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Abstract 
 

There is recently an interest in test generation for 
reversible circuits, but nothing has been published about 
fault localization in such circuits. This paper deals with 
fault localization for binary reversible (permutative) 
circuits. We concentrate on functional test based fault 
localization, to detect and locate “stuck-at” faults in a 
reversible circuit by creating an adaptive tree. A striking 
property of reversible circuits is that they exhibit 
“symmetric” adaptive trees. This helps considerably by 
being able to generate only half of the tree, and the other 
half is created as the mirror image of the first half. Because 
each test covers half faults [1] and the fault table has a 
high density of ones, it is relatively easy to generate the 
tree. The problem of fault localization of reversible circuits 
is therefore easier than the same problem for standard 
irreversible circuits. We present some preliminary results 
from an approach using traditional adaptive tree methods. 
We propose also a new efficient algorithm that eliminates 
the fault table generation and dynamically creates the 
adaptive fault tree. 
 
1. Introduction 
 

Low power consumption is a major issue in VLSI 
circuits today. As the transistor size decreases, power 
consumption and heat dissipation become two major 
problems for the IC designers. Techniques like voltage 
scaling, low power layout are already in practice to obtain 
circuits with low power. The motivation for studying 
reversible adiabatic circuits comes mainly from this 
increasing demand for low energy dissipation computation 
[5]. Reversible circuits play also a vital role in quantum 
computing [6] and emerging nanotechnologies [7, 8, 9]. To 
ensure the proper functionality and the durability of an 
integrated circuit; testing and failure analysis are extremely 
important during and after its design and manufacturing. 
The main idea behind fault localization in future highly 
parallel redundant logic systems is self-repair based on 
localization and replacement of faulty modules. We show 
that this task is easier when the circuit is reversible. Fault 
localization can be used for process diagnosis, and for 

manual or automatic repair process. In automatic process a 
circuit with redundant modules is prefabricated, faults are 
localized and the circuit is reconfigured by replacing faulty 
modules by correct spare modules. 
 
2. Test  generation & fault localization 
 

There are two aspects to testing a circuit. One is Fault 
Detection and the other is termed Fault Localization. Earlier 
involves the detection of presence of fault in a circuit; while 
the latter is about finding the exact location of this fault. So 
far, nothing has been published on self-repair and fault-
localization of reversible circuits, although it is a common 
agreement that future technologies will be both low power 
and fault-tolerant.  

A (deterministic) Fault Table [3] has all tests as rows 
and all faults as columns. A “1” at the intersection of row ri 
and column cj determines that test ri detects fault cj . In a 
non-deterministic Fault Table used to localize faults in 
quantum circuits [12] in addition to entries 1 meaning 
probability 1 there exist other probabilities of covering 
columns by rows. 

 
In our approach we focus on functional test based fault 

localization to locate single stuck-at faults in binary 
reversible circuits. Our approach is based on the following 
propositions: 
 
PROPOSITION 1. If the complete fault table is first found then 
the complexity of the ordered adaptive (decision)  tree 
created from this table  does not depend upon the order of 
the variables (i.e. tests) An ordered tree can be created, i.e. 
one in which all variables from root to leafs are in the same 
order. Since each test covers half of the faults, the choice of 
the root test is immaterial; the tree that is then derived from 
the root will locate all the faults. 

PROPOSITION 2. If the complete fault table is first found then 
it is sufficient to design ordered adaptive trees and there is 
no need to investigate free adaptive trees. Observe that in 
classical logic the adaptive trees are  free (order-less) to 
minimize the number of nodes in them. In adaptive trees for 
reversible logic circuits the number of nodes is minimized 
with tests ordered the same way in each branch. 



PROPOSITION 3. If the complete fault table is found, then  
only a half of the adaptive  tree needs to be created based 
on recursive splitting sets of faults to subsets for each test. 
The other half of the tree can be constructed based on the 
symmetry property of reversible circuits. This property 
shortens the tree generation process by half. 
 
3. Previous work on  testing binary reversible 
circuits  
 
3.1. Test generation for reversible circuits and 
design for test of reversible circuits 
 

Patel et al., [1] use a direct approach to generate set of 
test vectors to detect all faults in a reversible logic circuit 
by decomposing larger circuits into smaller sub-circuits 
(block partitioning). They formulate finding the minimal 
test set as an Integer Linear Programming (ILP) problem. 
Single stuck-at fault model is used to detect faults in 
internal lines and primary input and output lines of the 
circuit. Their main contributions are the following 
observations regarding reversible circuits: 

i) Any test set that is complete for the single stuck-at 
fault model is also complete for multiple stuck-at 
fault model.  

ii) Each test vector covers exactly half of the faults, 
and each fault is covered by exactly half of the 
possible test vectors. 

Ugur Kalay et al., [2] use universal test set to detect 
faults in AND-EXOR based circuits. They too use a similar 
fault model as Patel et al. This method can be adopted for a 
special type of reversible cascades that are based on ESOP 
circuits [4]. Both [1] and [2] focus only on fault detection. 
Because of importance of fault localization, we extend 
these works towards this new aspect of reversible circuits.  
 
3.2. Fault localization of irreversible circuits 
 

The two most popular approaches to Fault Localization 
are A) Preset Method and B) Adaptive Tree Method [3]. In 
literature, both methods start from a fault table which has 
tests (input vectors) as rows and all possible faults as 
columns. The goal of preset method is to find a minimal 
test set to locate all the faults in the circuit. The minimal 
test set is found using the algorithm to solve the special 
covering problem in the so-called fault location table 
created from the fault table [3]. Size of this table limits the 
applicability of this approach to relatively small problems. 
Therefore we concentrate here only on the Adaptive Tree 
Method.  

The Adaptive Tree Method: Adaptive tree is represented 
by a directed tree data structure. Observe that in case of 
non-reversible circuits, the tree is created based on the 
complete fault table. At each level of recursive tree 

generation, an attempt is made to choose a row in this table; 
that approximately covers half of the faults remaining in 
this node. This requires first to create the table, and next, to 
select a good row. Unfortunately, such a selection can be 
difficult since there are many candidates and often none is 
close to covering half faults. In reversible circuits, because 
of the property by Patel et al [1] that every test covers half 
faults, the adaptive tree generation is easier.  
 
4. Adaptive tree generation for reversible 
circuits 
 

We focus here on functional test based Fault 
Localization to locate single stuck-at faults in binary 
reversible circuits which particularly comprise of Toffoli, 
Feynman, Fredkin and NOT gates. We assume circuits with 
faults only in internal wires, primary input wires and output 
wires of the circuit.  The circuit is analyzed by partitions 
(Pi) with one gate per partition. Partitions in our circuit 
(unlike Patel et al.) are only to locate nodes; we refer to 
each particular node (N) as (Pn, Nn) in the circuit as shown 
in Figure 1. 
 

 
Figure 1: Example of a binary reversible circuit of width 3 

and using feynman and toffoli gates 
 
 

In Figure 1, A, B and C are the basic input wires. P0, P1, 
P2, P3, P4 are column cuts (or what we call partitions) such 
that only one gate is covered by each. P, Q, R are the  
circuit’s primary outputs.  
     One of our current variants of fault localization is based 
on creating an adaptive tree by generating a standard 
complete and static fault table, shown in Table 1. The 
stuck-at circuit faults for each node A-R, after removing 
equivalent faults, were labeled f1 through f14. Column f0 is 
for the fault-free (FF) circuit. 

Figure 2 shows an example of an Adaptive Tree created 
for the binary reversible circuit in Figure 1. The left branch 
of each node (good) is for a circuit passing the respective 
test and the right branch (fail) is for the circuit failing this 
test. 

 The choice of the test which splits faults at each node is 
based on this rule: at every node choose a test that 



partitions the incoming subset/set of faults into the 
balanced subsets of faults (i.e. with their cardinalities as 
close as possible). (Such a choice creates a nearly well-
balanced tree, thus the tree allows for the fastest fault 
localization assuming equal faults probabilities).  Observe 
local lack of symmetry in the left bottom node which leads 
to a good circuit. Besides, every node (test) splits faults into 
two equal size sets or sets that sizes differ just by one. 
 

Table 1 - Faults for example circuit 

 
 

 
 

Figure 2: Example of an adaptive tree for a binary 
reversible circuit 

 
Due to the symmetry property observed in reversible 

circuits, adaptive trees for reversible circuits, in any variant 
exhibit a special mirror image property when folded over 
the test at level 0. The tree is said to be symmetric because 
for a particular level, particular node, the same test vector 
can be used for splitting incoming faults at that node and 
the node in its mirror image.  
 

4.1. Results of a variant in which adaptive tree 
was created from a complete fault table  

 
We developed a program to perform fault localization 

using the traditional Adaptive Tree approach which 
incorporates a simulator to evaluate binary reversible 
circuits. The program generates a complete Fault Table for 
all internal nodes and outputs of a circuit. We tested this 
method on several circuits. Our simulator supported up to 
3-input gates and constant zero inputs.  

We used benchmarks from Maslov [11] plus our own 
test circuits (Small, Adapt). The circuits had 3 or 5 wires (a 
quantum width of 5). Benchmark Mod5 has one constant 0 
input. The results are shown in Table 2. Wr stands for a 
number of wires (width), Cn for number of constants, Lv is 
a number of levels of the tree, Nd is the number of nodes 
and EF is the number of equivalent faults. Equivalent faults 
can be functional equivalence or wire equivalence. 
Equivalent faults are detected by comparing each fault 
column with all other column entries in the fault table. Tests 
is the number of test vectors based on 2Wr.  

All trees were symmetric, and were 4-5 levels deep. 
Circuit 3_17 was well-balanced. Others were nearly well-
balanced (like the one from Figure 2). Processing time for 
each circuit (including both table generation and tree 
creation) was only a few seconds. 
 

Table 2 - Adaptive tree fault localization results 

Circuit Gates Wr Cn Tests Lv Nd EF Bal 
Small 3 3 0 8 5 10 14 N 
Adapt 4 5 0 32 5 18 32 N 
3_17 6 3 0 8 4 16 26 Y 
Mod5 9 5 1 32 5 24 76 N 
Xor5 4 5 0 32 5 18 32 N 

 
 
5. Proposed new greedy direct tree generation 
algorithm 
 

To speed up the adaptive tree method and allow it to be 
used without generating all tests, we propose a new 
algorithm that can be applied to larger circuits. Our new 
algorithm for fault localization uses a novel approach to 
choose an input test vector based on the outputs of the 
intermediate nodes of the partition or column cut which has 
the maximum uncovered faults.  

A counter test vector at this chosen partition is applied to 
find the corresponding test vector at the inputs, and then the 
test vector is checked for its coverage measure. An 
(incomplete, dynamic) fault table corresponding only to the 
tests created from the counter test vectors is generated 
dynamically while creating the adaptive tree. Our goal is to 
use this approach to locate both the unique and equivalent 

 S-A-0                  S-A-1 
FF A B C U P Q R A B C U P Q RTest 

vector f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0
2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
3 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0
4 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0
5 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1
6 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1
7 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0



faults in reversible circuits, while generating a symmetric 
adaptive tree. With this new algorithm, adaptive trees can 
be efficiently created for large circuits. 

An advantage of our proposed algorithm is that it avoids 
creation of the entire fault table for every test vector and all 
possible faults. This saves time and memory space over the 
traditional approach, where all the faults need to be 
simulated for all input test vectors, regardless of the circuit 
output. Fewer test vectors need to be generated to the 
circuit with our approach.  
 
5.1 Reversible simulator for fault localization 
 

We designed a simulator to analyze binary reversible 
circuits and fault-simulate them. The simulator produces 
the circuit output at each node for a particular input test 
vector applied to it. This is done for a fault-free circuit and 
for this circuit with every possible fault inserted. The 
simulator reads in the circuit description and creates a set of 
partitions/column cuts. It can operate in either forward or 
back directions. It operates in forward direction to find the 
output of the circuit at every node of every partition/column 
cut in the circuit. Also it operates in backward direction to 
find the input test vector corresponding to a counter-test 
vector applied at some partition of the circuit. Note again, 
that it is the property of reversible circuits which allows for 
easy simulation of a circuit in both directions and in exactly 
the same way, because for each n-bit reversible cell F, there 
exist a unique inverse cell F-1. Moreover, the Feynman, 
Fredkin and Toffoli gates that we use are their own inverses 
which speeds-up the simulation further. Observe, that this 
method cannot be used for classical circuits because for 
irreversible circuits back simulation of faults requires 
backtracking and for reversible circuits it is a one-run 
procedure without backtracking. It cannot be also used for 
quantum circuits because back simulation may lead to non-
pure primary input states.  

Concluding on fault simulation. Because of reversibility 
properties, it is easier for reversible circuits than for 
quantum and classical circuits. It is also simpler than for the 
general-purpose quantum circuits. Such circuits are 
described by compositions of matrix products and 
Kronecker products of unitary matrices. The faults in them 
are modeled by inserting complex (unitary or not) matrices 
of faults and decoherence-related measurements (density 
matrices) in respective qubits in partition columns [12]. 
  
5.2 Efficient algorithm for fault localization 

 
1) A fault coverage table is created and updated 

incrementally together with generating the adaptive 
tree. It is built as the tree is expanded from the root to 
the leafs by adding new nodes (this is a free tree, 
variables are not ordered). For every level we update 

this fault table to represent only the remaining 
uncovered faults. 
 

2) For all Levels ahead : we use the following recursive 
procedure -  

 
a) Select a partition for which the fault table shows 

the maximum number of uncovered faults and 
mark that partition as checked.  

b) Find the counter test vector at that partition. 
c) Backtrack in the circuit from this point using the 

back simulator function, to find the 
corresponding input test vector. This input test 
vector when applied to the circuit will cover the 
uncovered faults at that particular partition. 

d) Apply this input test vector to the given circuit 
to find the output using the forward simulator 
function.   

e) Get the simulation output table for this vector. 
f) Check if this input test vector divides the 

uncovered faults (looking at the fault table) from 
the previous level into half.  

g) If so, the test is good. Then check if the same 
test holds good for all other nodes in the same 
level. 
- if not then discard the test. Go to step h) 
- if good go to step i)  

h) If the test is not good,  
- If all partitions are not checked, then choose a 

partition which is next maximum and repeat 
step b) onwards. 

- If all partitions are checked, then choose the 
input test vector which divides the uncovered 
faults into nearly half subsets. 

-  Update the fault table by marking the covered 
faults by this chosen test vector. Go to step i) 

 
i) Repeat steps a) through i) until each leaf of the 

tree ends up with one or more non-separable 
stuck-at fault(s). All distinct single stuck-at 
faults except one, from the fault table are 
covered for every node in that level (since each 
leaf of the tree ends up with one and only fault)   

 
5.3 Considering equivalent faults 
 

When the output at two or more nodes of the circuit is 
identical for all input test vectors applied to the circuit, then 
those nodes are said to be equivalent nodes. In our proposed 
algorithm we deal with equivalent nodes which are adjacent 
to each other (in the same wire). In other words these nodes 
are nothing but a wire separated by the logical partitions P0, 
P1, etc. For example, in the given circuit in Figure 1, nodes 
n0 at partitions P0 and P1 are the equivalent nodes. In our 
incremental fault table we represent the equivalent nodes. 



While considering the uncovered faults in a partition, we 
count the equivalent faults too; if uncovered until the 
moment. Other equivalent faults which are non-adjacent 
remain in the tree as non-separable sets of faults in the 
leafs. 
 
5.4 Particulars to be noted 
 

1) If there are N wires, then 2N is the maximum 
possible length of the input test vector. We restrict 
ourselves to a certain number of test vectors as we 
choose a test vector depending on choice of outputs 
at one of the P partitions. Thus, the number of actual 
possible input test vectors for a particular circuit will 
depend on the number of partitions. Hence we can 
actually use only 2P input test vectors. 

2) The major consequence is that while doing so we 
might loose on some good test vectors at a particular 
node, which exactly divide the faults into two equal 
subsets of covered and uncovered faults.  

3) Also another consequence is that we might loose on 
some good test vectors at a particular level, where 
the same test vector can be applied at every node in 
that level.  

4) The effect of all these is that the adaptive tree will 
not be balanced and will not be ordered.  

 
6.  Future work 
 
1) It is assumed in the algorithm 5.2. that all stuck-at-one 
faults are covered by a test vector which is all zeros; 
denoted by T0. But this holds true under the assumption 
that the circuit under test does not include any NOT gates 
i.e. inverters.  
 
2) We would like to compare the speed of the algorithm 
from section 4.1 and the algorithm 5.2 to find how much 
the new approach is faster. This should be checked 
especially for large circuits. One reason to the efficiency is 
that the algorithm avoids creation of full table and search of 
all possible input test vectors. 
 
3) In future, we also plan to modify our algorithm to 
incorporate fault localization in binary and multiple-valued 
quantum circuits [12]. Although the fault table and adaptive 
tree become in general deterministic or probabilistic, 
similar techniques to those presented in this paper can be 
used. 
 
4) We need to develop a heuristic to handle the case of 
unseparable faults at  leaf nodes. These faults may be able 
to be separated by choosing a different test vector sequence, 
or they may be truly equivalent. We have to develop a 
heuristic to handle all the equivalent faults. 
 

7.  Conclusions 
 

We proved experimentally that propositions 1 – 3 are 
true when a complete Fault Table is created, thus fault 
localization in reversible circuits is simpler than in standard 
(non-reversible) circuits. This gives an initiative to redesign 
non-reversible circuits to make them more reversible (for 
instance by partitioning to reversible circuits and other 
circuits). So far, the motivation to perform research in 
reversible circuits was quantum realizations and low power 
design. High testability of these circuits gives a new 
motivation – even if we are dealing with standard CMOS 
circuit and adiabatic CMOS and our goal is not to save 
power, the reversible circuit design guarantees higher 
testability and fault localization. We dispose several 
examples of practical circuits that have been modified to 
(partially) reversible circuits and made thus more testable 
and fault-localizable. This is a forthcoming research area. 

The program was tested on several reversible circuits 
from the literature [10]. Because of the lack of large 
benchmarks, we have to create many of these circuits 
randomly or we used circuits with no guarantee of their 
minimality. This is perhaps not a good idea, but nothing 
better can be done since there are no good synthesizers so 
far for very large reversible functions. We analyzed several 
examples with the width not more than 8. The symmetric 
property holds true for all them. The method is applicable 
to any kind of binary and multiple-valued reversible 
circuits; when the adaptive tree is created using standard 
adaptive tree approach with complete Fault Tables. The tree 
obtained is balanced or nearly balanced in these cases. But 
the tree may not be always symmetric for the reversible 
circuits that have NOT gates, when the tree is built using 
algorithm 5.2. Further testing and analysis of data is 
necessary on larger examples for both approaches. The 
method has been extended to multiple-valued reversible 
logic and binary and multiple-valued quantum circuits [12]. 
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