
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 9689–9697 doi:10.1088/0305-4470/38/44/006

Realizing ternary quantum switching networks
without ancilla bits

Guowu Yang1, Xiaoyu Song1, Marek Perkowski1 and Jinzhao Wu2

1 Department of Electrical & Computer Engineering, Portland State University,
1900 SW Fourth Avenue, PO Box 751, Portland, Oregon 97201, USA
2 Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041,
People’s Republic of China

E-mail: guowu@ece.pdx.edu

Received 1 August 2005, in final form 3 August 2005
Published 19 October 2005
Online at stacks.iop.org/JPhysA/38/9689

Abstract
This paper investigates the synthesis of quantum networks built to realize
ternary switching circuits in the absence of ancilla bits. The results we
established are twofold. The first shows that ternary Swap, ternary NOT and
ternary Toffoli gates are universal for the realization of arbitrary n × n ternary
quantum switching networks without ancilla bits. The second result proves that
all n×n quantum ternary networks can be generated by NOT, Controlled-NOT,
Multiply-Two and Toffoli gates. Our approach is constructive.

PACS numbers: 03.67.Lx, 03.65.Fd

1. Introduction

Quantum computation connects ideas from computer science and physics [1]. Reversible
circuits are a necessary subclass whose realization is required for any quantum computer to
be universal. Three state quantum systems have recently been discussed in the framework
of cryptography [2]3, and the concept of a qudit cluster state has been proposed [3]. Qudit
systems received further study in [5] and [6] wherein quantum hybrid gates acting on the
tensor products of qudits of different dimensions were discussed. Recently synthesis for
d-level systems showing asymptotic optimality was also proposed [4]. The study in [5] and
[7] found hybrid quantum gates that, when considered to be controlled by and act on three
level quantum systems, define the hybrid Toffoli, Swap and NOT gates used in this paper.
The physical realization of these hybrid gates might be accomplished via spin systems [5, 8]
or quantum harmonic oscillators [5, 8]. A universal set of ternary quantum gates enables the
realization of any tristate switching network on a candidate qudit realization.

3 Citations with ‘quant-ph/xxxxxxx’ designation are on the internet at http://arxir.org/http://arXir.org/.

0305-4470/05/449689+09$30.00 © 2005 IOP Publishing Ltd Printed in the UK 9689

http://dx.doi.org/10.1088/0305-4470/38/44/006
mailto:guowu@ece.pdx.edu
http://stacks.iop.org/JPhysA/38/9689

9690 G Yang et al

The computer science community has also experienced recent interest in the universal sets
of gates required for ternary quantum computing systems, the main results of which appear
in [9–11]. In these gates, arbitrary Galois field operations are used in the so-called Toffoli
gates of the ESOP-based (exclusive sums-of-products) realization of binary reversible circuits,
where Galois addition and multiplication replace the XOR and AND gates, respectively. The
ESOP circuit synthesis programs use heuristic rule-based search strategy to minimize each
output as an exclusive sum-of-products realized as k-input (k � n) Toffoli gates. We observe
that the universality discussed in the literature has an assumption that the inputs of gates can be
set to constant values, thus ancilla bits are used [9–11]. These programs can be applied to large
functions but their disadvantage is that they create m ancilla bits (one for each output) and use
multi-input gates that may be expensive. Although [5] discussed entanglement generation4

with and without ancilla qudits, in both the physics and computer science communities neither
the ternary switching universality of the introduced sets of gates nor the proof of a synthesis
algorithms convergence was given.

Group theory [12] has found particular use to generate reversible logic circuits [13]. Some
notable results appear in [13–16] which are applicable to the synthesis of quantum switching
networks. The motivation of this paper is to find the universality of a gate family [17] to be
used in synthesis of ternary reversible circuits without ancilla bits. We prove that ternary Swap,
NOT and Toffoli gates [5] are universal for realization of arbitrary ternary n × n reversible
circuits without ancilla bits. Moreover, we create an algorithm for one of these gate families
that is provably convergent. Our algorithm is constructive and effective in both space and time
resources.

This paper is organized as follows. First, in section 2, we introduce some basic definitions
of ternary switching networks and the needed group theory natation, terms and results. We
then present our main results: theorem 1 and 2 after four lemmas. Second, we conclude this
paper. Finally, in the appendix, we prove lemma 4, and present two examples to illustrate the
synthesis process for a given ternary reversible circuit.

2. Main results

This section begins by presenting some basic definitions of ternary switching networks and
the needed group theory notation and terms.

Definition 1 (ternary reversible gate). Let B = {0, 1, 2}. A ternary logic circuit f with n
input variables, B1, . . . , Bn, and n output variables, P1, . . . , Pn, is denoted by f : Bn → Bn,
where 〈B1, . . . , Bn〉 ∈ Bn is the input vector and 〈P1, . . . , Pn〉 ∈ Bn is the output vector.
There are 3n different assignments for the input vectors. A ternary logic circuit f is reversible
if it is a one-to-one and onto function (bijection). A ternary reversible logic circuit with n
inputs and n outputs is also called an n × n ternary reversible gate. There are a total of (3n)!
different n × n ternary reversible circuits.

The concept of a permutation group and its relationship with reversible circuits will now be
introduced.

Definition 2 (permutation). Let M = {d1, d2, . . . , dk}. A bijection5 of M onto itself is called
a permutation on M. The set of all permutations on M forms a group under composition of

4 The reader wishing to develop background in the theory of quantum computation should consult the textbook by
Nielsen and Chuang [1] and the references therein.
5 Bijection: one-to-one, and onto mapping.

Realizing ternary quantum switching networks without ancilla bits 9691

mappings, called a symmetric group on M. It is denoted by Sk [12]. A permutation group is
simply a subgroup [12] of a symmetric group.

A mapping s : M → M can be written as

s =
(

d1, d2, . . . , dk

di1 , di2 , . . . , di1

)
. (1)

Here we use a product of disjoint cycles as an alternative notation for a mapping [12]. For
example, (

d1, d2, d3, d4, d5, d6, d7, d8, d9

d1, d4, d7, d2, d5, d8, d3, d6, d9

)
(2)

can be written as (d2, d4)(d3, d7)(d6, d8). Denote ‘()’ as the identity mappings direct wiring
and call this the unity element in a permutation group. The inverse mapping of mapping s
is denoted as s−1. As per convention, a product s � t of two permutations applies mapping s
before t.

We order the 3n different n-input assignment vectors as

(0, 0, . . . , 0), (1, 0, . . . , 0), (2, 0, . . . , 0), (0, 1, . . . , 0), . . . , (2, 2, . . . , 2), (3)

and denote them by a1, a2, a3, . . . , am, where m = 3n. Thus a n × n ternary reversible circuit
is just a permutation in Sm (where m = 3n), and vice versa. Cascading two gates is equivalent
to multiplying two permutations. In what follows, no distinction between an n × n reversible
gate and a permutation in Sm (where m = 3n) will be made.

Definition 3 (Swap gate). A Swap gate Ei,j exchanges the ith bit Bi and the j th bit Bj , i.e.
Pi = Bj , Pj = Bi;Pr = Br, if r �= i, j .

Definition 4 (ternary NOT gate). A Ternary NOT Gate Nj is defined as: Pj = Bj

⊕
3 1;6

Pi = Bi, if i �= j, 1 � j � n.

Definition 5 (ternary Toffoli gate). A Ternary Toffoli Gate T is defined such that if
B2 = B3 = · · · = Bn = 1, then P1 = B1

⊕
3 1; otherwise, P1 = B1, whereas Pi = Bi ,

for i �= 1. In other words, it maps d1 to d2, d2 to d3, d3 to d1, respectively, where
d1 = (0, 1, 1, . . . , 1), d2 = (1, 1, 1, . . . , 1), d3 = (2, 1, 1, . . . , 1), and the other assignment
vectors do not change.


d1

d2

d3

. . .


 =




0, 1, 1, . . . , 1
1, 1, 1, . . . , 1
2, 1, 1, . . . , 1

others


 T

→




1, 1, 1, . . . , 1
2, 1, 1, . . . , 1
0, 1, 1, . . . , 1

others


 =




d2

d3

d1

. . .


 (4)

From the definition of T, we have T = (d1, d2, d3). Thus, T is a 3-cycle, and T −1 = T �T ,

(T � T)−1 = T .

Definition 6 (j-cycle). Let Sk be a symmetric group of symbols {d1, d2, . . . , dk},
then (di1 , di2 , . . . , dij), where j � k, is called a j -cycle. In particular, a j -cycle
(di, di+1, . . . , di+j−1) is called a neighbour j -cycle of Sk , for ∀1 � i � k − j + 1

Definition 7 (even permutation and odd permutation). A permutation is even if it is a product
of an even number of 2-cycles and odd if it is a product of an odd number of 2-cycles.

6 ⊕
3 denotes addition modulo 3.

9692 G Yang et al

Obviously, a 3-cycle is an even permutation. For instance, (1, 3, 2) = (2, 3) (3, 1).
The product of some even permutations is also an even permutation. The product of an odd
number of odd permutations is an odd permutation. The product of an even number of even
permutations with an odd number of odd permutations is an odd permutation. The product of
an even number of odd permutations is an even permutation.

Lemma 1. Ei,j is a product of 3n−1 disjoint 2-cycle permutations, an odd permutation, and
(Ei,j)

−1 = Ei,j .

Proof. From the definition of Ei,j , we have the mapping of Ei,j in (5), thus the disjoint
2-cycle’s (b1, b2), (b3, b4), (b5, b6) are in Ei,j . There are 3n−2 cases for the assignments of
the n − 2 positions except Bi and Bj . Thus, there are 3n−2 � 3 = 3n−1 disjoint 2-cycles in
Ei,j . The other vectors do not change. Therefore, Ei,j is a product of these 3n−1 disjoint
2-cycles. So Ei,j is an odd permutation and (Ei,j)

−1 = Ei,j . For example, when n = 2, we
have E1,2 = (d2, d4)(d3, d7)(d6, d8).

1, . . . , i, . . . , j, . . . , n 1, . . . , i, . . . , j, . . . , n


b1

b2

b3

b4

b5

b6

. . .




=




B1, . . . , 1, . . . , 0, . . . , Bn

B1, . . . , 0, . . . , 1, . . . , Bn

B1, . . . , 1, . . . , 2, . . . , Bn

B1, . . . , 2, . . . , 1, . . . , Bn

B1, . . . , 2, . . . , 0, . . . , Bn

B1, . . . , 0, . . . , 2, . . . , Bn

other vectors




Ei,j

→




B1, . . . , 0, . . . , 1, . . . , Bn

B1, . . . , 1, . . . , 0, . . . , Bn

B1, . . . , 2, . . . , 1, . . . , Bn

B1, . . . , 1, . . . , 2, . . . , Bn

B1, . . . , 0, . . . , 2, . . . , Bn

B1, . . . , 2, . . . , 0, . . . , Bn

other vectors




=




b2

b1

b4

b3

b6

b5

. . .




(5)

The proof of lemma 1 is therefore complete. �

Lemma 2. Ni is a product of 3n−1 disjoint 3-cycle permutations and (Ni)
−1 = Ni � Ni,

(Ni � Ni)
−1 = Ni .

Proof. The proof follows similarly to the proof of lemma 1. �

Lemma 3. Let Sk be a symmetric group of letters {d1, d2, . . . , dk}. Then every even
permutation can be generated by using only neighbour 3-cycles. Obviously, every even
permutation can also be generated by using only 3-cycles.

Lemma 3 is a well-known result in permutation group theory. It can be found in many
textbooks such as [12].

Lemma 4. For any three different assignment vectors u, s and t, the 3-cycle permutation
(u, s, t) can be generated by NOT gate Nj , Swap gate Ei,j , and Toffoli gate T.

The proof of lemma 4 and some examples illustrating the synthesis process for a given
ternary reversible circuit are given in appendix.

Theorem 1. All n × n ternary reversible circuits can be generated by Swap, NOT and Toffoli
gates.

Proof. Let g be a n × n ternary reversible circuit.

Realizing ternary quantum switching networks without ancilla bits 9693

Case 1: g is an even reversible circuit. According to lemma 3, g can be generated by some
3-cycle’s. According to lemma 4, all 3-cycle’s can be generated by Swap, NOT and Toffoli
gates. Therefore, g can be generated by Swap, NOT and Toffoli gates.

Case 2: g is an odd reversible circuit. Then E1,2 � g is an even reversible circuit. From
case 1, E1,2 � g can be generated by Swap, NOT and Toffoli gates. (E1,2)

−1 = E1,2. Thus, g

can be generated by Swap, NOT and Toffoli gates. �

The following algorithm is given to synthesize any n × n ternary reversible circuit:

Algorithm: Synthesize any n × n ternary reversible circuit g.

Input: Swap gate, NOT gate, Toffoli gate and g.

(i) If g is an even permutation,
then g = C1 � C2 � . . . � Cs ; (Ci are 3-cycles for i = 1, . . . , s).

(ii) Ci = Li,1 �Li,2 � · · · �Li,ti ; for i = 1, 2, . . . , s. (Li,j are Swap, or NOT, or Toffoli gates).
(iii) Return g = [L1,1 � · · · � L1,t1] � · · · � [Ls,1 � · · · � Ls,ts].
(iv) If g is an odd permutation, then E1,2 � g = L1 � L2 � · · · � Lh; (where Li are Swap, or

NOT, or Toffoli gates).
(v) Return g = E1,2 � L1 � · · · � Lh.

This algorithm can be implemented in terms of the above lemmas. Line 1 is based on
lemma 3. Line 2 is a logical consequence from lemma 4. Line 3 is a direct result from line 1
and 2. In terms of lemma 1 and lines 1, 2, and 3, we have Line 4. From line 4 and lemma 1,
line 5 is derived.

In binary reversible logic, there is a result stating that ‘All n × n binary reversible circuits
can be generated by Swap, NOT, and Toffoli gates’ [15, 17]. This leads to conjecture 1 which
represents an open problem. Although it has not been proven yet, we strongly believe that it
is true.

Conjecture 1. All n×n p-value (p � 3) reversible circuits can be generated by Swap, NOT
and Toffoli gates (change modulo 3 to modulo p).

In the following, we give some properties of other ternary gates.

Definition 8 (ternary Controlled-NOT gate). A ternary Controlled-NOT gate Cj,i is defined
as Pj = Bj

⊕
3 1 if Bi = 1; otherwise, Pj = Bj ; further, Pm = Bm, if m �= j , Where

1 � j �= i � n.

Definition 9 (ternary Multiply-Two gate). A ternary Multiply-Two gate MTi is defined as
Pi = Bi

⊗
3 2; Pm = Bm, if m �= i, where

⊗
3 is the operation of multiplication by modulo 3;

1 � i � n.

Theorem 2. All n × n ternary reversible circuits can be generated by NOT, Controlled-NOT,
Multiply-Two, and Toffoli gates.

Proof. Using algorithm MLR in [18], we obtain:

Ei,j = MTi � Cj,i � Ci,j � Ci,j � MTj � Ci,j � Cj,i � Cj,i � MTi � Cj,i � Ci,j � Ci,j .

From theorem 1, we can draw the conclusion that all n × n ternary reversible circuits can be
generated NOT, Controlled-NOT, Multiply-Two and Toffoli gates. �

Based on the similarity to binary quantum switching networks, the set of NOT, Controlled-
NOT, Multiply-Two and Toffoli gates is a more practical set for synthesis. CNOT is a known
gate and widely used gate as is the NOT gate. The Toffoli is a natural extension of CNOT

9694 G Yang et al

and NOT gates. Multiply-two is a single qudit gate so it should be not expensive. The cost of
quantum gates depends on different technologies. We hope this set has some cost advantage
when it is used to realize any ternary reversible circuit. In this paper, we just prove that this
set is a universal set. But the synthesis method based on the proof of theorem 2 is not length
efficient. We are still looking for a length efficient synthesis algorithm with this set.

3. Conclusion

We demonstrated that ternary Swap, ternary NOT and ternary Toffoli gates are universal for
realization of arbitrary ternary n × n reversible circuits without ancilla bits. We also proved
that all n × n ternary reversible circuits can be generated by NOT, Controlled-NOT, Multiply-
Two and Toffoli gates. Our approach is constructive, so it is effective in both space and time
resources but not optimal.

The construction of qudit quantum gates (including ternary reversible gates) was discussed
in [5–8]. The costs of multi-level reversible gates depend on the realization of technologies.
Our next plan is to find the cost of these ternary reversible gates, and create an algorithm with
optimal cost by using these gates.

Acknowledgment

We thank Mr Jacob Biamonte for useful discussions.

Appendix. A proof of lemma 4

Lemma 4. For any three different assignment vectors u, s and t, the 3-cycle permutation
(u, s, t) can be generated by NOT gate Nj , Swap gate Ei,j and Toffoli gate T.

Proof. We denote the vectors u, s and t as the following matrix:

P =

u

s

t


 =


u1, u2, . . . , un

s1, s2, . . . , sn

t1, t2, . . . , tn


 .

In the 3-row matrix P, a column having different elements is called a heterogeneous
column. Otherwise, it is called homogeneous column.

Let H = [
P

Q

]
be the matrix composed of all the 3n different n-input assignments where

Q is composed of 3n−3 different n-input assignment vectors except u, s and t.
From the definition, the operations of Swap, NOT and Toffoli gates on H are as follows.

• Swap gate Ei,j interchanges column i and column j .
• NOT gate Ni is an operation

⊕
31 for all elements in column i.

• Toffoli gate T interchanges three rows: (0, 1, 1, . . . ,1) to (1, 1, 1, . . . ,1), (1, 1, 1, . . . ,1) to
(2, 1, 1, . . . ,1), (2, 1, 1, . . . ,1) to (0, 1, 1, . . . ,1), and the rest rows remain fixed.

Now we consider the matrix P for the following three cases:

Case 1: There is only one heterogeneous column in the matrix P.

(i) We can use a Swap gate Ei,j to exchange the heterogeneous column to the first column
position.

(ii) Using NOT gates Nj , we can assign all the elements in the homogeneous columns as
values 1.

Realizing ternary quantum switching networks without ancilla bits 9695

(iii) Using Toffoli gate T or T � T gates (if (u1, s1, t1) = (0, 1, 2), or (1, 2, 0), or (2, 0, 1), use
T, otherwise T � T), we can reorder the rows r1, r2, r3 to r2, r3, r1 in the matrix P.

(iv) Finally, using the inverse of the NOT and Swap gates used in steps 2 and 1 to recover the
changed digital numbers, we obtain the 3-cycle (u, s, t).

Denote P (i) and Q(i) as the image matrices of P and Q after the ith step, i = 1, 2, 3, 4.
Then the operations of the 4th step agre as follows:

P (3) step 4→ P (4) =

s

u

t


 , Q(3) step 4→ Q(4) = Q.

This process means that an arbitrary 3-cycle permutation (u, s, t) with only one heterogeneous
column in the matrix P can be generated by using NOT gates, Swap gates and one or two
Toffoli gate(s). Example 1 shows this process.

Example 1. Let n = 3, u = (0, 0, 2), s = (0, 1, 2), t = (0, 2, 2). The column 2 is
heterogeneous.

u

s

t


 =


0, 0, 2

0, 1, 2
0, 2, 2


 E1,2�N2�(N3)

2

——–−→

0, 1, 1

1, 1, 1
2, 1, 1


 T→


1, 1, 1

2, 1, 1
0, 1, 1




(N3)
−2�(N2)

−1

→

1, 0, 2

2, 0, 2
0, 0, 2


 (E1,2)

−1

→

0, 1, 2

0, 2, 2
0, 0, 2


 =


s

t

u




Therefore,

(u, s, t)= E1,2 � N2 � N3 � N3 � T � (N3 � N3)
−1 � (N2)

−1 � (E1,2)
−1

= E1,2 � N2 � N3 � N3 � T � N3 � N2 � N2 � E1,2.

We use notation
(
N−1

3

)(
N−1

3

) = (N3)
−2.

In fact, at the end of step 3, we can write a generating expression of (u, s, t) as a product
of the Swap gates, NOT gates and Toffoli gates without performing step 4. We perform step
4 in example 1 just to show that this process is correct.

Case 2: There are two heterogeneous columns among u, s and t.

(i) Using Swap gates, we can exchange columns such that the first and second columns are
heterogeneous and the number of different elements in the first column is no more than
that in the second column.

(ii) Using Not gates, set all the elements in the homogeneous columns as values 1.
(iii) Using Swap, NOT, and Toffoli gates, set the elements of the second columns as value 1.

We have the following three subcases:

• Subcase 1: There are two different elements in the first column and three different
elements in the second column. Without loss of generality, we assume u1 = s1 �= t1.
Consider t2. If t2 �= 1, use N2 (if t2 = 0) or N2 � N2 (if t2 = 2) to interchange t2 to 1.
Then use T (if t1

⊕
3 1 = u1) or T � T (if t1

⊕
3 2 = u1) to interchange t1 to u1. If

u1 = s1 = t1 �= 1, use N1 or N1 �N1 to make the elements in column 1 be 1s. Finally,
exchange columns 1 and 2. As a result, the elements in the first column are different
and the elements of other elements in P are all 1s.

• Subcase 2: There are two different elements in the first column and the second column,
respectively. Without loss of generality, we assume u2 = s2 �= t2. Then u1 �= s1. We

9696 G Yang et al

use NOT gate(s) to change u2 and s2 to 1 s if they are NOT 1s. Then use T or T � T

to change u1 and s1 such that the elements in the first column are different with each
other. Finally, exchange columns 1 and 2. Then, the resulting matrix P becomes the
subcase 1.

• Subcase 3: There are three different elements in the first column and the second
column, respectively. Without loss of generality, we assume u2 = 1. After using T,
we change u1 to s1 or t1. Then, the resulting matrix P becomes the subcase 1. For
instance, 

u

s

t


 =


0, 2, 1

1, 0, 1
2, 1, 1


 T→


0, 2, 1

1, 0, 1
0, 1, 1


 (This is subcase 1).

(iv) Using Toffoli gate T or T �T to change the order of the first three vectors as expected (we
can reorder the rows r1, r2, r3 to r2, r3, r1).

(v) Finally, using the inverse of these NOT gates, Swap gates and Toffoli gates in the steps 3,
2, and 1 to recover these changed digital numbers, we obtain the 3-cycle (u, s, t).

The action of the 5th step is:

P (4) step 5→ P (5) =

s

t

u


 , Q(4) step 5→ Q(5) = Q.

Example 2 shows the process executed in case 2.

Example 2. Let n = 3, u = (0, 0, 1), s = (0, 0, 2), t = (1, 0, 1).
u

s

t


 =


0, 0, 1

0, 0, 2
1, 0, 1


 E2,3→


0, 1, 0

0, 2, 0
1, 1, 0


 N3→


0, 1, 1

0, 2, 1
1, 1, 1


 (Step l and; 2)

T→

1, 1, 1

0, 2, 1
2, 1, 1


 E1,2→


1, 1, 1

2, 0, 1
1, 2, 1





 Now it

becomes
subcase 1


 (End step 3)

T �T→

1, 1, 1

0, 1, 1
2, 1, 1


 (End step 4)

(E−1
1,2)�(T �T)−1�(N2)

−1

→

2, 0, 1

1, 2, 1
1, 1, 1




(E1,2)
−1�T −1

→

0, 2, 1

1, 1, 1
0, 1, 1


 (N3)

−1�(E2,3)
−1

→

0, 0, 2

1, 0, 1
0, 0, 1


 =


s

t

u




Therefore,

(u, s, t) = E2,3 � N3 � T � E1,2 � N2 � T � T � E1,2 � (T � T) � (E1,2)
−1

� (T � T)−1 � (N2)
−1 � (E1,2)

−1 � (T)−1 � (N3)
−1 � (E2,3)

−1

= E2,3 � N3 � T � E1,2 � N2 � T � T � E1,2 � (T � T) � E1,2

� T � N2 � N2 � E1,2 � T � T � N3 � N3 � E2,3.

In fact, after step 4, we can write a generating expression of (u, s, t) as a product of the
Swap gates, NOT gates, and Toffoli gates without executing step 5. We perform step 5 in
Example 2 just to show that the process is correct.

Realizing ternary quantum switching networks without ancilla bits 9697

Note: After finishing the whole process in case 1 and 2, the remaining 27 − 3 = 24 rows
are not affected by the string of gates. And in the process, we can find the realization without
considering these 24 rows. Thus, we only act these gates on the three rows u, s and t.

Case 3: There are more than two different bits among u, s and t.

Similar to the binary reflective Gray code [19], we can also reflectively encode the
ternary vectors in an order x1, x2, . . . , xm, where m = 3n such that there is only one bit
different between the two vectors xi and xi+1, for 1 � i � m − 1. Therefore, we can find
i < j < k, such that xi, xj , and xk are a permutation of u, s, and t, respectively. Namely,
(u, s, t) = (xi, xj , xk) or (u, s, t) = (xi, xj , xk)

2.
There are at most two different bits among xh, xh+1, xh+2, for 1 � h � m − 2. According

to case 1 and case 2, the 3-cycle (xh, xh+1, xh+2) can be generated by Swap, NOT and Toffoli
gates. Thus, according to lemma 3, the 3-cycle (xi, xj , xk) can be generated by Swap, NOT
and Toffoli gates. As a result, (u, s, t) can be generated by Swap, NOT and Toffoli gates.

References

[1] Nielsen M and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[2] Pasquinucci H B and Peres A 2000 Quantum cryptography with 3-state systems Phys. Rev. Lett. 85 3313
(Preprint quant-ph/0001083)

[3] Zhou D L, Zeng B, Xu Z and Sun C P 2003 Quantum computation based on d-level cluster state Preprint
quant-ph/0304054

[4] Bullock S S, O’Leary D P and Brennen G K 2005 Asymptotically optimal quantum circuits for d-level systems
Phys. Rev. Lett. 94 230502 (Preprint quant-ph/0410116)

[5] Daboul J, Wang X and Sanders B C 2003 Quantum gates on hybrid qudits J. Phys. A: Math. Gen. 36 7063–78
(http://stacks.iop.org/0305-4470/36/2525)

[6] Kunio F 2003 The controlled-U and unitary transformation in two-qudit Preprint quant-ph/0304078
[7] Muthukrishnan A and Stroud C R Jr 2000 Multivaluved logic gates for quantum computation Phys. Rev. A 62

052309 (http://www.optics.rochester.edu:8080/users/stroud/publications/muthukrishnan001.html)
[8] Bartlett S, de Guise D and Sanders B 2002 Quantum encodings in spin systems and harmonic oscillators Phys.

Rev. A 65 052316 (Preprint quant-ph/0109066)
[9] Miller D M, Maslov D and Dueck G 2005 Synthesis of quantum multiple-valued circuits

http://www.cs.uvic.ca/mmiller/ (J. Multiple-Valued Logic Soft Comput. at press)
[10] Khan M H A, Perkowski M, Khan M and Kerntopf P 2005 Ternary GFSOP minimization using Kronecker

decision diagrams and their synthesis with quantum cascades J. Multiple-Valued Logic Soft Comput. at press
[11] Al-Rabadi A and Perkowski M 2001 Multiple-valued Galois field S/D trees for GFSOP minimization and their

complexity ISMVL 2001: Proc. 31st Int. Symp. on Multiple-Valued Logic (Warsaw, Poland, May) pp 159–66
[12] Dixon J D and Mortimer B 1996 Permutation Groups (New York: Springer)
[13] De Vos A, Raa B and Storme L 2002 Generating the group of reversible logic gates J. Phys. A: Math. Gen. 35

7063–78 (http://stacks.iop.org/0305-4470/35/7063)
[14] Storme L, De Vos Alexis and Jacobs G 1999 Group theoretical aspects of reversible logic gates J. Universal

Comput. Sci. 5 307–21 (http://www.jucs.org/jucs 5 5/group theoretical aspects, http://www.jucs.org/)
[15] Song X, Yang G, Perkowski M and Wang Y Algebraic characterization of reversible logic gates http://www.

springerlink.com/index/10.1007/s00224-004-1166-2 (Theory Comput. Syst. at press)
[16] Yang G, Hung W N N, Song X and Perkowski M 2005 Majority-based reversible logic gates Theor. Comput. Sci.

334 259–74
[17] Toffoli T 1981 Bicontinuous extensions of invertible combinatorial functions Math. Syst. Theory 14 13–23
[18] Yang G, Song X, Hung W N N and Perkowski M 2005 Fast synthesis of exact minimal reversible circuits using

group theory ACM/IEEE ASP-DAC: Asia and South Pacific Design Automation Conf. (Shanghai, China,
Jan.) pp 1002–5

[19] Sandige R S 2002 Digital Design Essentials (Englewood Cliffs, NJ: Prentice-Hall)

	1. Introduction
	2. Main results
	3. Conclusion
	Acknowledgment
	Appendix
	References

