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Abstract 
We discuss some properties of reversible circuits that allow them to be tested more efficiently than their 
classical counterparts, and give an analysis of currently proposed fault models.  We also present an efficient 
algorithm that can be used to generate fault localization trees for large circuits. 
 
 
1   Introduction 
Reversible circuits are circuits that have an equal number of inputs and outputs. Mathematically, 
the inputs of a reversible circuit bijectively map onto its outputs, so no information is lost.  
Physically, this means that a circuit can potentially operate with extremely low power 
consumption [9].  Reversible circuits have also been shown to have many practical applications in 
other fields such as signal analysis, cryptography, code converters, spectral transforms, and image 
processing.  It has also been suggested that classical circuits can be converted to reversible 
circuits for increased testability, which is due to the improved controllability and observability in 
the circuit [15]. 
 
Although initial interest in reversible circuits is from their low power consumption and reliability 
in future nano-technologies, their high testability adds one more argument to their acceptance as a 
viable technology.  An important part of the testing of circuitry is determining what kinds of 
faults are possible, and where they are likely to occur.  The stuck-at fault model [2] was an earlier 
fault model that was proposed for the testing of reversible circuitry.  More recently a new fault 
model [3] was proposed in which a gate might never get activated, and was suggested to be more 
relevant to the technology. 
 
This paper covers a method to generate fault tables, and from them, fault localization trees.  An 
algorithm for building fault localization trees is covered in depth, and shown by example.  Also 
proposed is a new method of storing fault tables with decision diagrams, which makes it possible 
to index fault tables that are much larger than those previously possible. 
 
 
2   Fault Models 
There are many places that a fault could be located at in a circuit, and it is hard to determine 
which places errors would be likely to occur because there does not exist a commonly agreed 
upon technology for building reversible circuitry.  Similarly, different fault models will need to 
be introduced based on the physical technology, because it is important to both be able to test for 
all likely faults accurately, and to have a concise test set so that testing can be performed 
efficiently.  These are the currently proposed fault models for reversible circuitry. 



 
Stuck At 

The stuck at fault model [2] assumes that there is a problem with one of the horizontal wires on 
the circuit.  A passing bit can either get stuck at value zero, or stuck at value one.  This is the only 
fault model discussed in this paper that destroys the reversibility of a circuit, because data is lost 
as it passes over the fault.  A circuit with n bits and m stages will have  locations 
where a fault might occur.  Since the stuck at fault model covers two types of faults at each 
location where a fault might occur, the total number of faults covered by the model is 

.  Depending on the layout of the circuit, many of these faults might be equivalent. 
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Missing Gate 
When a control on a controlled gate in a reversible circuit is damaged in such a way that it can 
never be turned on, the gate that is being controlled can never be activated.  An equivalent circuit 
diagram would look the same, but with that one gate removed.  The full set of these faults are 
known as the missing gate fault model [3].  The number of faults in this model will be m, one 
fault for every gate that could be missing 
 

Broken Control 
When a control is damaged in such a way that it is always measured as “on”, then it is analogous 
to there just being a wire instead of a control at that part of the circuit.  The number of faults in 
this model is equal to the number of controls in the circuit.  This fault model has not yet been 
introduced in the literature, but will be referred to in this paper as the broken control fault 
model.  This fault model has also been referred to as the “missing control” fault model. 
 
 
3   Fault Table 
Traditionally, the first step towards determining an appropriate test sequence for a given circuit is 
to build a complete fault table [17].  For didactic reasons, we will apply this concept for 
reversible circuits below.  A fault table is a set of truth tables that spans a given fault model.  
Each column in the table represents a possible variation of the circuit based on where the fault is 
located, and what type of fault it is.  Identical columns (equivalent faults) are combined, thus 
reducing the number of columns in the table.  The resulting table will have  rows, where n is 
the number of bits in the circuit.  The number of columns in the table is determined by the 
number of applicable faults based on the fault model, plus one for the good circuit.  For reversible 
circuitry, each entry in the table is a number between 0 and 

n2

12 −n , which represents the output 
of the good or faulty circuit. 
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00000001
01000000
10000000
00010000
00001000
00100000
00000100
00000010

 

input output 
000 111 
001 000 
010 001 
011 011 
100 100 
101 010 
110 110 
111 101  

Figure 1 - 3_17 gate Figure 2 - Matrix representation of a 
3_17 gate 

Figure 3 - Truth 
table 

 



As an example, we will present a fault table for a 3_17 [19] circuit using the broken control fault 
model.  Figure 1 shows the circuit diagram for a 3_17 circuit in quantum array notation.  All of 
the controls have been labeled accordingly.  Since the broken control fault model is being used, 
each control marks a place in the circuit where a fault might occur.  In Figure 2, the circuit is 
shown as a permutation matrix.  From this matrix, a truth table can easily be derived, as shown in 
Figure 3.  The truth table lists the inputs of the circuit, and then lists the appropriate output. 
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input output 
000 000 
001 111 
010 011 
011 001 
100 100 
101 010 
110 110 
111 101  

Figure 4 - 3_17 gate with fault Figure 5 - Matrix representation of 
a 3_17 gate with fault 

Figure 6 - Truth 
table with fault 

 
If fault occurs on the first control, it would be as if the control had “disappeared”.  Notice that the 
second stage of the circuit has changed in Figure 4 when compared with Figure 1.  The matrix 
that would describe the function would change is shown in Figure 5, and the corresponding truth 
table is shown in Figure 6. 
 
By calculating the truth tables for every possible fault in the fault model, the fault table is 
generated.  The complete fault table for the 3_17 gate with the broken control fault model is 
shown in Figure 7.  All of the binary values have been replaced by their decimal equivalents.  
The columns of the table represent where the fault is.  The column labeled GC (Good Circuit) is 
the truth table shown in Figure 3, and represents the truth table if there are no faults in the circuit.  
The rows correspond to the inputs. 

 
 GC 1 2 3 4 5 6 7 

0 7 0 7 7 7 7 7 7 

1 0 7 3 0 0 0 0 1 

2 1 3 1 1 5 1 1 0 

3 3 1 0 6 3 3 2 3 

4 4 4 6 4 4 5 4 5 

5 2 2 2 2 2 2 3 2 

6 6 6 4 3 6 6 6 6 

7 5 5 5 5 1 4 5 4 

 
Figure 7 - Fault Table for 3_17 circuit  

covered by the broken control fault model 



Building and minimizing complete fault tables [17] is usually avoided because of the exponential 
increase in the number of input bits that are added to a circuit.  Such computationally difficult 
data structures can be stored much more efficiently as decision diagrams, and still have the quick 
indexing capability that allows it to be called a fault table.  The software that was developed for 
this project is capable of efficiently storing fault tables with up to virtual rows using decision 
diagrams [1], which can be indexed as if the entire column were actually created. 
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Fault tables like this can be generated for non-reversible circuits, although the restricted numbers 
of outputs in many irreversible circuits reduce their testability.  For each irreversible circuit , 
we will be able to compare its testability and fault localization ability with its reversible 
equivalent  obtained by converting the irreversible circuit into a reversible circuit. 

F
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4   Fault Localization Tree 
The localization of a fault in a circuit can be done by sending a sequence of input values as tests, 
and observing the corresponding outputs.  With this method, one can determine the validity of the 
circuit, or location of the fault, in a relatively small number of tests compared to the classical fault 
diagnosis methods, which utilize binary branching in their localization trees [15,17].  A good way 
to represent a set of test sequences is with a fault localization tree. 
 
A fault localization tree (Figure 8) is a generic base tree abstraction.  Each node contains a 
suggestion of what test to select next, and it is traversed based on the output value obtained by the 
circuit.  The tree in Figure 8 is constructed from the fault localization table in Figure 7.  A circuit 
that has been physically manufactured may contain errors, and with the aide of a fault localization 
tree, those errors can be quickly localized.  The 3_17 circuit is not very complex, but the methods 
discussed here can be applied to circuits of large size. 
 
In Figure 8, the circles represent the suggested input.  Below the circle is a list of possible 
answers.  The tree is then traversed until a square is reached, which represents the location of a 
fault in the circuit. 
 

 

Figure 8 - Fault Localization Tree 
for the fault table shown in Figure 7 



As an example of how a fault localization tree is used, imagine that a 3_17 circuit has been 
manufactured where the fourth control is permanently on.  When the circuit is tested, the first 
input is 3.  Since the fourth control is missing, the output will be 3.  This result can be observed in 
Figure 7.  The tree is then traversed down to the next suggested input, which is 7.  The output is 
1, so the fault has been localized at the fourth control. 
 
It is important to realize that a single fault table can be used to generate many different  
fault localization trees.  Many algorithms are known from the literature which can be used to 
generate fault localization trees, but few are non-binary, and none are for truly large circuits 
under test. 
 
5   The Tree Generation Algorithm 
Observing the large range of outputs for any test, trees can be made that are exponentially 
shallower than the trees with binary branching.  As a proof of concept of this idea, we created a 
software package named RFault that takes decision diagram encoded fault tables, and converts 
them to fault localization trees (as shown in Figure 8), which are also called adaptive trees 
[15,17]. 
 
An important part of RFault uses a recursive algorithm to break down the list of faults until each 
fault has its own unique test sequence.  The great advantage to this algorithm is that any given 
test has the potential to break the list down into up to  new lists, where n is the number of bits 
in the circuit.  This means that using this type of localization, the  tree is shallower than 
commonly used methods that would only branch twice per node. 

n2

 
The recursive insertion algorithm that builds the fault localization tree has four stages.  There is 
the “leaf” stage, the “best test” stage, the “re-sort” stage, and the “recursion” stage.  The function 
will get called one time for every node in the tree, and will end its current branch of recursion if it 
has generalized a path that will localize a fault.  The following pseudo code describes the 
recursive algorithm that is used to generate the fault localization tree. 
  
5.1 The Leaf Stage 
During the leaf stage, the algorithm calculates how many faults are listed in the list of faults.  If 
only one is listed, then the current node becomes a leaf, and this branch of the recursion is 
completed. 
 
5.2 The Best Test Stage 
There is more than one entry in the fault table to localize between, so now it is the task of the 
program to determine which next test should be selected.  There are many ways that this can be 
done, but RFault uses one of two methods. 
 
If the good circuit is in the list of faults, RFault checks each possible input against the current list 
of fault entries, and decides upon the test that results in the output of the good circuit having the 
least in common with the outputs of the other circuits.  With this method, the size of the list 
containing the good circuit is reduced to a list of one element as soon as possible. 
 
If the good circuit is not in the list, RFault will select the test that gives the most diverse output, 
thus causing the tree to split into the maximum number of branches.  The ideal case would be to 
find an input where the outputs for all remaining fault entries. 
 



In both of these cases, if multiple tests are equally valuable, then one is chosen at random.  This 
will rarely result in a minimal tree, but it prevents the overhead that would be required by a 
backtracking algorithm.  The effects can be balanced out by constructing the tree multiple times 
(using random choices), and selecting the best result.  In general, it is best to first select the tree 
based on the shortest number of tests to verify the good circuit, and if multiple trees have the 
same number of tests to verify the good circuit, then the tree with the smallest average number of 
tests should be selected. 
 

 GC 1 2 3 4 5 6 7 

0 7 0 7 7 7 7 7 7 

1 0 7 3 0 0 0 0 1 

2 1 3 1 1 5 1 1 0 

3 3 1 0 6 3 3 2 3 

4 4 4 6 4 4 5 4 5 

5 2 2 2 2 2 2 3 2 

6 6 6 4 3 6 6 6 6 

7 5 5 5 5 1 4 5 4 

Figure 9- Truth table for the 3_17 circuit 
with the broken control fault model. 

 
As an example, the entire fault table shown in Figure 7 can be looked at to determine which test 
would be the best.  The good circuit is listed in the list of possible faults, so the first method must 
be used.  All outputs matching the good circuit have been bolded for emphasis in Figure 9.  The 
goal is to find the test to isolate the good circuit as early in the tree as possible, so counting along 
the rows, the value of each row can be determined.  If the input is zero, and there are no faults in 
the circuit, the output will be 7.  There are six other columns in the fault table where the result 
will also be 7 when provided with the input of zero. 
 
Repeating this process, it is noticed that if the input is a 3, then there are only three other columns 
covered by the broken gate fault model which match with the output of the good circuit.  Since 
this test distinguishes the good circuit column as much as possible, the test 3 is selected as the 
best test for this set of faults.  This decision is reflected in Figure 8, where 3 is the first suggested 
input test to be applied. 
 
5.3 The Re-Sort Stage 
Once the algorithm has calculated the best test, it is then used to break down the current list of 
fault entries, into a set of smaller lists of fault entries.  RFault will go down the list of fault 
entries, and sort them out based on their output when given the best test.  The number of new 
lists is the number of times the current node will split. 
 
In the example, 3 was selected as the best test.  By looking at the fault localization table, it is 
observed that the input of 3 will produce one of five distinct outputs.  This means that the list of 
faults is split up into five smaller lists of faults.  These smaller lists are shown in Figure 10. 



 

 
Output =3 

 GC 4 5 7 
0 7 7 7 7 
1 0 0 0 1 
2 1 5 1 0 
3 3 3 3 3 
4 4 4 5 5 
5 2 2 2 2 
6 6 6 6 6 
7 5 1 4 4 

 2
0 7
1 3
2 1
3 0
4 6
5 2
6 4
7 5

 
Output=0 

 
Output=1 

 1
0 0
1 7
2 3
3 1
4 4
5 2
6 6
7 5

 6
0 7
1 0
2 1
3 2
4 4
5 3
6 6
7 5

 
Output=2 

 3 
0 7 
1 0 
2 1 
3 6 
4 4 
5 2 
6 3 
7 5 

 
Output=6 

Figure 10 - New lists of faults, divided based on output of the test 3 

 
5.4 The Recursion Stage 
The algorithm now calls itself on each of the new smaller lists.  Notice that the sum of the 
numbers of elements in each of the smaller lists is equal to the number of elements in the larger 
list.  This whole process takes very little memory, and can be done at relatively high speeds. 
 
6   A New Way to Store Fault Tables 
Classically, a Fault Table would be stored as an array of arrays.  It has been noted, however, that 
the functionality of a circuit can be represented in the form of a matrix, and matrices can be 
stored as decision diagrams [1].  If the fault table were stored as an array of decision diagrams, 
the amount of memory needed to store an entire fault table would be drastically smaller than that 
required to store a standard fault table as an array.  Each column would be stored as a decision 
diagram instead of an array with entries. n2
 
The decision diagrams can be multiplied together, compared, and indexed very efficiently, all 
with minimal memory usage [1].  By taking advantage of these features, there is never a point 
where operations need to be done, allowing for much larger fault tables can be built. n2
 
7   Conclusion 
We showed a method to create trees of test sequences used to localize a fault in a reversible 
circuit.  The method based on the Fault Table is general and does not depend on any particular 
fault model.  
 
Reversible circuits have been shown to be more testable because the maximum amount of 
relevant information is gained from a single test.  Since more information can be gained, then the 
number of branches in the tree is much larger than can be obtained from nonreversible circuits.  If 
the number of inputs of a circuit is larger than the number of outputs, information is lost, 
requiring one to perform more tests to gain the same amount of information about the circuit. 
 
Using the algorithms discussed in this paper, especially the use of decision diagrams in fault table 
construction, very efficient fault localization systems can be created.  Although fault localization 
trees have a great advantage when localizing faults in reversible circuits, this method can be 
applied to test any digital circuit technology. 
 



Future research will involve a comparison of minimal test sets and fault localization trees for 
irreversible circuits of large size, and their counterpart reversible circuits obtained from 
irreversible-to-reversible conversion. 
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