
1. Introduction

Quantum computing (QC) is a very
promising and flourishing research area
[13,14,18,20,30,35,41]. QC and quan-
tum communication give high promises
of dramatically faster, smaller and more
powerful systems for computing, com-
munication and widely understood intelli-
gent robotics, including atomic-scale
robotics.  Unfortunately, to understand
the research published in the physics
journals requires familiarity with con-
cepts and notations of quantum mechan-
ics, the domain that computer scientists
and engineers are rarely familiar with.
Hopefully, using the metaphor of a "net-
work", the fundamental concepts of
quantum computing are quite easy to
understand for someone who is familiar
with classical digital computing. After
being able to understand how the quan-
tum "circuit" operates, the researchers
are immediately ready to use their skills
and intuitions to design quantum circuits
and algorithms and develop new soft-
ware tools for simulation, synthesis, test-
ing and analysis of them. Because the
quantum concepts generalize standard
computer notions such as combinational
circuits, state machines, games or spec-
tral transforms, every traditional comput-
ing concept can be generalized to its
counterpart quantum concept, the use-
fulness of which should be next analyzed
with respect to computational complexity
and new attractive computational fea-
tures. Thus a specialist in DSP may
design quantum spectral transforms
superior to classical transforms, neural
network researcher would create their
quantum counterparts, test engineer
would analyze how quantum networks
can be tested, CAD developer would cre-
ate efficient software for quantum CAD,
fuzzy logic specialist would generalize
concepts to quantum fuzzy logic, and

others would work on development of
quantum algorithms or models of learn-
ing based on quantum phenomena in
these networks. Quantum is the whole
new world to investigate, but we have
already many guidelines from the history
of computing to follow!

Theoretically, QC allows designers to
build much more efficient computers
than the existing classical ones. For
example, some problems that can't be
solved in polynomial time using classical
computers can be solved in polynomial
time using quantum computers [41].  In
part, this is because quantum circuits are
inherently able to perform massive paral-
lel computations [41]. In this paper we
will not deal with building physical quan-
tum computers but only with the minimal
and useful from the engineering stand-
point mathematical description of their
operation. Although it is too early to use
quantum circuits and algorithms for prac-
tical applications (now quantum comput-
ers with not more than 10 qubits can be
build), their correctness can be verified
using quantum simulators (some circuits
up to 45 qubits have been simulated).
Formally, quantum algorithms are also
(combinational - no loops or memory) cir-
cuits, but with hierarchical structure com-
posed of many circuit block levels. While
most of the results in quantum literature
are for binary quantum computing, the
multi-valued  (MV) and hybrid quantum
computing are new and exciting
research areas in which not many results
are known. Observe first, that in classical
digital circuit design binary rather than
multi-valued logic is a natural choice for
a variable (bit) because of the physics of
transistor's operation. In case of a quan-
tum realization, however, various logics
with higher than two radix can be real-
ized. Moreover, quantum phenomena
allow naturally the realization of the so-
called hybrid quantum circuits in which a

two-input gate may have for instance
one binary input and one ternary input.
Here we give background for such logic,
which allows also to generalize and unify
the presentation without making it more
complex. Below, few modern research
areas fundamental to the success of
future quantum computing are briefly
presented. Some paragraphs include
sections with suggested immediate
research areas for people with computer
engineering or Computational
Intelligence backgrounds. Numerous
provided references should aid the read-
er as a starting point in individual study. 

2. Fundamentals of Multiple-
Valued Quantum Circuits

In multi-valued (MV) Quantum
Computing, the unit of memory (informa-
tion) is qudit. MV quantum logic opera-
tions manipulate qudits, which are micro-
scopic entities such as a photon's polar-
ization or atomic spin. For instance, ter-
nary logic values of 0, 1, and 2 are rep-
resented by a set of distinguishable dif-
ferent basis states of a qutrit. These
states can be a photon's polarizations or
an elementary particle's spins. After
encoding these distinguishable quanti-
ties into multiple-valued values, qutrit
states are represented by basis states 

,  |0, and     , respectively. A qubit, used
in binary QC uses only two basis states,  

and    , binary quantum circuits are
thus from a formal point of view nothing
more than k-valued quantum circuits for
a special case of  k = 2. Qubit and qutrit
are then special cases of qudits. Qudits
exist in a linear superposition of states,
and are characterized by a wave function
ψ.  As an example (d=2), it is possible to
have light polarizations other than purely
horizontal or vertical, such as slant 45o

corresponding to the linear superposition
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in Hilbert space, ψ =                       . In ter-
nary logic, the notation for the superposi-
tion is                  , where α, β, and γ are
complex numbers. These intermediate
states cannot be distinguished, rather a
measurement will yield that the qutrit is in
one of the basis states      ,     , or     . The 
probability that a measurement of a qutrit
yields state     is |α|2, state     is |β|2, and
state     is |γ|2.  The sum of these proba-
bilities is one. The absolute values are
required since, in general, α, β and γ are
complex quantities. Recall that |a|2 = a.a*
where . is the operation of multiplication
of complex numbers and a* denotes the
complex conjugate of  number a. By + we
denote addition of complex numbers.
Pairs of qutrits are capable of represent-
ing nine distinct states                          

and      , as well as all possi-
ble superpositions of these states. This
property is mathematically described
using the Kronecker product (tensor
product) operation  . The Kronecker
product of two matrices is defined as fol-
lows:

Observe that expression such as ax is
a multiplication of complex numbers
(symbols of multiplication are avoided).
The 2*2 matrix corresponds to single-
qubit binary gate, thus the 4*4 matrix
above corresponds to a quantum circuit
in which two single-qubit gates operate in
parallel. As always in reversible logic, the
numbers of inputs and outputs of a quan-
tum gate are the same. Similarly to the
tensor product of 2*2 matrices above,
one can define tensor products for any
sizes of matrices and in particular for
vectors representing superposed states.
As an example, consider two qutrits with  

and  
. When the two

qutrits are considered together to repre-
sent a state, that state ψ12 is the super-
position of all possible combinations of
the original qutrits, where 

The notation above is called Dirac nota-
tion. The Heisenberg notation uses
matrices for operators that act on states
and uses vectors to represent states.
Both notations are useful and we will
illustrate both of them. The superposition

property allows the qubit states to grow
much faster in dimension than classical
bits, and the qudits faster than qubits
[39].  In a classical system, n bits repre-
sent 2n distinct states, whereas n qubits
correspond to a superposition of 2n

states and n qutrits correspond to a
superposition of 3n states. Because we
are multiplying in general complex num-
bers, in the above formula some coeffi-
cient can be equal to zero, so there
exists a constraint bounding the possible
states in which the system can exist. For
instance, the state                      is the
so-called entangled state that when
measured will produce      with probabili-
ty |γ|2 and    with probability |ε|2. 
Observe that states       and        are never
measured in this example! Observe also
that the entangled state      
cannot be factored back to a Kronecker
product. This kind of calculation is not
possible by a physical system in macro-
world. It exists only in quantum world and
is the base of efficiency of quantum algo-
rithms and testing of quantum circuits [4].
As observed in [40] - "Allowing d to be
arbitrary enables a tradeoff between the
number of qudits making up the quantum
computer and the number of levels in
each qudit". Because in contemporary
quantum technologies every qubit is
costly, higher radices than 2 give an
advantage of improved processing and
storage power at the same realization
cost. This is just one of strong arguments
for the realization of multi-valued logic in
quantum circuits. In addition to standard
advantages of MV logic, quantum MV
logic may be superior to binary because
of different nature of entanglement [40].
The study of entanglement is very impor-
tant to understand the essence of quan-
tum phenomena and algorithms [41];
new quantum algorithm use entangle-
ment in a new creative way; entangle-
ment is counterintuitive and requires
computationally difficult calculations.
Thus many methods are used and poten-
tially methods of Computational
Intelligence such as neural nets or evolu-
tionary programming should be used as
well. Future automatic synthesis of quan-
tum algorithms will be based on good
understanding of entanglement.

Unitary matrix U is one that U . U+ = I,
where U+ is an adjoint  matrix of U and I
is the identity matrix. An adjoint U+ is a
conjugate transpose matrix of U. A gate
or a sub-circuit  of a quantum circuit is
described as a unitary matrix, from now
we will not distinguish between them. In
Heisenberg notation, an output of a gate
is obtained by multiplying the unitary
matrix of this gate by a vector of Hilbert
space corresponding to this gate's input

state. Quantum gates can be connected
in series or in parallel. If they are con-
nected in parallel, the resultant matrix is
obtained by Kronecker multiplication of
their matrices. If they are connected in
series, one uses standard matrix multipli-
cation of gates' matrices. Various quan-
tum notations, such as the Dirac notation
above or matrix (Heisenberg) notation
shown below, contribute to the difficulty
in understanding the concepts of quan-
tum computing. These difficulties limited
until recently successes of non-physi-
cists in creating efficient analysis, simula-
tion, verification and synthesis algorithms
for QC. Generally, however, it is our
experience that once the minimal amount
of formalism is understood, researchers
with engineering background and familiar
with any types of networks can quickly
contribute to new circuits, algorithms and
software, since much can be learnt and
re-used from the Electronic Design
Automation, DSP, evolutionary comput-
ing and MV logic theory and design. The
achievements and methodologies of
these well-developed areas should be
now applied to develop new concepts
and design efficient software tools for
quantum computing. Also, to introduce
quantum-inspired ideas to these former
disciplines [24]. The benefits will be thus
mutual. Here we include the absolute
minimum amount of formalism sufficient
to start independent software develop-
ment by people who have sufficient back-
ground in any classical area such as par-
ticularly; EDA tools, algorithms, search,
machine learning, evolutionary program-
ming or fuzzy-neural systems.

In terms of logic operations, anything
that changes a vector of qudit states to
another qudit vector and satisfies the
measurement probability properties can
be considered as a quantum operator
(unitary matrix). These phenomena can
be modeled using the analogy of a
"quantum circuit" (called also quantum
array or quantum network). In a quantum
circuit, a wire does not carry ternary val-
ues but corresponds to a 3-tuple of com-
plex values, α, β, and γ. Quantum logic
gates of the circuit map the complex val-
ues on their inputs to complex values on
their outputs. When the operation of a
quantum gate is described by a unitary
matrix, any quantum circuit, being  a
composition of parallel and serial con-
nections of blocks, from small to large,
can be described by operations on these
matrices. Small blocks correspond to
quantum gates that are easily directly
realizable (like Pauli rotations) or are
very simple and require just few basic
quantum operations such as the
Feynman gates [19,41] in binary, or the
Stroud/Muthukrishnan gates [40] in multi-
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ple-valued quantum logic.  Theoretically,
as shown above, the analysis, simulation
and verification are easy and can be
based on matrix algebra and software.
Practically they are tough because the
dimensions of the matrices grow expo-
nentially. All these become much easier
when one deals only with permutative
matrices, which are equivalent to multi-
output truth tables of completely speci-
fied functions. In such matrices there is
exactly one "1" in every row and in every
column. An active research area is to
represent operations on unitary matrices
(in particular, the permutation matrices)
by new efficient data structures, algo-
rithms and hardware. 

An important unitary matrix property is
that of a full rank.  This property implies
that quantum gate matrix rows and
columns are orthonormal.  Therefore,
past results from spectral methods for
classic digital logic are directly applicable
to quantum logic synthesis. Unitary
quantum transforms can be build and
applied in all areas where spectral trans-
forms are now  used, such as in Image
Processing.  Furthermore, since quan-
tum logic gates are represented using
unitary orthonormal matrices, they repre-
sent logically reversible gates.  These
observations mean that the single
input/output quantum logic gates are
rotation matrices characterized by some
particular rotation angle θ, where, for
example, a = cosθ, b = sinθ, c = -sinθ
and d = cosθ.  With this viewpoint, it can
be seen that there exist, in fact, an infi-
nite number of single input/output qubit
gates.  However, three elementary gates
can be used to generate any rotation
[41].  These are the R, S, and T gates
described in matrix notation by

(1)

One of the most important quantum
gates is the quantum XOR gate (called
also Feynman gate or Controlled-Not
gate - CNOT).  This gate allows input
states of      and        to appear
unchanged at the outputs, but inter-
changes the states     and     . This is
seen in the 4*4 permutative matrix in
equation (2) below. Columns (from left to
right) correspond to input states of the
gate, and rows (from top to bottom) cor-
respond to output states --       ,       ,       ,
and    . Thus the transition from basis
input state      to basis output state      is
represented as a "1" at the intersection
of the fourth column and third row. The
basis state vector of state      = [0 0 1 0]T,
is a Kronecker product of states     = [0
1]T and     = [1 0]T.  (T stands for vector
transpose). When only basis states are
used we remain in the realm of classical

reversible logic. When vectors represent
arbitrary superpositions, we are in quan-
tum domain. Let us analyze operation of
this gate on basis input state state      .
By multiplying the matrix of CNOT by the
input state       = [0 0 1 0] T we obtain vec-
tor [0 0 0 1]T, as follows: 

(2)

In this example, the input is   = 
, and the input

vector is represented by the coefficients
shown in parentheses. Logically the
CNOT gate can be described by two
equations: P = a, Q = a   b, where bit a is
the control bit and bit b is the controlled
or data bit. Input variables are a and b,
output variables are P and Q. Dirac nota-
tion would be                 . Remember how-
ever that this gate operates on arbitrary
complex states not only on basis states.
By multiplying the matrix of CNOT by the
input state [α β γ δ]T we obtain vector [α
β δ γ]T, illustrating operation of a permu-
tative gate on arbitrary states.

It is a significant fact that the unitary
gates described by Equations (1) and (2)
can realize any quantum logic function
[7] (including standard binary).  Every
non-reversible Boolean or multiple-val-
ued circuit C1 (with arbitrary numbers of
inputs and outputs) can be transformed
to a reversible circuit C2 (described by a
permutative matrix). This requires adding
bits to C2. Circuit C2 is equivalent to C1 in
the sense that on its original bits it pro-
duces the same input-output mapping as
C1. Bits added to circuit C2 are the so-
called ancilla bits, initialized to constants,
they are always necessary to convert a
non-reversible logic function to a
reversible function on more variables,
but we want to add as few of them as
possible. C2 has also non-used output
bits, called garbage. Conversion meth-
ods are looked for to minimize garbage
and ancilla bits for arbitrary, especially
incompletely specified functions. There
are several strong similarities of quan-
tum logic, and especially its subset of
reversible circuits, to classic digital circuit
design using XOR gates, called some-
times XOR logic or Reed-Muller logic
[4,31,32]. Researchers with background
in this logic as well as spectral approach-
es to logic synthesis are at the advan-
tage when they work on quantum circuits
because many ideas can be adapted.

Observe in unitary matrix for CNOT
gate (Eqn. 2) that when the control bit
a=P (the first one from top) has value      
the gate does nothing, the controlled bit
b (the lower bit) has the same value on

input and on output. When the first bit a
has however value     , the controlled bit
b is inverted (since 1   b = b'). Therefore
this gate is called Controlled-NOT, which
means that the controlling bit controls the
NOT operation. Similarly a 3-qubit (uni-
versal) Fredkin gate is called a
Controlled-Swap, because when the first
bit  P = a (control) is     the gate does
nothing, which means that the lower two
bits just transfer input values; Q = b, R =
c, and when the control bit is    , these
bits are swapped; Q = c, R = b. Thus the
Fredkin gate realizes on basis states the
following reversible function, P = a, Q =
(a'   b) v (a   c), R = (a'   c) v (a   b). A
binary Toffoli gate (Figure 1) is described
by equations: P = a, Q = b, R = (a   b)    c.
Symbol    denotes Boolean AND, symbol
v Boolean OR and symbol   Boolean
XOR. Toffoli is also called Controlled-
Controlled-NOT, since NOT is controlled
by a product of inputs a and b. Feynman,
Fredkin and Toffoli gates, named after
their early inventors, are examples of
controlled gates. Controlled gates are
created also for multi-valued and hybrid
quantum circuits. In hybrid logic a terna-
ry bit A may control a binary bit B or a
binary bit may control a quaternary bit,
but every wire is for one radix logic only,
binary, ternary or quaternary, throughout
the entire circuit. Such multi-valued and
hybrid controlled gates are fundamental
to quantum circuits and continue to be
areas of active study. 

Figure 1. A standard binary 3*3 Toffoli gate.
Symbol + is a Boolean XOR. It would be a
modulo-3 addition in ternary Toffoli gate. The
circuit should be read from left to right (repre-
senting time) but is reversible.

We will illustrate now one way to real-
ize multi-valued logic using binary quan-
tum computing. The normalization |α|2 +
|β|2 = 1 admits the parameterization α=
cos(θ/2) ejγ, β= sin(θ/2) ejδ. |Ψ = ejα(cos
(θ/2)|0  + ejϕsin (θ/2)|1  ). Since the glob-
al phase of |Ψ has no observable effect,
we may write |Ψ = cos(θ/2)|0  + ejϕsin
(θ/2)|1 . The angles θ and ϕ define a
point on the surface of a unit sphere - the
Bloch sphere, see Figure 2. The Bloch
sphere provides an excellent tool to visu-
alize the state vector of a qubit.

The identity matrix and three Pauli
matrices:

form a basis for the 2*2 density matrices.
We associate with every 1-qubit state p =
½(I + axX + ayY + azZ) vector (ax, ay, az).
If p = |Ψ Ψ| for a state |Ψ = ejα(cos
(θ/2)|0  + ejϕsin (θ/2)|1  ). Then the corre-
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sponding vector is (ax, ay, az) = (sinθ
cosψ, sinθ sinψ, cosθ). It can be easily
derived that the vectors (ax, ay, az) satis-
fy  |ax|2+|ay|2+|az|2 = 1, which means that
all pure states are located on the surface
of the Bloch Sphere [41]. When there are
many identical quantum circuits working
together they are described by density
matrices and the (mixed) states may lay
inside the sphere, not on the surface.

Figure 2. Bloch Sphere with 6 values shown.

Figure 2 shows the location of 6 points
(quantum states), that may correspond
to logic values used in some multi-valued
quantum algebras. For binary logic we
use     and     . For quaternary logic we
use      ,    ,     +    , and     -    . For 6-val-
ued logic we use additionally points     +
j    and     - j   . This assumes only 90
degree angle rotations. A rotation or a
combination of rotations leads from one
value to any other value. These are sin-
gle qubit operations, which we want to
reduce to the minimum number of ele-
mentary "gates" being physically realiz-
able "rotations", such as Pauli rotations.
Observe that the Bloch Sphere visualizes
all possible values of a single qubit in
Hilbert space and all operators on a sin-
gle qubit. It has a big didactic value to
explain operation of quantum circuits.
Because global phase does not count as
it cannot be distinguished in measure-
ment, the T gate can be also written as
follows:

T(Π/8) =               .       

H denotes the important Hadamard gate:  

The Hadamard and the Π/8 gate can
be used to approximate any given single-
qubit unitary operation with arbitrary
accuracy. On the Bloch sphere,  T and
HTH are rotations by an angle Π/4  radi-
ans around the z- and x-axes, respec-
tively. The composition of these two
operations gives a rotation by an angle
Θ, which is defined by cosΘ/2 = cos2Θ/8,
around an axis n, which is defined by n =
(cosΠ/8, sinΠ/8, cosΠ/8). Since Θ is irra-
tional, any rotation around the Θ-axis can
be build, to arbitrary precision, from T
and HTH. Furthermore, since for α arbi-
trary H Rn(α) H = Rm(α) with m =
(cosΠ/8, - sinΠ/8, cosΠ/8) not collinear
n, there are angles α, β, γ such that any

given U can be written U = Rn(α) Rm(β)
Rn(γ). It can be also shown that any given
2-qubit gate can be composed from
CNOT and a single qubit gate. Similarly,
other universal sets of 1-qubit gates can
be found and illustrated using Bloch
Sphere. This Sphere  is also useful to
find operator identities (quantum gener-
alizations of Boolean logic rules like "Not
(Not B) = B"). The quantum circuit can be
simplified and transformed using these
identities. Finding useful sets of identities
for binary, multi-valued and hybrid quan-
tum logic and creating search software to
optimize circuits based on applying these
identities remain outstanding open prob-
lems in quantum circuit design.

The reason that multi-valued logic is
not yet a mainstream in quantum com-
puting has perhaps mainly historical rea-
sons, since realization of MV circuits
requires technologically exactly the
same basic quantum operations as in
case of the binary quantum logic; it
means, single qubit 90o Pauli rotations
and two-qubit controlled gates in which
binary qubits control arbitrary single-
qubit 90o rotations. Observe that all these
operations already exist in various quan-
tum computer realization technologies
such as Nuclear Magnetic Resonance
(NMR) [41].  Above we showed how mul-
tiple-valued logic can be encoded in
binary quantum computing. Quaternary
logic requires two binary measurements.
The first measurement distinguishes
states     and    , and the second meas-
urement uses additional rotation gates to
distinguish between states      +     , and

-     . It can be shown that the logic
with 2n values requires n measurements.
Another approach to multi-valued quan-
tum circuits requires measurement gates
that measure more than two basis states.
Such gates also start to appear. Study of
universality and power as well as quan-
tum realization costs of multi-valued
gates are still active research areas.
Investigations of various multi-valued
and hybrid gates, their equivalence
transformations, physical  realizations,
synthesis and testing methods just start-
ed in recent years. Very little is known on
quantum algorithms using such gates,
communication schemes that use them
and spectral transforms in MV and hybrid
logics. Applications in Computational
Intelligence are also very new. Now that
the reader is familiar with basic concepts
and formalisms, we will list some new
areas of research where substantial con-
tributions can be done by building new
software tools for quantum computing
and inventing new quantum concepts
that would draw from the existing engi-
neering areas.

3. Quantum Circuit Simulation
and the Role of Good

Representation

Simulation of quantum circuits plays
absolutely fundamental role in many
areas of quantum physics and engineer-
ing. Similarly as in classical circuit
design, simulation is used to verify cor-
rectness of the design or algorithm, to
analyze its properties and to find some
interesting aspects that cannot be found
by "hand and pencil" methods. It is
amazing that the first quantum algo-
rithms were invented without quantum
simulators, but now the researchers rou-
tinely use quantum simulators to help
them with the designed by them algo-
rithms (circuits) and to verify their design
guesses. Quantum simulators are used
to simulate a good quantum circuit and a
circuit with inserted quantum faults for
test generation and fault localization in
quantum circuits [4,42,44]. Observe that
many search-based synthesis and opti-
mization methods used in Computational
Intelligence require simulation as part of
the fitness function calculation. This is
also true in quantum applications, espe-
cially for synthesis. When the exhaustive
search, genetic algorithms, genetic pro-
gramming, bacteria foraging, particle
swarm optimization, simulated annealing
or heuristic search do not use deeper
knowledge of circuit structure and prop-
erties, simulation is the only way (used
as part of the fitness function) to direct
the search towards a circuit that satisfies
given requirements. The results of the
simulation are compared with the circuit
specification many times in the loop of
the search program. The same is true for
quantum fault simulations. As we see, in
all these applications the simulation of
quantum circuits must be very fast and
the computer memory should be large.
On the other hand, using standard matrix
representations, matrix operations on
unitary matrices are slow, thus new
methods and representations should be
found to allow for very fast simulation
that does also not consume too much
memory. This is attempted by two funda-
mental validation methods: (1) accelera-
tion of standard operations by using spe-
cial FPGA-based hardware emulators,
parallel computers or processor net-
works for simulation, (2) creating new
advanced data structures such as quan-
tum decision diagrams for software sim-
ulators on standard computers to repre-
sent quantum data more efficiently.
These data structures, such as QUIDDs
from [53] allow for implicit parallelism
when executing Kronecker multiplica-
tions on them. QUIDDs are based on the
decision diagrams used in CAD of digital
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logic: ADDs and MTBDDs, being both
generalizations of the famous Binary
Decision Diagrams (BDDs). Similarly as
the classical decision diagrams utilize
similarity patterns in parts of truth tables
(cofactors), the efficiency of decision dia-
grams comes from recognizing and
reusing identical rectangular sub-pat-
terns in unitary matrices. It is well-known
that in classical design automation many
breakthroughs were obtained because of
using efficient data structures such as
Binary Decision Diagrams. It is believed
that in future other decision diagrams
may be used to represent and manipu-
late quantum circuits. This will lead to
efficient simulators, programs for formal
verification, test generation, and synthe-
sis. Finally, new quantum algorithms will
be analyzed or even automatically creat-
ed thanks to the expected power of these
tools.  It may be also predicted that basic
software engines used successfully in
classical CAD (such as for instance
Satisfiability (SAT) or Automatic Test
Pattern Generation (ATPG) methods)
may be used to deal with quantum cir-
cuits. Also, the fast simulators based on
new types of decision diagrams, such as
[53] should be in future parallelized and
possibly accelerated in Field
Programmable Gate Array technology
(FPGA) based boards. Even before
quantum computers will become avail-
able, their emulations on standard com-
puters and ASIC/FPGA may prove useful
to solve some practical problems. The
availability of powerful simulation, syn-
thesis and analysis software tools will be
unavoidable for the success of creating
new Computational Intelligence models
as well. All existing tools are now far
insufficient for these tasks.

4. Synthesis, Testing and
Diagnosis of Quantum Circuits

Several issues related to synthesis of
quantum circuits have been already
mentioned above. Important problem is
that of designing permutative circuits [45]
since they have application in oracle
design, for instance for Grover algorithm.
These circuits are synthesized with or
without ancilla bits, starting from either
Boolean or multiple-valued specification,
reversible or not. If the initial function is
not reversible, it should be first converted
to reversible or this conversion is a part
of the synthesis algorithms. These vari-
ous conditions lead to several types of
algorithms. So far, the synthesis methods
included standard search approaches
such as exhaustive search, A*, simulated
annealing, Genetic Programming,
Genetic Algorithm, Bacteria Foraging

and others, [36,49]. Research has been
also done on adapting XOR logic meth-
ods such as Fixed Polarity Reed-Muller
expression, Exclusive Sum of Products
and Galois Field logic minimization
[31,32]. The most studied so far is the
MMD algorithm for permutative circuits
[15] for which convergence can be
proved. There is some work on applica-
tions of group theory [55] and SAT-based
approaches [29]. Interesting new
research is on synthesis arbitrary unitary
matrices to arbitrary quantum gates
[7,46,54]. Truly quantum circuits (those
for arbitrary unitary matrices) are also
designed using above mentioned sto-
chastic and search algorithms. The prob-
lem of their design is much harder than
designing permutative quantum circuits.
There are no published results in the
area of realization of special types of
functions, systematic synthesis methods
for spectral transforms or arithmetic cir-
cuits, classification of reversible and
quantum circuits and formal verification
of such circuits. There is also some work
on synthesizing circuits from high-level
quantum languages, being counterparts
of register-transfer level descriptions.
Pioneering work in the area of testability
of reversible logic [42] showed that such
circuits are much better testable than
irreversible circuits. This is because
every test covers half faults and every
fault is covered by half tests. The
reversible circuits are then "transparent"
to faults, making them well observable
and controllable. It was also shown [44]
that fault localization in reversible circuits
is easier. The preliminary results on test-
ing binary quantum circuits are in [4] and
on fault localization of quantum circuits in
[44]. Extremely high testability of quan-
tum circuits was demonstrated for specif-
ic  types of oracles; for instance a
Positive-Polarity Reed-Muller like quan-
tum circuit oracle can be tested in just
five tests [4]. In general, the basic idea is
to generalize classical approach to test.
The good circuit is simulated. Next every
possible quantum fault is inserted and
the circuit with fault is simulated in Hilbert
space (no measurement). The fault
model is inserting arbitrary matrix in
place of fault, this allows to simulate
many different types of faults, such as
Pauli rotations, missing controls in
Controlled gates and other [4]. All possi-
ble measurement values are calculated
with their probabilities.  The comparison
of a measurement from the unitary matrix
of a correct circuit and a circuit with fault
determines which input combinations
(tests) give different measurements.
Testing may be done in Walsh spectrum
domain when superposed tests are cre-

ated using quantum BIST preprocessor
before the circuit and quantum BIST
after. Some BIST circuits improve linear-
ity of the circuit in order to allow disen-
tanglement of outputs. Observe that in
contrast to standard testing and
reversible circuits testing, there are three
types of faults in quantum domain: (1)
faults that can be detected deterministi-
cally, (2) faults that cannot be detected
(like global phase faults), and (3) faults
that can be detected by repeated appli-
cation of tests, possibly with special
measurement gates. In some cases
these faults are detected only with cer-
tain probabilities. Thus, in general, quan-
tum testing is probabilistic testing. 

5. Quantum Computational
Intelligence (QCI)

The two most famous quantum algo-
rithms to date were created by Peter
Shor [47] and Lov Grover [20,21]. The
first algorithm is for factoring integers
and it produces an exponential computa-
tional speedup over classical algorithms,
thus can break the RSA encryption tech-
niques. The Grover's algorithm searches
an unordered list of data, to find a partic-
ular item. It has a provable quadratic
speedup over the best classical algo-
rithm. It is like looking for name of a per-
son in yellow pages knowing only his
telephone number. In contrast to Shor's
algorithm that has only few applications,
Grover's algorithm can be used to speed-
up arbitrary search problem from worst
case complexity of N to N½. It is just
required that the algorithm designer
builds a quantum permutative circuit rep-
resenting an appropriate oracle for the
problem. Usually, oracle gives only
yes/no response. An interesting research
topic is this, "How can Shor, Grover and
other quantum algorithms be applied in
the field of Computational Intelligence?"
Because quantum computing is in every
particular instance at least as powerful as
standard computing, it is very reasonable
to look for quantum counterparts for all
concepts created in past in algorithm
design, artificial intelligence, machine
learning, computational intelligence or
soft computing. Many quantum algo-
rithms such as quantum counting, maxi-
mum, minimum and search algorithm
other than Grover can speed up many
NP-complete and NP-hard problems
[10]. The name NP means non-determin-
istically polynomial, because there are no
deterministic algorithms to solve NP
problems in polynomial time (w.r.t the
size of the problem).  Any problem in the
NP-complete class can be transformed
into any other problem in this NP-com-
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plete class using polynomial number of
steps. The algorithm invented by Lov K.
Grover for searching an unstructured
database is of little use in its original for-
mulation, but it started many practical
applications because of the generality of
its main idea - phase amplification. For
instance, Grover himself extended his
algorithm [9,22,23] for the structured
search problem, one of the main tough
research issues in AI, with a multitude of
important and practical applications,
including all mentioned here. Many inter-
esting papers about quantum search
using problem structure were written by
Hogg and collaborators [26,27,28].
Boyer developed bound for quantum
searching algorithms [5]. The class of NP
problems includes graph coloring, satisfi-
ability, planning, set covering, combina-
torial optimization, tautology verification,
finding best fixed polarity Reed-Muller
form, and many other problems that are
useful for instance to solve the synthesis
and optimization problems from section 4
of this paper. The quantum search algo-
rithms can be used to solve the "con-
straint satisfaction problems" into which
all other NP-complete algorithms can be
reduced [10]. In a constraint satisfaction
problems (SAT is the simplest example,
graph coloring is another one) we deal
with multi-valued variables and con-
straint rules on value relations between
values of subsets of variables (relations
like, "two adjacent nodes in a graph
should have different colors"). In other
words, one has to find assignment of val-
ues to all variables so that all constraints
are satisfied. All such problems can be
reduced theoretically to SAT, but this is
not necessarily the best way to solve
them.  A polynomial speedup over classi-
cal algorithms may be enough to solve
many currently intractable problem
instances [35].

Because quantum circuits, the main
concept of quantum computing, are a
powerful generalization of circuits  in
classical computing, researchers are
systematically generalizing all the funda-
mental concepts of computing to involve
quantum mechanics formalism-based or
just "quantum inspired" ideas  in one way
or another. And thus; a quantum circuit is
a generalization of a combinational
Boolean circuit, multiple-valued circuit or
continuous logic (fuzzy) circuit, quantum
automata (various formalizations) gener-
alize finite state machines, quantum tur-
ing machine generalizes turing machines
and probabilistic turing machines, and so
on. The same tendency is seen in
Computational Intelligence. Its concepts
and algorithms are being generalized to
those of the Quantum Computational
Intelligence (QCI). And thus; quantum

neural networks [16,34], quantum asso-
ciative memories [51], quantum
Bayesian nets [50], quantum games,
quantum markets, quantum agents,
quantum formulas [6], quantum fuzzy
networks, quantum spectral transforms
and networks, quantum evolutionary
algorithms, and many others have been
created and are actively investigated
both theoretically, using software simula-
tors, hardware emulators and in real
quantum circuits. Observe that a com-
mon point to all these generalization is
the concept of a network (circuit,
machine), which can be systematically
designed, adapted, learned or evolved.
Computational Intelligence area gives us
many powerful metaphors that can be
translated to quantum computing con-
cepts in a straightforward way, leading to
more powerful (so far only mathematical-
ly) systems.  

Because laws of quantum mechanics
proved useful to improve algorithmic per-
formance of some NP problems, there is
a high probability that more problems will
find efficient solutions in quantum
domain. Quantum-Neural Algorithms
have been introduced, including
Quantum Associative Memories of
Ventura and Martinez [51], Competitive
Learning in Quantum System by Ventura
[52] and Perus [43]. While neural net
processes real values, quantum NN
processes complex values. It includes
therefore standard NN and binary com-
puters as special cases, but thanks to
superposition and entanglement can do
much more. Weights that are complex
values will allow to express much more
and higher order information. Totally new
algorithms can be invented for learning
and for using such nets. QuAM is analo-
gous to a linear associative memory but
all neurons are quantum mechanical
gates. Because previous work on com-
putational learning and particularly con-
structive induction designs arbitrary
structures from arbitrary  gates, it is
applicable also to quantum structures.
New algorithm to synthesize quantum
circuits from examples can be created,
such as those that generalize
Ashenhurst Curtis decomposition where
the problem is represented by a strongly
unspecified function or relation. QuAMs
are worse than classical algorithms on
generalization, and decomposition
based algorithms are very good in gen-
eralization for classical data. Therefore it
is possible that by extending model of
QuAMs, a more general quantum struc-
tures will be found that will have good
properties of QuAMs such as storing
exponential number of patterns but will
be also good in generalizing. It is well
known that there exist animals with very

few neurons, such as nematode worms.
Still they can exhibit much more complex
behaviors that a robot controlled by few
neurons. The neuron used in NN theory
is thus a big simplification of real neuron,
and it is possible that quantum comput-
ing is used in brains of animals. In any
case, the fact that actual neurons are
more powerful than their current models
is a powerful argument to investigate
generalized models of neurons - espe-
cially quantum neurons. The results of
simulating quantum Genetic Crossover
operators suggest that indeed quantum
computation can speed up the search for
solutions to the traveling salesman prob-
lem. Several successful experiments of
various variants of Quantum-inspired GA
have been described for several applica-
tions [24]. In [17] quantum algorithms for
searching trees are discussed, there are
examples of trees for which the classical
algorithm requires time exponential in n,
but for which the quantum algorithm suc-
ceeds in polynomial time. Spectral
Associative Memories (SAMs) are classi-
cal networks inspired by quantum
mechanics and proposed by Spencer
[48]. They are quantized frequency
domain formulations of conventional
Contents Addressable Memories
(CAMs). Non-local connectivity is made
virtually by spectral convolution. In clas-
sical CAMs attractors scale quadratically
or polynomially. In contrast, SAMs scale
linearly with memory dimension. One
model of the neuron [37,38] is based on
quantum holography [12]. Phase is not
only the essential parameter of physical
significance, as in the postulated model
of quantum neural information process-
ing, but the essential means by which
holograms i.e. the 3-dimensional repre-
sentations of objects may be encoded,
decoded or transmitted. Concluding,
there are dual influences of CI and quan-
tum computing; the quantum ideas can
be used to create powerful quantum-
inspired algorithms to solve many types
of problems in EDA and robotics. On the
other hand the ideas and algorithms from
many classical computer science areas
can be  now used in quantum domain
[33] or transformed and extended to
quantum domain. Although several ideas
have been already published, there is
very little operational software packages
that use them and very little has been
published on comparison of these meth-
ods among themselves and with respect
to classical methods.

6. Conclusions

This paper is related to what is an
emerging area of systematically design-
ing quantum circuits and algorithms.
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t.) Similarly as in classical computing, there
will appear sub-areas of quantum algo-
rithm development, quantum computer
architecture, high level quantum synthe-
sis, logic level quantum synthesis, quan-
tum physical design, quantum test, quan-
tum verification, quantum simulation,
quantum software-hardware co-design,
quantum automatic learning from exam-
ples, quantum neural networks, data
mining, and so on. We outlined some
subjective choice of recent papers and
research directions as a potential base of
future research in quantum computer
engineering. It was our goal to show that
the conventional logic synthesis, test and
machine learning methods, for both bina-
ry and multiple-valued logic, form a pow-
erful base of new approaches. Similarly
the data structures like decision dia-
grams or fundamental algorithms such
as satisfiability or reachability analysis
continue to have their role. Many CI
methods will be used to develop, design
and optimize future quantum computers. 
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