fact
that (X * X < 0.5) and (X + X > 0.5). Also on the
transform a + za = a(1 + ) = a.
QT+ AT L = 6T

where a and £ can be one or more than one variable [9].
Fig. 8 explains the subsumtion operation on maps of two
fuzzy variables, #; and x5. In each map, a cell marked
with I denotes a term, and the cells marked with ¢ denote
all the cells subsumed by cell I. Subsumtion operations
for all possible product terms of two variables are shown
in Fig. 8. The next section explains how to expand fuzzy
maps to n variable maps.

B. S-Maps

S-maps are another way to arrange two-variable fuzzy
maps for n variables [9]. To construct an n-variable S-
map, whole one or two variable fuzzy maps are treated as

Figure 7: Lattice and Level Map of 1 and x-
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Figure 9: S-map for n = 3.

though they were squares of an S-maponn —1 or n — 2
variables. This method is just iterated for n variable S-
maps. These subsets of the logical space are called sub-
maps and are a very important feature of S-maps. As in
fuzzy maps, the binary headings for the columns and rows
are converted to a quarternary representation as shown
in Fig. 9. The sub-map boundaries are indicated by the
vertical solid lines.

The same manipulations used on a two-variable map
can be used on an n-variable S-map. On S-maps, en-
tire sub-map sized patterns behave as single cells in two-
variable map [3].

Both fuzzy maps and S-maps have been used in the
past to decompose fuzzy switching functions.

e Fuzzy map is used to find if a decomposition exists.

e S-map is used to determine the decomposition, or to
calculate the predecessor function G and successor
function H.

IV. KANDEL’S AND FRANCIONI’S APPROACH TO Fuzzy
LoGic DECOMPOSITION

The approach of Kandel and Francioni [3] was based
on graphical representations and required reducing func-
tions to canonical forms. Thus, it was quite difficult to
program, which was perhaps the reason that it was not
implemented in Francioni’s Ph.D. Thesis. We are not
aware of any other decomposer of fuzzy functions. Be-
low we will briefly present reduction of fuzzy functions to
canonical forms to make this paper a simple tutorial on
fuzzy logic and also to emhasize the difficulties of Kan-
del’s/Francioni’s approach.

A. Function Form Needed to Decompose a Fuzzy Logic
Function in [3]

Standartly, the fuzzy logic function needs to be in a
canonical sum-of-products form as the input to decom-
position or other minimization procedure. The steps to
get a fuzzy logic function into the canonical form are the
following, and will be explained next[11]:

1. Represent the fuzzy logic function in sum-of-product
form.

XX Xi X1 XX Xi X 1
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Figure 10: Using fuzzy maps to find the canonical form of
f(z1 x2)

2. Represent the fuzzy logic function in a canonical
form.

This is done using the identities and transforms of fuzzy
logic.

Example 4: When the function is not in sum-of-products
form it is transformed to sum-of-products form:

F=X (XleXz) (XleXg)
= X1(X1 + X + X)) (X1 + Xo + X3)
= X1 X1+ XX Xo+ XX X+ XX Xo+ X1 Xo+
X1Xs X3+ X1 X7 Xo+ X1 X0Xs + X1 X0 X5
= X1X_1iX1X_1 X_ziX1X_1 Xs+ X1X2 + X1 X5 X3+
X1 XoXo 4+ X1 X0 X3

B. Eliminate the terms which can be subsumed by other
terms

After changing the fuzzy logic function into the sum-of-
products form, the function is not reduced to its simplest
form. The function now needs to be reduced to its sim-
plest form to be canonical. This is done using the subsume
rule, as shown in Fig. 8.

Example 5: The function F'(zy, #2) = 22T24+T102+21T2+
1Ty To isequivalent to F(z1, z2) = T12o+x1T2 as shown
in Fig. 10.

C. Problems with using Kandel’s and Francioni’s method
of Fuzzy logic decomposition

Their decomposition method, [3], uses fuzzy maps to
determine if a fuzzy decomposition exists and then uses S-
maps for the fuzzy decomposition. Theorems, definitions,
and a table are used to tell if the function in a fuzzy
map or a S-map is decomposable and how to perform the
decomposition. Special patterns must be recognized in
the maps.



Their method was not implemented as a computer pro-
gram, nor its correctness was verified, and it is difficult to
use both fuzzy maps and fuzzy S-maps concurrently. Con-
ceptually and didactically the many theorems from [3]
and definitions are hard to explain because they are not
linked in any way to the well-known concepts of Ashen-
hurst/Curtis decomposition. Besides, the method is dif-
ficult to extend to arbitrary number of variables and to
Curtis-like decompositions. In the sequel we will explain
the steps of converting any fuzzy function to a functional
form that can be decomposed using multiple-valued de-
composition approaches developed recently [12, 14, 13].

The next section will show how a fuzzy function in
a sum-of-products form can be converted to a multiple-
valued function, decomposed, and then converted back
into a multiple-valued fuzzy function.

V. Fuzzy FUNCTION TO MULTIPLE-VALUED FUNCTION
CONVERSION

The procedure to convert a fuzzy function to the
multiple-valued (MV) function is the following:

1. A fuzzy logic function needs to be in a sum-of-
products form.

2. The new map for the MV function needs to be of
dimension equal to the number of variables in the
fuzzy function. Every variable X; in the map will
have 3 values. The value X; = 0 is used in the map
where variable’s complement (z;) is present in the
term. The value of 1 is used when the variable and
its complement (z; T;) are present in the term, and
the value of 2 is used in the map where the variable
(%;) is present in the term.

3. For every product term of the fuzzy function, convert
all variables to ternary form and perform the MIN
operations on them.

4. After multiple-valued map for each product term is
created, the cells which are covered by these prod-
ucts are MAX-ed together to create the function’s
multiple-valued map.

Fig. 11 explains the mapping between the fuzzy terms
and terms in the MV map. A whole row or column of cells
corresponds to a single variable. For instance, all cells in
column 1 are for x5 5.

The next example shows how converting a fuzzy func-
tion to MV function reduces the function to a canonical
form, as example 5 showed for fuzzy maps.

Example 6: We use the same function as in example
5 to show how to convert a fuzzy function into an MV
function.

This example shows that converting a fuzzy function
into a MV function reduces to a canonical form because

Xe 0 1 2
X1
0 X: X, XXX, | Xi X,
1 XXy X0 | XX XX, | XX X,
2 X, X, X, X,X, X, X,

Figure 11: Conversion of fuzzy terms to Multiple-valued
terms on variables x1 and x-. For instance, fuzzy term
T1TT ToT5 is converted to X' le, and fuzzy term
T1TT T is converted to X1' X52.

as shown in Fig. 12 and in Fig. 13 the results are the
same.

The next section shows an example of taking a fuzzy
function and converting it into a MV function to be de-
composed and then converted back into two fuzzy func-
tions.

VI. DECOMPOSITION OF MULTIPLE-VALUED
FuNncTIiONS.

Example 7: F(z,y,2) = yz2 + 7 Y2z + zz. Fig. 14
shows the conversion of this three-variable fuzzy function
to a ternary MV function of three ternary variables. The
first map corresponds to xz, the second map corresponds
to T ¥ z Z and the third map corresponds to yz. The
map on bottom is the maximum of the three maps above
and it represents the ternary function F(X,Y,7) to be
decomposed. Let us observe that for all possible cofactors
X=t, Y=j, ¢,j = 0,1,2, the characteristic patterns 010,
011 and 012 exist. For instance, pattern 011 exists for:
X=0 and Y=1; X=1 and Y=1; X=1 and Y=0. Pattern
010 exists only for X=0 and Y=0. Pattern 012 exists
for all other combinations of X and Y values. Thus from
[13, 14] the function has three patterns for the bound set
{X,Y}, and is Ashenhurst decomposable, which means
that only one intermediate (ternary) signal G is needed.

The input function table is taken from the result of the
Fig. 14. The tables of functions G and H are the result of
the MV decomposition. Such decomposed functions can
be obtained using any of the two developed by us decom-
posers [13, 14], or any other general-purpose or ternary
decomposer.

Input function G function H function
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Figure 12: Conversion of a Fuzzy Function from Example
6 in non-canonical form to a Multiple-valued Function
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Figure 13: Conversion of a Fuzzy Function from Ezxam-
ple 6 in a canonical form to a Multiple-valued Function.
Observe the same resultant map as in Fig. 12.

X z XYzzZ Y z
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Figure 14: Conversion of three-variable fuzzy function
Fx,y,z) =2z + TY2Z + yz from Example 7 to Multiple-

valued function.
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VII. CONVERTING THE MULTIPLE-VALUED FUNCTION

TO THE Fuzzy FUNCTION

The initial fuzzy function is converted to the multiple-
valued function and then decomposed to several inter-
connected multiple-valued functions, called blocks. After
completing the iterative multi-level decomposition process
of multi-valued functions to non-decomposable blocks,
[13, 14], the block functions need to be converted back
to fuzzy functions. The procedure to convert a multiple-
valued block function to a fuzzy function is:

1. Use multiple-valued minimization to minimize the
function (option).

2. Convert the multiple-valued product terms back into
fuzzy product terms where each variable value X;
= 1 i1s converted into a variable and its complement
(z; T;). Each variable value X; = 2 is converted into
the variable (x;), and each variable value X; = 0 is
converted to the variable’s complement (7).

The results of the decomposition process, functions G
and H, are shown in Fig. 16, a,b, respectively, as MV
maps. Fuzzy terms Gz, G2Z and 27 of H are shown.

Two solutions are obtained,

G(e,y) =24y, H(z,y) =Gz + 27 (Fig. 15¢).

X z
0 0 1 2 0 0 0 0 —
27
1 1 1 2 1 1/ 1
[
2 2 2 2 6222 ok 2 )— Gz
G H

(d)

Figure 15: Resulting MV maps of functions G and H to
Ezxample 7.

and

G(z,y) =x+vy, H(z,y) = Gz + G2z (Fig. 15d).
The correctness of these two decompositions can be ver-
ified by a reader by drawing all intermediate MV maps
(as in Example 6) that create functions G and H, com-
posing functions G and H back to F, and converting from
ternary to fuzzy. In this case functions G and H are not
decomposed further, but in general these functions can
be decomposed, thus creating a tree or a Directed Acyclic
graph of decomposed fuzzy blocks [14, 13].

VIII. DECOMPOSITION OF Fuzzy RELATIONS

Multi-valued relation is introduced in [13] as a table in
which for certain combination of input variables values,
only one several specified output values can be selected.
For instance, in Figure 16g in cell for z=1, G=0 there are
two values, 0 and 1. It means that any ternary value other
than value 2 can be taken for this combination of input
variable values. This is called a generalized don’t care and
it generalizes a standard don’t care concept, where any set
of values of a given output is allowed for given input com-
bination. Thus, the generalized don’t cares of a ternary
signal are: {0,1}, {1,2}, and {0,2}. The standard don’t
care is {0,1,2}. Let us observe, that the generalized and
standard don’t cares correspond to the following values in
fuzzy logic:

{0,1} =7; or #; 7; (when an undecided shape is between
the one from Fig. 2b and the one from Fig. 3a).

{1,2} = #; T; or #; (when an undecided shape is between
the one from Fig. 3a and the one from Fig. 2a).

{0,2} = & or x; (when an undecided shape is between
the one from Fig. 2b and the one from Fig. 2a).



{0,1,2} = when the shape of z; is irrelevant.

There are several ways to specify the initial fuzzy re-
lations. A graphical method is illustrated in Figure 16a.
The OR relations among groups of terms denote that the
choice of any of the groups of terms pointed by the two
arrows originating from word OR can be made. Thus, the
function from Fig. 16 is specified by the expression:

F(z,y,z) = yz + [CHOICEOF
Tyzz OR (:Z2TY+2ZyygT)|+az.

In general, a fuzzy relation can be specified by an arbi-
trary multi-level decision unate function on variables Gy,
each of these variables denoting Max of terms for a sum-
of-products form of fuzzy relation. Such unate function
uses functors AND and OR and variables Gy correspond-
ing to Max groups of terms. The above fuzzy relation is
specified by the unate decision function:

A ANDB AND (CORD)=( A ANDB AND C) OR
(AANDBANDD)

where: A=yz, B=22,C=7y:Z2,D=(2Z2T 7+
ZZYYIT).

Thus, every fuzzy relation corresponds to a set of sum-
of-products fuzzy functions among which we can freely
choose.

Example 8. Given is a fuzzy relation F,.(z,y,2) = yz +

[CHOICEOF :T92Z OR (:ZxTY+2zZy 7T+
zz, illustrated also in the map from Figure 16a. This is
modification of Example 7 in which more choices of fuzzy
terms are given to the optimization tool. We specify that
the tool has a freedom of choice between the groups of
terms C =T yzZzor D= (2 Zx Ty+2Z y ¥ T), whichever
simplifies the final solution more.
For this fuzzy relation, the map of ternary relation from
Figure 16e is created by the operation of Maxing the
ternary maps of functions zz (Fig. 16b), yz (Fig. 16d),
and the map of the ternary relation corresponding to
fuzzy relation [CHOICE OF :Ty:z OR (#ZxTy+
zZyy7T)] (Fig. 16¢). Observe that there are two entries,
0 and 1 in the cell x=0, y=1, z=1 in Fig. 16e; this cell is
called a generalized don’t care and thus Fig. 16 stores a
ternary relation, not a ternary function.

The characteristic patterns 012 found for Ashenhurst-
like decomposition are encircled in Fig. 16e. Other pat-
terns found are 011 and 0(0,1)0. The last pattern corre-
sponds to either pattern 000 or to pattern 010. Thus, in
any case there are three patterns, and the decomposition
exists. Ternary function G after decomposition is shown
in Figure 16f, and ternary relation H is shown in Figure
16g. In general, both G and H can be relations in our
approach, so our decomposition decomposes a relation to
relations. Interestingly, sometimes also a function can
be decomposed to relations.

As we see, there is a choice of 0 and 1 in cell z=1, G=0
in Figure 16g. Choice of value 0 (Fig. 16g, H = GZ) leads
to the simpler solution from Figure 16h. Alternately, the

choice of value 1 in Fig.16g leads to the more complex so-
lution from Figure 161, which was found earlier in Exam-
ple 7, when function F' was assumed instead of relation
F,. Transforming, when possible, a fuzzy function to a
fuzzy relation, has thus a similar effect as replacing some
of cares of a function by don’t cares - it can be better
minimized.

IX. EXPERIMENTAL RESULTS

We decomposed correctly all functions from [3, 6] and
from other papers on fuzzy logic, and the computer times
were negligible. The decomposer from [14] can be set
to any fixed number of values in all intermediate signals,
so 1t is set to the value of three for ternary logic that
corresponds to fuzzy logic. The decomposer from [13, 12]
decomposes to arbitrary-valued intermediate signals in or-
der to maximally decrease the total circuit’s complexity
and decrease the recognition error. It requires then en-
coding the signals that have more than three values to
ternary vectors, which is done by hand. For instance, an
intermediate signal with values 0, 1, 2 and 3 is encoded to
two ternary signals as follows: 0 = [00], 1 = [01], 2 = [02],
and 3 = [1X], where 1X means any of values 10, or 11,
or 12. Thus, our encoding method introduces the don’t
cares, and in general, the relations, to the MV data for
decomposition. It proves thus that the concept of decom-
posing relations, introduced by us for Machine Learn-
ing and circuit design applications in program GUD-MV
[13, 12], is also useful for fuzzy logic.

Currently we keep looking for more fuzzy logic bench-
marks, especially large ones, but unfortunately all exam-
ples from books and conference proceedings that we were
able to find are too small for the power of our decom-
posers. Perhaps the answer to this problem is to create
large fuzzy data on our own. We intend to generate them
automatically as the results of image processing proce-
dures that create fuzzy features for pattern recognition
experiments [15, 16]. Next, our Constructive Induction
approach to Machine Learning based on uniform approach
to the decomposition of binary, multi-valued and fuzzy
functions will be used in the final stage of pattern recog-
nition, instead of a Gaussian Classifier that we currently

use [15, 16].

X. CONCLUSION

The new method of converting fuzzy functions to
multiple-valued functions for decomposition allows not
only for Ashenhurst but also for Curtis decompositions.
Also converting fuzzy functions to multiple-valued func-
tions eliminates the need to perform time-consuming con-
version to a canonical form. The need for special and
complex methods like Kandel’s method does no longer
exist, and any existing MV decomposer can be used. The
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Figure 16: Stages of the decomposition of a fuzzy rela-
tion to Brample 8. (a) Original fuzzy relation Fy., (b)-
(e) stages of creating a ternary relation corresponding to
fuzzy relation Py, (f) ternary function G from decompo-
sition, (g) ternary relation H from decomposition, (h),(i)
two realizations of fuzzy relation F,., corresponding to two
realizations of ternary relation H.

method can be expanded to arbitrary shape of fuzzy lit-
erals, and not only literals x as shown above. This leads
to multi-valued encodings of such fuzzy functions, using
MV logics with more than three values. The method can
be used, with no difference in its decomposition process,
for relations, and the GUD-MYV decomposer can be used
for this task.
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