

 Fault localization in reversible circuits is easier than for classical circuits

Kavitha Ramasamy, Radhika Tagare, Edward Perkins and Marek Perkowski
 Department of Electrical and Computer Engineering, Portland State University,

Portland, Oregon, 97207-0751, mperkows@ee.pdx.edu

Abstract

There is recently an interest in test generation for
reversible circuits, but nothing has been published about
fault localization in such circuits. This paper deals with
fault localization for binary reversible (permutative)
circuits. We concentrate on functional test based fault
localization, to detect and locate “stuck-at” faults in a
reversible circuit by creating an adaptive tree. A striking
property of reversible circuits is that they exhibit
“symmetric” adaptive trees. This helps considerably by
being able to generate only half of the tree, and the other
half is created as the mirror image of the first half. Because
each test covers half faults [1] and the fault table has a
high density of ones, it is relatively easy to generate the
tree. The problem of fault localization of reversible circuits
is therefore easier than the same problem for standard
irreversible circuits. We present some preliminary results
from an approach using traditional adaptive tree methods.
We propose also a new efficient algorithm that eliminates
the fault table generation and dynamically creates the
adaptive fault tree.

1. Introduction

Low power consumption is a major issue in VLSI
circuits today. As the transistor size decreases, power
consumption and heat dissipation become two major
problems for the IC designers. Techniques like voltage
scaling, low power layout are already in practice to obtain
circuits with low power. The motivation for studying
reversible adiabatic circuits comes mainly from this
increasing demand for low energy dissipation computation
[5]. Reversible circuits play also a vital role in quantum
computing [6] and emerging nanotechnologies [7, 8, 9]. To
ensure the proper functionality and the durability of an
integrated circuit; testing and failure analysis are extremely
important during and after its design and manufacturing.
The main idea behind fault localization in future highly
parallel redundant logic systems is self-repair based on
localization and replacement of faulty modules. We show
that this task is easier when the circuit is reversible. Fault
localization can be used for process diagnosis, and for

manual or automatic repair process. In automatic process a
circuit with redundant modules is prefabricated, faults are
localized and the circuit is reconfigured by replacing faulty
modules by correct spare modules.

2. Test generation & fault localization

There are two aspects to testing a circuit. One is Fault
Detection and the other is termed Fault Localization. Earlier
involves the detection of presence of fault in a circuit; while
the latter is about finding the exact location of this fault. So
far, nothing has been published on self-repair and fault-
localization of reversible circuits, although it is a common
agreement that future technologies will be both low power
and fault-tolerant.

A (deterministic) Fault Table [3] has all tests as rows
and all faults as columns. A “1” at the intersection of row ri
and column cj determines that test ri detects fault cj . In a
non-deterministic Fault Table used to localize faults in
quantum circuits [12] in addition to entries 1 meaning
probability 1 there exist other probabilities of covering
columns by rows.

In our approach we focus on functional test based fault

localization to locate single stuck-at faults in binary
reversible circuits. Our approach is based on the following
propositions:

PROPOSITION 1. If the complete fault table is first found then
the complexity of the ordered adaptive (decision) tree
created from this table does not depend upon the order of
the variables (i.e. tests) An ordered tree can be created, i.e.
one in which all variables from root to leafs are in the same
order. Since each test covers half of the faults, the choice of
the root test is immaterial; the tree that is then derived from
the root will locate all the faults.

PROPOSITION 2. If the complete fault table is first found then
it is sufficient to design ordered adaptive trees and there is
no need to investigate free adaptive trees. Observe that in
classical logic the adaptive trees are free (order-less) to
minimize the number of nodes in them. In adaptive trees for
reversible logic circuits the number of nodes is minimized
with tests ordered the same way in each branch.

PROPOSITION 3. If the complete fault table is found, then
only a half of the adaptive tree needs to be created based
on recursive splitting sets of faults to subsets for each test.
The other half of the tree can be constructed based on the
symmetry property of reversible circuits. This property
shortens the tree generation process by half.

3. Previous work on testing binary reversible
circuits

3.1. Test generation for reversible circuits and
design for test of reversible circuits

Patel et al., [1] use a direct approach to generate set of
test vectors to detect all faults in a reversible logic circuit
by decomposing larger circuits into smaller sub-circuits
(block partitioning). They formulate finding the minimal
test set as an Integer Linear Programming (ILP) problem.
Single stuck-at fault model is used to detect faults in
internal lines and primary input and output lines of the
circuit. Their main contributions are the following
observations regarding reversible circuits:

i) Any test set that is complete for the single stuck-at
fault model is also complete for multiple stuck-at
fault model.

ii) Each test vector covers exactly half of the faults,
and each fault is covered by exactly half of the
possible test vectors.

Ugur Kalay et al., [2] use universal test set to detect
faults in AND-EXOR based circuits. They too use a similar
fault model as Patel et al. This method can be adopted for a
special type of reversible cascades that are based on ESOP
circuits [4]. Both [1] and [2] focus only on fault detection.
Because of importance of fault localization, we extend
these works towards this new aspect of reversible circuits.

3.2. Fault localization of irreversible circuits

The two most popular approaches to Fault Localization
are A) Preset Method and B) Adaptive Tree Method [3]. In
literature, both methods start from a fault table which has
tests (input vectors) as rows and all possible faults as
columns. The goal of preset method is to find a minimal
test set to locate all the faults in the circuit. The minimal
test set is found using the algorithm to solve the special
covering problem in the so-called fault location table
created from the fault table [3]. Size of this table limits the
applicability of this approach to relatively small problems.
Therefore we concentrate here only on the Adaptive Tree
Method.

The Adaptive Tree Method: Adaptive tree is represented
by a directed tree data structure. Observe that in case of
non-reversible circuits, the tree is created based on the
complete fault table. At each level of recursive tree

generation, an attempt is made to choose a row in this table;
that approximately covers half of the faults remaining in
this node. This requires first to create the table, and next, to
select a good row. Unfortunately, such a selection can be
difficult since there are many candidates and often none is
close to covering half faults. In reversible circuits, because
of the property by Patel et al [1] that every test covers half
faults, the adaptive tree generation is easier.

4. Adaptive tree generation for reversible
circuits

We focus here on functional test based Fault
Localization to locate single stuck-at faults in binary
reversible circuits which particularly comprise of Toffoli,
Feynman, Fredkin and NOT gates. We assume circuits with
faults only in internal wires, primary input wires and output
wires of the circuit. The circuit is analyzed by partitions
(Pi) with one gate per partition. Partitions in our circuit
(unlike Patel et al.) are only to locate nodes; we refer to
each particular node (N) as (Pn, Nn) in the circuit as shown
in Figure 1.

Figure 1: Example of a binary reversible circuit of width 3

and using feynman and toffoli gates

In Figure 1, A, B and C are the basic input wires. P0, P1,
P2, P3, P4 are column cuts (or what we call partitions) such
that only one gate is covered by each. P, Q, R are the
circuit’s primary outputs.
 One of our current variants of fault localization is based
on creating an adaptive tree by generating a standard
complete and static fault table, shown in Table 1. The
stuck-at circuit faults for each node A-R, after removing
equivalent faults, were labeled f1 through f14. Column f0 is
for the fault-free (FF) circuit.

Figure 2 shows an example of an Adaptive Tree created
for the binary reversible circuit in Figure 1. The left branch
of each node (good) is for a circuit passing the respective
test and the right branch (fail) is for the circuit failing this
test.

 The choice of the test which splits faults at each node is
based on this rule: at every node choose a test that

partitions the incoming subset/set of faults into the
balanced subsets of faults (i.e. with their cardinalities as
close as possible). (Such a choice creates a nearly well-
balanced tree, thus the tree allows for the fastest fault
localization assuming equal faults probabilities). Observe
local lack of symmetry in the left bottom node which leads
to a good circuit. Besides, every node (test) splits faults into
two equal size sets or sets that sizes differ just by one.

Table 1 - Faults for example circuit

Figure 2: Example of an adaptive tree for a binary
reversible circuit

Due to the symmetry property observed in reversible

circuits, adaptive trees for reversible circuits, in any variant
exhibit a special mirror image property when folded over
the test at level 0. The tree is said to be symmetric because
for a particular level, particular node, the same test vector
can be used for splitting incoming faults at that node and
the node in its mirror image.

4.1. Results of a variant in which adaptive tree
was created from a complete fault table

We developed a program to perform fault localization

using the traditional Adaptive Tree approach which
incorporates a simulator to evaluate binary reversible
circuits. The program generates a complete Fault Table for
all internal nodes and outputs of a circuit. We tested this
method on several circuits. Our simulator supported up to
3-input gates and constant zero inputs.

We used benchmarks from Maslov [11] plus our own
test circuits (Small, Adapt). The circuits had 3 or 5 wires (a
quantum width of 5). Benchmark Mod5 has one constant 0
input. The results are shown in Table 2. Wr stands for a
number of wires (width), Cn for number of constants, Lv is
a number of levels of the tree, Nd is the number of nodes
and EF is the number of equivalent faults. Equivalent faults
can be functional equivalence or wire equivalence.
Equivalent faults are detected by comparing each fault
column with all other column entries in the fault table. Tests
is the number of test vectors based on 2Wr.

All trees were symmetric, and were 4-5 levels deep.
Circuit 3_17 was well-balanced. Others were nearly well-
balanced (like the one from Figure 2). Processing time for
each circuit (including both table generation and tree
creation) was only a few seconds.

Table 2 - Adaptive tree fault localization results

Circuit Gates Wr Cn Tests Lv Nd EF Bal
Small 3 3 0 8 5 10 14 N
Adapt 4 5 0 32 5 18 32 N
3_17 6 3 0 8 4 16 26 Y
Mod5 9 5 1 32 5 24 76 N
Xor5 4 5 0 32 5 18 32 N

5. Proposed new greedy direct tree generation
algorithm

To speed up the adaptive tree method and allow it to be
used without generating all tests, we propose a new
algorithm that can be applied to larger circuits. Our new
algorithm for fault localization uses a novel approach to
choose an input test vector based on the outputs of the
intermediate nodes of the partition or column cut which has
the maximum uncovered faults.

A counter test vector at this chosen partition is applied to
find the corresponding test vector at the inputs, and then the
test vector is checked for its coverage measure. An
(incomplete, dynamic) fault table corresponding only to the
tests created from the counter test vectors is generated
dynamically while creating the adaptive tree. Our goal is to
use this approach to locate both the unique and equivalent

 S-A-0 S-A-1
FF A B C U P Q R A B C U P Q RTest

vector f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0
2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
3 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0
4 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0
5 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1
6 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1
7 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0

faults in reversible circuits, while generating a symmetric
adaptive tree. With this new algorithm, adaptive trees can
be efficiently created for large circuits.

An advantage of our proposed algorithm is that it avoids
creation of the entire fault table for every test vector and all
possible faults. This saves time and memory space over the
traditional approach, where all the faults need to be
simulated for all input test vectors, regardless of the circuit
output. Fewer test vectors need to be generated to the
circuit with our approach.

5.1 Reversible simulator for fault localization

We designed a simulator to analyze binary reversible
circuits and fault-simulate them. The simulator produces
the circuit output at each node for a particular input test
vector applied to it. This is done for a fault-free circuit and
for this circuit with every possible fault inserted. The
simulator reads in the circuit description and creates a set of
partitions/column cuts. It can operate in either forward or
back directions. It operates in forward direction to find the
output of the circuit at every node of every partition/column
cut in the circuit. Also it operates in backward direction to
find the input test vector corresponding to a counter-test
vector applied at some partition of the circuit. Note again,
that it is the property of reversible circuits which allows for
easy simulation of a circuit in both directions and in exactly
the same way, because for each n-bit reversible cell F, there
exist a unique inverse cell F-1. Moreover, the Feynman,
Fredkin and Toffoli gates that we use are their own inverses
which speeds-up the simulation further. Observe, that this
method cannot be used for classical circuits because for
irreversible circuits back simulation of faults requires
backtracking and for reversible circuits it is a one-run
procedure without backtracking. It cannot be also used for
quantum circuits because back simulation may lead to non-
pure primary input states.

Concluding on fault simulation. Because of reversibility
properties, it is easier for reversible circuits than for
quantum and classical circuits. It is also simpler than for the
general-purpose quantum circuits. Such circuits are
described by compositions of matrix products and
Kronecker products of unitary matrices. The faults in them
are modeled by inserting complex (unitary or not) matrices
of faults and decoherence-related measurements (density
matrices) in respective qubits in partition columns [12].

5.2 Efficient algorithm for fault localization

1) A fault coverage table is created and updated

incrementally together with generating the adaptive
tree. It is built as the tree is expanded from the root to
the leafs by adding new nodes (this is a free tree,
variables are not ordered). For every level we update

this fault table to represent only the remaining
uncovered faults.

2) For all Levels ahead : we use the following recursive
procedure -

a) Select a partition for which the fault table shows

the maximum number of uncovered faults and
mark that partition as checked.

b) Find the counter test vector at that partition.
c) Backtrack in the circuit from this point using the

back simulator function, to find the
corresponding input test vector. This input test
vector when applied to the circuit will cover the
uncovered faults at that particular partition.

d) Apply this input test vector to the given circuit
to find the output using the forward simulator
function.

e) Get the simulation output table for this vector.
f) Check if this input test vector divides the

uncovered faults (looking at the fault table) from
the previous level into half.

g) If so, the test is good. Then check if the same
test holds good for all other nodes in the same
level.
- if not then discard the test. Go to step h)
- if good go to step i)

h) If the test is not good,
- If all partitions are not checked, then choose a

partition which is next maximum and repeat
step b) onwards.

- If all partitions are checked, then choose the
input test vector which divides the uncovered
faults into nearly half subsets.

- Update the fault table by marking the covered
faults by this chosen test vector. Go to step i)

i) Repeat steps a) through i) until each leaf of the

tree ends up with one or more non-separable
stuck-at fault(s). All distinct single stuck-at
faults except one, from the fault table are
covered for every node in that level (since each
leaf of the tree ends up with one and only fault)

5.3 Considering equivalent faults

When the output at two or more nodes of the circuit is
identical for all input test vectors applied to the circuit, then
those nodes are said to be equivalent nodes. In our proposed
algorithm we deal with equivalent nodes which are adjacent
to each other (in the same wire). In other words these nodes
are nothing but a wire separated by the logical partitions P0,
P1, etc. For example, in the given circuit in Figure 1, nodes
n0 at partitions P0 and P1 are the equivalent nodes. In our
incremental fault table we represent the equivalent nodes.

While considering the uncovered faults in a partition, we
count the equivalent faults too; if uncovered until the
moment. Other equivalent faults which are non-adjacent
remain in the tree as non-separable sets of faults in the
leafs.

5.4 Particulars to be noted

1) If there are N wires, then 2N is the maximum
possible length of the input test vector. We restrict
ourselves to a certain number of test vectors as we
choose a test vector depending on choice of outputs
at one of the P partitions. Thus, the number of actual
possible input test vectors for a particular circuit will
depend on the number of partitions. Hence we can
actually use only 2P input test vectors.

2) The major consequence is that while doing so we
might loose on some good test vectors at a particular
node, which exactly divide the faults into two equal
subsets of covered and uncovered faults.

3) Also another consequence is that we might loose on
some good test vectors at a particular level, where
the same test vector can be applied at every node in
that level.

4) The effect of all these is that the adaptive tree will
not be balanced and will not be ordered.

6. Future work

1) It is assumed in the algorithm 5.2. that all stuck-at-one
faults are covered by a test vector which is all zeros;
denoted by T0. But this holds true under the assumption
that the circuit under test does not include any NOT gates
i.e. inverters.

2) We would like to compare the speed of the algorithm
from section 4.1 and the algorithm 5.2 to find how much
the new approach is faster. This should be checked
especially for large circuits. One reason to the efficiency is
that the algorithm avoids creation of full table and search of
all possible input test vectors.

3) In future, we also plan to modify our algorithm to
incorporate fault localization in binary and multiple-valued
quantum circuits [12]. Although the fault table and adaptive
tree become in general deterministic or probabilistic,
similar techniques to those presented in this paper can be
used.

4) We need to develop a heuristic to handle the case of
unseparable faults at leaf nodes. These faults may be able
to be separated by choosing a different test vector sequence,
or they may be truly equivalent. We have to develop a
heuristic to handle all the equivalent faults.

7. Conclusions

We proved experimentally that propositions 1 – 3 are
true when a complete Fault Table is created, thus fault
localization in reversible circuits is simpler than in standard
(non-reversible) circuits. This gives an initiative to redesign
non-reversible circuits to make them more reversible (for
instance by partitioning to reversible circuits and other
circuits). So far, the motivation to perform research in
reversible circuits was quantum realizations and low power
design. High testability of these circuits gives a new
motivation – even if we are dealing with standard CMOS
circuit and adiabatic CMOS and our goal is not to save
power, the reversible circuit design guarantees higher
testability and fault localization. We dispose several
examples of practical circuits that have been modified to
(partially) reversible circuits and made thus more testable
and fault-localizable. This is a forthcoming research area.

The program was tested on several reversible circuits
from the literature [10]. Because of the lack of large
benchmarks, we have to create many of these circuits
randomly or we used circuits with no guarantee of their
minimality. This is perhaps not a good idea, but nothing
better can be done since there are no good synthesizers so
far for very large reversible functions. We analyzed several
examples with the width not more than 8. The symmetric
property holds true for all them. The method is applicable
to any kind of binary and multiple-valued reversible
circuits; when the adaptive tree is created using standard
adaptive tree approach with complete Fault Tables. The tree
obtained is balanced or nearly balanced in these cases. But
the tree may not be always symmetric for the reversible
circuits that have NOT gates, when the tree is built using
algorithm 5.2. Further testing and analysis of data is
necessary on larger examples for both approaches. The
method has been extended to multiple-valued reversible
logic and binary and multiple-valued quantum circuits [12].

8. Acknowledgement

We would like to thank anonymous reviewers of this
paper for their helpful suggestions and comments.

9. References

[1] K.N. Patel, J.P. Hayes and I. Markov, “Fault testing for
reversible circuits,” Proc. VLSI Test Symp. (VTS 03), Napa, CA,
pp. 410–416, April 2003

 [2] U. Kalay, N. Venkataramaiah, A. Mishchenko, D. V.
Hall, and M. A. Perkowski, “Highly Testable Finite State
Machines Based on EXOR Logic”, PACRIM'99 7th IEEE
Pacific Rim Conference on communications, Computer and
Signal Processing , Victoria, B.C. , Canada, August 23-25,
1999

[3] Z. Kohavi, “Switching and Finite Automata Theory”,
McGraw Hill, 1978.
[4] A. Mishchenko and M. Perkowski, ``Fast Heuristic
Minimization of Exclusive Sums-of-Products,'' Proc. RM'2001
Workshop, August 2001
[5] C. Bennett, “Logic Reversibility of Computation,” IBM J.
Res. Dev. 17:525-532, 1973.
[6] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, 2000.
[7] R. C. Merkle. Reversible electronic logic using switches.
Nanotechnology, 4: pp. 21-40, 1993.
[8] R. C. Merkle. Two types of mechanical reversible logic.
Nanotechnology, 4: pp. 114-131,1993.
[9] R. C. Merkle and K. E. Drexler. Helical logic.
Nanotechnology, 7: pp. 325-339, 1996.
[10] D. Maslov, Reversible Logic Synthesis, Ph.D. Thesis,

 University of New Brunswick, 2003.
[11] D.Maslov, web site http://www.cs.uvic.ca/~dmaslov/
reversible benchmark circuits.
[12] S. Aligala, S. Ratakonda, K. Narayan, K.i Nagarajan, M.
Lukac, J. Biamonte and M. Perkowski, Deterministic and
Probabilistic Test Generation for Binary and Ternary Quantum
Circuits, Proceedings ULSI 2004.
[13] R. Aitken, Test-Based Fault Localization – Part 1: Fault
Models. Agilent Technologies, Santa Clara, California.
[14] S. Mitra, P.P. Shirvani, and E.J. Mc. Cluskey, Fault
Location in FPGA-Based Reconfigurable Systems,
http://crc.stanford.edu/crc_papers/mitrahldvt98.pdf
[15] I. Pomeranz, S.M. Reddy, Fault Location Based on Circuit
Partitioning, Proc. 1996 Intern. Conf. on Computer Design,
ICCD’96, Austin, Texas, p.154.

