
Test Set Generation and Fault Localization
Software for Reversible Circuits

Dean Pierce, Jacob Biamonte, Marek Perkowski

Portland State University

Department of Electrical and Computer Engineering
Portland, Oregon – 97201, USA

piercede@pdx.edu, biamonte@cecs.pdx.edu, mperkows@ee.pdx.edu

Abstract
We discuss some properties of reversible circuits that allow them to be tested more efficiently than their
classical counterparts, and give an analysis of currently proposed fault models. We also present an efficient
algorithm that can be used to generate fault localization trees for large circuits.

1 Introduction
Reversible circuits are circuits that have an equal number of inputs and outputs. Mathematically,
the inputs of a reversible circuit bijectively map onto its outputs, so no information is lost.
Physically, this means that a circuit can potentially operate with extremely low power
consumption [9]. Reversible circuits have also been shown to have many practical applications in
other fields such as signal analysis, cryptography, code converters, spectral transforms, and image
processing. It has also been suggested that classical circuits can be converted to reversible
circuits for increased testability, which is due to the improved controllability and observability in
the circuit [15].

Although initial interest in reversible circuits is from their low power consumption and reliability
in future nano-technologies, their high testability adds one more argument to their acceptance as a
viable technology. An important part of the testing of circuitry is determining what kinds of
faults are possible, and where they are likely to occur. The stuck-at fault model [2] was an earlier
fault model that was proposed for the testing of reversible circuitry. More recently a new fault
model [3] was proposed in which a gate might never get activated, and was suggested to be more
relevant to the technology.

This paper covers a method to generate fault tables, and from them, fault localization trees. An
algorithm for building fault localization trees is covered in depth, and shown by example. Also
proposed is a new method of storing fault tables with decision diagrams, which makes it possible
to index fault tables that are much larger than those previously possible.

2 Fault Models
There are many places that a fault could be located at in a circuit, and it is hard to determine
which places errors would be likely to occur because there does not exist a commonly agreed
upon technology for building reversible circuitry. Similarly, different fault models will need to
be introduced based on the physical technology, because it is important to both be able to test for
all likely faults accurately, and to have a concise test set so that testing can be performed
efficiently. These are the currently proposed fault models for reversible circuitry.

Stuck At

The stuck at fault model [2] assumes that there is a problem with one of the horizontal wires on
the circuit. A passing bit can either get stuck at value zero, or stuck at value one. This is the only
fault model discussed in this paper that destroys the reversibility of a circuit, because data is lost
as it passes over the fault. A circuit with n bits and m stages will have locations
where a fault might occur. Since the stuck at fault model covers two types of faults at each
location where a fault might occur, the total number of faults covered by the model is

. Depending on the layout of the circuit, many of these faults might be equivalent.

nm *)1(+

nm 2*)1(+

Missing Gate
When a control on a controlled gate in a reversible circuit is damaged in such a way that it can
never be turned on, the gate that is being controlled can never be activated. An equivalent circuit
diagram would look the same, but with that one gate removed. The full set of these faults are
known as the missing gate fault model [3]. The number of faults in this model will be m, one
fault for every gate that could be missing

Broken Control
When a control is damaged in such a way that it is always measured as “on”, then it is analogous
to there just being a wire instead of a control at that part of the circuit. The number of faults in
this model is equal to the number of controls in the circuit. This fault model has not yet been
introduced in the literature, but will be referred to in this paper as the broken control fault
model. This fault model has also been referred to as the “missing control” fault model.

3 Fault Table
Traditionally, the first step towards determining an appropriate test sequence for a given circuit is
to build a complete fault table [17]. For didactic reasons, we will apply this concept for
reversible circuits below. A fault table is a set of truth tables that spans a given fault model.
Each column in the table represents a possible variation of the circuit based on where the fault is
located, and what type of fault it is. Identical columns (equivalent faults) are combined, thus
reducing the number of columns in the table. The resulting table will have rows, where n is
the number of bits in the circuit. The number of columns in the table is determined by the
number of applicable faults based on the fault model, plus one for the good circuit. For reversible
circuitry, each entry in the table is a number between 0 and

n2

12 −n , which represents the output
of the good or faulty circuit.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

00000001
01000000
10000000
00010000
00001000
00100000
00000100
00000010

input output
000 111
001 000
010 001
011 011
100 100
101 010
110 110
111 101

Figure 1 - 3_17 gate Figure 2 - Matrix representation of a
3_17 gate

Figure 3 - Truth
table

As an example, we will present a fault table for a 3_17 [19] circuit using the broken control fault
model. Figure 1 shows the circuit diagram for a 3_17 circuit in quantum array notation. All of
the controls have been labeled accordingly. Since the broken control fault model is being used,
each control marks a place in the circuit where a fault might occur. In Figure 2, the circuit is
shown as a permutation matrix. From this matrix, a truth table can easily be derived, as shown in
Figure 3. The truth table lists the inputs of the circuit, and then lists the appropriate output.

 ⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

00000010
01000000
10000000
00010000
00000100
00100000
00001000
00000001

input output
000 000
001 111
010 011
011 001
100 100
101 010
110 110
111 101

Figure 4 - 3_17 gate with fault Figure 5 - Matrix representation of
a 3_17 gate with fault

Figure 6 - Truth
table with fault

If fault occurs on the first control, it would be as if the control had “disappeared”. Notice that the
second stage of the circuit has changed in Figure 4 when compared with Figure 1. The matrix
that would describe the function would change is shown in Figure 5, and the corresponding truth
table is shown in Figure 6.

By calculating the truth tables for every possible fault in the fault model, the fault table is
generated. The complete fault table for the 3_17 gate with the broken control fault model is
shown in Figure 7. All of the binary values have been replaced by their decimal equivalents.
The columns of the table represent where the fault is. The column labeled GC (Good Circuit) is
the truth table shown in Figure 3, and represents the truth table if there are no faults in the circuit.
The rows correspond to the inputs.

 GC 1 2 3 4 5 6 7

0 7 0 7 7 7 7 7 7

1 0 7 3 0 0 0 0 1

2 1 3 1 1 5 1 1 0

3 3 1 0 6 3 3 2 3

4 4 4 6 4 4 5 4 5

5 2 2 2 2 2 2 3 2

6 6 6 4 3 6 6 6 6

7 5 5 5 5 1 4 5 4

Figure 7 - Fault Table for 3_17 circuit

covered by the broken control fault model

Building and minimizing complete fault tables [17] is usually avoided because of the exponential
increase in the number of input bits that are added to a circuit. Such computationally difficult
data structures can be stored much more efficiently as decision diagrams, and still have the quick
indexing capability that allows it to be called a fault table. The software that was developed for
this project is capable of efficiently storing fault tables with up to virtual rows using decision
diagrams [1], which can be indexed as if the entire column were actually created.

3002

Fault tables like this can be generated for non-reversible circuits, although the restricted numbers
of outputs in many irreversible circuits reduce their testability. For each irreversible circuit ,
we will be able to compare its testability and fault localization ability with its reversible
equivalent obtained by converting the irreversible circuit into a reversible circuit.

F

revF

4 Fault Localization Tree
The localization of a fault in a circuit can be done by sending a sequence of input values as tests,
and observing the corresponding outputs. With this method, one can determine the validity of the
circuit, or location of the fault, in a relatively small number of tests compared to the classical fault
diagnosis methods, which utilize binary branching in their localization trees [15,17]. A good way
to represent a set of test sequences is with a fault localization tree.

A fault localization tree (Figure 8) is a generic base tree abstraction. Each node contains a
suggestion of what test to select next, and it is traversed based on the output value obtained by the
circuit. The tree in Figure 8 is constructed from the fault localization table in Figure 7. A circuit
that has been physically manufactured may contain errors, and with the aide of a fault localization
tree, those errors can be quickly localized. The 3_17 circuit is not very complex, but the methods
discussed here can be applied to circuits of large size.

In Figure 8, the circles represent the suggested input. Below the circle is a list of possible
answers. The tree is then traversed until a square is reached, which represents the location of a
fault in the circuit.

Figure 8 - Fault Localization Tree
for the fault table shown in Figure 7

As an example of how a fault localization tree is used, imagine that a 3_17 circuit has been
manufactured where the fourth control is permanently on. When the circuit is tested, the first
input is 3. Since the fourth control is missing, the output will be 3. This result can be observed in
Figure 7. The tree is then traversed down to the next suggested input, which is 7. The output is
1, so the fault has been localized at the fourth control.

It is important to realize that a single fault table can be used to generate many different
fault localization trees. Many algorithms are known from the literature which can be used to
generate fault localization trees, but few are non-binary, and none are for truly large circuits
under test.

5 The Tree Generation Algorithm
Observing the large range of outputs for any test, trees can be made that are exponentially
shallower than the trees with binary branching. As a proof of concept of this idea, we created a
software package named RFault that takes decision diagram encoded fault tables, and converts
them to fault localization trees (as shown in Figure 8), which are also called adaptive trees
[15,17].

An important part of RFault uses a recursive algorithm to break down the list of faults until each
fault has its own unique test sequence. The great advantage to this algorithm is that any given
test has the potential to break the list down into up to new lists, where n is the number of bits
in the circuit. This means that using this type of localization, the tree is shallower than
commonly used methods that would only branch twice per node.

n2

The recursive insertion algorithm that builds the fault localization tree has four stages. There is
the “leaf” stage, the “best test” stage, the “re-sort” stage, and the “recursion” stage. The function
will get called one time for every node in the tree, and will end its current branch of recursion if it
has generalized a path that will localize a fault. The following pseudo code describes the
recursive algorithm that is used to generate the fault localization tree.

5.1 The Leaf Stage
During the leaf stage, the algorithm calculates how many faults are listed in the list of faults. If
only one is listed, then the current node becomes a leaf, and this branch of the recursion is
completed.

5.2 The Best Test Stage
There is more than one entry in the fault table to localize between, so now it is the task of the
program to determine which next test should be selected. There are many ways that this can be
done, but RFault uses one of two methods.

If the good circuit is in the list of faults, RFault checks each possible input against the current list
of fault entries, and decides upon the test that results in the output of the good circuit having the
least in common with the outputs of the other circuits. With this method, the size of the list
containing the good circuit is reduced to a list of one element as soon as possible.

If the good circuit is not in the list, RFault will select the test that gives the most diverse output,
thus causing the tree to split into the maximum number of branches. The ideal case would be to
find an input where the outputs for all remaining fault entries.

In both of these cases, if multiple tests are equally valuable, then one is chosen at random. This
will rarely result in a minimal tree, but it prevents the overhead that would be required by a
backtracking algorithm. The effects can be balanced out by constructing the tree multiple times
(using random choices), and selecting the best result. In general, it is best to first select the tree
based on the shortest number of tests to verify the good circuit, and if multiple trees have the
same number of tests to verify the good circuit, then the tree with the smallest average number of
tests should be selected.

 GC 1 2 3 4 5 6 7

0 7 0 7 7 7 7 7 7

1 0 7 3 0 0 0 0 1

2 1 3 1 1 5 1 1 0

3 3 1 0 6 3 3 2 3

4 4 4 6 4 4 5 4 5

5 2 2 2 2 2 2 3 2

6 6 6 4 3 6 6 6 6

7 5 5 5 5 1 4 5 4

Figure 9- Truth table for the 3_17 circuit
with the broken control fault model.

As an example, the entire fault table shown in Figure 7 can be looked at to determine which test
would be the best. The good circuit is listed in the list of possible faults, so the first method must
be used. All outputs matching the good circuit have been bolded for emphasis in Figure 9. The
goal is to find the test to isolate the good circuit as early in the tree as possible, so counting along
the rows, the value of each row can be determined. If the input is zero, and there are no faults in
the circuit, the output will be 7. There are six other columns in the fault table where the result
will also be 7 when provided with the input of zero.

Repeating this process, it is noticed that if the input is a 3, then there are only three other columns
covered by the broken gate fault model which match with the output of the good circuit. Since
this test distinguishes the good circuit column as much as possible, the test 3 is selected as the
best test for this set of faults. This decision is reflected in Figure 8, where 3 is the first suggested
input test to be applied.

5.3 The Re-Sort Stage
Once the algorithm has calculated the best test, it is then used to break down the current list of
fault entries, into a set of smaller lists of fault entries. RFault will go down the list of fault
entries, and sort them out based on their output when given the best test. The number of new
lists is the number of times the current node will split.

In the example, 3 was selected as the best test. By looking at the fault localization table, it is
observed that the input of 3 will produce one of five distinct outputs. This means that the list of
faults is split up into five smaller lists of faults. These smaller lists are shown in Figure 10.

Output =3

 GC 4 5 7
0 7 7 7 7
1 0 0 0 1
2 1 5 1 0
3 3 3 3 3
4 4 4 5 5
5 2 2 2 2
6 6 6 6 6
7 5 1 4 4

 2
0 7
1 3
2 1
3 0
4 6
5 2
6 4
7 5

Output=0

Output=1

 1
0 0
1 7
2 3
3 1
4 4
5 2
6 6
7 5

 6
0 7
1 0
2 1
3 2
4 4
5 3
6 6
7 5

Output=2

 3
0 7
1 0
2 1
3 6
4 4
5 2
6 3
7 5

Output=6

Figure 10 - New lists of faults, divided based on output of the test 3

5.4 The Recursion Stage
The algorithm now calls itself on each of the new smaller lists. Notice that the sum of the
numbers of elements in each of the smaller lists is equal to the number of elements in the larger
list. This whole process takes very little memory, and can be done at relatively high speeds.

6 A New Way to Store Fault Tables
Classically, a Fault Table would be stored as an array of arrays. It has been noted, however, that
the functionality of a circuit can be represented in the form of a matrix, and matrices can be
stored as decision diagrams [1]. If the fault table were stored as an array of decision diagrams,
the amount of memory needed to store an entire fault table would be drastically smaller than that
required to store a standard fault table as an array. Each column would be stored as a decision
diagram instead of an array with entries. n2

The decision diagrams can be multiplied together, compared, and indexed very efficiently, all
with minimal memory usage [1]. By taking advantage of these features, there is never a point
where operations need to be done, allowing for much larger fault tables can be built. n2

7 Conclusion
We showed a method to create trees of test sequences used to localize a fault in a reversible
circuit. The method based on the Fault Table is general and does not depend on any particular
fault model.

Reversible circuits have been shown to be more testable because the maximum amount of
relevant information is gained from a single test. Since more information can be gained, then the
number of branches in the tree is much larger than can be obtained from nonreversible circuits. If
the number of inputs of a circuit is larger than the number of outputs, information is lost,
requiring one to perform more tests to gain the same amount of information about the circuit.

Using the algorithms discussed in this paper, especially the use of decision diagrams in fault table
construction, very efficient fault localization systems can be created. Although fault localization
trees have a great advantage when localizing faults in reversible circuits, this method can be
applied to test any digital circuit technology.

Future research will involve a comparison of minimal test sets and fault localization trees for
irreversible circuits of large size, and their counterpart reversible circuits obtained from
irreversible-to-reversible conversion.

8 Acknowledgements
George F. Viamontes made modifications to QuIDDPro adding special functions so it could be
used for this project. He also provided invaluable guidance which led to many large advances in
our research. Portland State University provided funding, space and materials needed to realize
this project.

9 References

1. G. F. Viamontes, I. L. Markov, and J. P. Hayes, Improving gate-level simulation of quantum
circuits, Quantum Information Processing, vol. 2(5), pp. 347-380, October 2003
http://xxx.lanl.gov/abs/quant-ph/0309060

2. K. N. Patel, J. P. Hayes and I. L. Markov, Fault Testing for Reversible Circuits, quant-ph/0404003
3. J.P. Hayes, I. Polian and B. Becker, Testing for Missing-Gate Faults in Reversible Circuits, 13th

Asian Test Symposium (ATS'04)
4. H-J. Wunderlich, S. Hellebrand, The Pseudo-Exhaustive Test of Sequential Circuits, Proceedings

IEEE International Test Conference, Washington, DC, 1989
5. C. Landrault, Test and Design For Test, www.ee.pdx.edu/~mperkows, Translated by M. A.

Perkowski
6. J. Biamonte, M. Perkowski, Principles of Quantum Fault Detection, Portland State University INQ

research conference, June 08, 2004
7. J. Biamonte, M. Perkowski, Principles of Quantum Fault Diagnostics, to appear in McNair

research Journal, Issue 1, Volume 1, 2004
8. E. McCluskey and Ch-W. Tseng, Stuck-Fault Tests vs. Actual Defects, 1997
9. M. Nielsen, I. Chuang, Quantum Computing and Quantum Information, Cambridge University

Press, 2000
10. C. Williams, S. Clearwater, Explorations in Quantum Computing, Springer Press, 1997
11. R. C. Merkle, Reversible electronic logic using switches, Nanotechnology, 4: pp. 21-40, 1993
12. R. C. Merkle, Two types of mechanical reversible logic, Nanotechnology, 4: pp. 114-131,1993
13. Fredkin, T. Toffoli, Conservative Logic, MIT Laboratory for Computer Science 545 Technology

Square, Cambridge, Massachusetts 02139
14. W. Zurek, Reversibility and Stability of Information Processing Systems, Physical Review Letters,

Vol. 53, pp. 391-394, 1984
15. K. Ramasamy, R. Tagare, E. Perkins and M. Perkowski, Fault localization in reversible circuits is

easier than for classical circuits, Proceedings of the International Workshop on Logic and
Synthesis, June 2004.

16. P. Beraldi, A. Ruszczyński, The Probabilistic Set Covering Problem, Operations Research © 2002
INFORMS, Vol.50, No.6, November–December 2002, pp. 956–967

17. Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 1970.
18. Friedman, A. D., and P. R. Menon, Fault Detection in Digital Circuits,

Prentice-Hall, 1971.
19. D. Maslov, Reversible Benchmarks, http://www.cs.uvic.ca/~dmaslov/

http://xxx.lanl.gov/abs/quant-ph/0309060
http://arxiv.org/abs/quant-ph/0404003

