CONCLUSION

In this dissertation we developed the methods and algorithms of Logic Differential (LD) Calculus related to the problems of Computed-Aided Design of Multiple-Valued devices. Author’s objective is to bring methods of LD Calculus closer to engineering practice.

New results in the applied theory of LD Calculus. Modern LD Calculus has been developed based on the generalization of Boolean Differential Calculus for MVL functions. The traditional methods and algorithms of computations of LD Calculus operators are represented by symbolic mathematical tools. The basis of our study was the matrix approach. We developed early results by applying methods of matrix algebra.

We presented LD Calculus in matrix notation for the first time. Our approach based on matrix tools

- studied the results obtained in the area from the unified position,
- overcame the theoretical difficulties and developed the theory of LD Calculus.

It allows us to conclude that the main result of this dissertation consists in the development, systematization and generalization of the applied LD Calculus theory.

The most important theoretical results are:

- Synthesis of a class of matrix algorithms to calculate Boolean Differential operators,
- New LD operators for MVL functions introduced with respect to the criteria of reconciliation with fixed polarity RM expansions, or logic Taylor series,
- Matrix methods to solve logic equations and logic Differential equations in RM forms, and
- New LD operators introduced for arithmetical polynomial domain.

New results in the MVL Design. A particular significance for engineering practice presented in the dissertation is the generalized D-algorithm for MVL combinational circuits, where the generation of the D-cubes is maintained by LD operators.

Besides, there has been developed in the dissertation

- A technique to compute LD operators, including systolic arrays and homogeneous structures,
- A generalized method and algorithms to minimize incompletely specified MVL functions in RM and Arithmetical Polynomial domain;
- A generalized D-algorithm for test detection in MVL combinational circuits,
• An algorithm for sensitivity analysis of MVL network, and
• A method of circuit analysis (fault analysis, decomposition).

In general, the mentioned theoretical and applied results are important steps to incorporating LD Calculus methods into the frameworks of practical application.

Future work. The MVL design methods are connected closely with the technology to manufacture the MVL devices. This is a dynamic and flexible area both on the implementation and theoretical levels. So, the methods and algorithms that have been developed in the dissertation must be attuned to present day technology achievements and requirements. The presented matrix tools to calculate LD Operators is a good base to synthesize parallel algorithms on the homogeneous architectures of different types (systolic arrays, FPGA and other parallel structures).

The techniques such as BDD which are intensively developed in Logic Design and are applied for RM domain synthesis, also have all premises to be used in the area. This problem was considered in part here to calculate LD operators for MVL functions. Further steps are required to develop the BDD techniques to solve the applied problems solved by LD Calculus methods.

The forming of the theory of LD Calculus is not complete without investigations and generalizations in the arithmetical polynomial domain. These operators require further development to be harmoniously integrated into the area.

The circle of the applied problems solved by LD Calculus methods have to be extended taking into account recent achievements of the MVL Design. The present dissertation does not concern the graph analysis problem, design of sequential circuits, applications in the automata theory and others. Being developed from the Boolean Differential Calculus, LD Calculus theory has not found such wide application as the Boolean one. It can be said that the main operators of LD Calculus and its application to solve several important problems of MVL design are the basis to investigate and develop this direction.
REFERENCES

Brusentzov N.P. et.al. (1962), The SETUN Small Automatic Digital Computer, Vest. Moscow Univ., no. 4, pp. 3-12 (In Russian)

Butzer P.L., and Stankovic R.S., (Eds.) (1990), Theory and Applications of Gibbs Derivatives, Matematicki Institut, Belgrade, Yugoslavia

Coy W., and Moraga C. (1979), Description and Detection of Faults in Multiple-Valued Logic Circuits, *Proc. 19th IEEE Int. Symp. on Multiple-Valued Logic*, pp. 74-81

Hunt S. (1975), Artificial Intelligence, *Addison-Wesley*

Hurst S.L. (1978), Logic Processing of Digital Signals, *Grawe Russak & Edward Adward Arnold*

Ishizuka O., Takarabe H., etc. (1991), Synthesis of Current-Mode Pass Transistor Networks, *Proc. 21st IEEE Int. Symp. on Multiple-Valued Logic*, pp. 139-146

Kopec M. (1994), An Information Theoretic Measure of Compaction Efficiency, *Archives of Control Sciences (Poland)*, vol. 3 (XXXIX), no. 3-4, pp. 271-287

Levashenko V., Yanushkevich S., and Majka E. (1996b), Hardware Support to Detect Test For M-Valued Switching Circuits Based on Roth’s Algorithm Generalization, *Proc. Int. Conf. on Applications of Computer Systems, Szczecin, Poland*, pp. 83-96

Liang-Chia, Chen, and Twu Hong-Tay (1995), Synthesis of Multilevel NAND Gate Circuits For Incompletely Specified Multi-Output Boolean Functions and CAD Using Permissible Cubes and PCRM Graphs, *Int. J. Electronics*, vol. 78, no. 2, pp. 303-316

Luba T., and Rybnik J. (1993b), Algorithmic Approach to Discernibility Function with respect to Attributes and Objects Reduction, *Foundation of Computing and Decision Sciences*, vol. 18, no. 3-4, pp. 241-258

Luba T., Jasiński K., Zbierczowski B. (1997), Specjalizowane Układy Cyfrowe w Strukturach PLD i FPGA, Wydawnictwa Komunikacji i Łączności, Warszawa (In Polish)

Malyugin V. (1982), Representation of Boolean Functions by Arithmetical Polynomials, *Automation and Remote Control (USA)*, vol. 43, no. 4, Part 1, pp. 496-504

Michalewicz Z. (1992), Genetic Algorithms + Data Structure = Evolutionary Programs, *Springer-Verlag, Berlin*

Morozov A.M. (1978), Differentiation and Integration of Logic Functions, *Cybernetics, Ukrainian Academy of Sciences*, no. 6, pp. 33-39 (In Russian), Translated *Cybernetics and System Analysis (USA)*

Muroga S. (1979), Logic Design and Switching Theory, *Wiley, New York*

Muzio J.C., and Wesselkamper T.S. (1986), Multiple-Valued Switching Theory, *Adam Higler Ltd. Bristol and Boston*

Nagata Y., and Afuso C. (1993), A Method of Test Pattern Generation for Multiple-Valued PLA’s, *Proc. 23rd IEEE Int. Symp. on Multiple-Valued Logic*, pp. 87-91

Perkowski M., Jozwiak L., and Drechsler R. (1997a) A Canonical AND/EXOR Form that includes both the Generalized Reed-Muller Forms and Kronecker Forms, *Proc. IFIP WG 10.5 Int. Workshop on Applications of the Reed-Muller Expansions in Circuit Design, Japan*, pp. 219-239

Prasanna Kumar V.K., and Tsai Y.C. (1989), Designing Linear Systolic Arrays, J. Parallel and Distributed Computing, no. 7, pp. 441-463

Rasiowa H. (1975), Multiple-Valued Algorithmic Logic as a Tool to Investigate Programs, Proc. 5th IEEE Int. Symp. on Multiple-Valued Logic

Reed I.S. (1954), A Class of Multiple-Error-Correcting Codes and the Decoding Scheme, Trans. of IRE, no. 9, pp. 38-49

Rooß D. 1997), Recent Developments in DNA-Computing, Proc. 27th IEEE Int. Symp. on Multiple-Valued Logic, pp. 3-9

Rosser J.B., and Turquette A.R. (1952), Many-Valued Logic, NY

Sasao T., and Besslich Ph. (1990), On the Complexity of Mod-2 sum PLA’s”, *IEEE Trans. on Computers*, vol. C-39, no. 2, pp. 262-266

Schröder E. (1877), Der Operationskreis des Logikkalkuls, *Leipzig*

Shmerko V., Yanushkevich S., and Malecki K. (1996b), A Class of Logic Design Problems Solved Based on Parallel Computations of Butterfly Configurations, Proc. Int. Conf. on Parallel and Distributed Processing Techniques and Application, New Horizons, USA, pp. 234 -240

Shmerko V., Yanushkevich S., and Levashenko V. (1997a), Test Pattern Generation for Combinational MVL Networks Based on Generalized D-algorithm, Proc. 27th IEEE Int. Symp. on Multiple-Valued Logic, pp. 139-144

Sikorski R. (1967), Boolean Algebras, 3rd ed. Springer Verlag, Berlin

Stankovic R., Stankovic M., Moraga C., and Sasao T. (1994), Calculation of Reed-Muller-Fourier Coefficients of Multiple-Valued Functions Trough Multiple-Place Decision Diagrams, Proc. 24th IEEE Int. Symp. on Multiple-Valued Logic, pp. 82-87

Stankovic R., etc. (Eds) (1996b), Recent Developments in Abstract Harmonic Analysis with Applications in Signal Processing, Belgrade, Nauka

Stankovic R.S., Stankovic M., Jankovic D., Shmerko V., and Yanushkevich S. (1997), Calculation of...

Tosic Z. (1972), Analitical Representation of m -Valued Logical Functions over the Ring of Integers Modulo m Doctoral Thesis, *University of Nis, Yugoslavia*

Yablonsky S.V. (1958), Functional Constructions in the k-valued Logic, *Reports of Steklov’s Mathematical Institute, Russian Academy of Sciences*, vol. 51, pp. 5-142 (In Russian)

Yanushevich S. (1994b), Spectral and Differential Methods to Synthesize Polynomial Forms of MVL-Functions on Systolic Arrays, *Proc. 5th Int. Workshop on Spectral Techniques, C. Moraga, etc. (Eds.), Beijing, China*, pp. 78-93

Yanushevich S. (1995a), Arithmetical Canonical Expansions of Boolean and MVL Functions as Generalized Reed-Muller Series, *Proc. IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expansions in Circuit Design, Japan*, pp. 300-307

