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Abstract 
 
We present a new type of quantum realizable reversible 
cascade. Next we present a new algorithm to synthesize 
arbitrary single-output ternary functions using these 
reversible cascades. The cascades use “Generalized 
Multi-Valued Gates” introduced here, which extend the 
concept of Generalized Ternary Gates introduced 
previously. While there were 216 GTGs, a total of 12 
ternary gates of the new type are sufficient to realize 
arbitrary ternary functions. (The count can be further 
reduced to 5 gates, three 2-qubit and two 1-qubit). Such 
gates are realizable in quantum ion trap devices. For 
some functions, the algorithm requires fewer gates than 
results previously published [1, 5, 8, 14]. In addition, 
the algorithm also does conversion from arbitrary 
ternary logic to reversible logic at the cost of relatively 
small garbage. The algorithm is implemented here in 
ternary logic, but generalization to arbitrary radix is 
both straightforward and sees a reduction in growth of 
cost as the radix is increased. 
 
 
1. Introduction 
 
        Reversible logic [16] is a promising approach to reduce 
power consumption in several emerging technologies. It is 
also a base of quantum circuits [12, 3]. There is a recent 
interest in multiple-valued quantum computing. It has been 
shown that most of 2x2 ternary reversible functions are 
universal [6]. Which family, then, of the numerous universal 
gates are a good choice for synthesis with respect to high 
processing power, low gate count cost, and simplicity of 
design?  Picton [15] proposed reversible MV gates which 
were not efficient to realize, especially using quantum 
primitives, and lead to inefficient structures. No synthesis 
method was given. Several new MV reversible gates and 
respective circuit structures were proposed in [1, 2] but the 
issue of their quantum realization was not addressed and in 
some designs the garbage may be high. De Vos proposed 
two universal  2*2 ternary gates [4] together with two 1*1 
permutative ternary gates. Two universal quantum gates 
(more general than permutative reversible gates) have been 

proposed by Stroud and Muthukrishnan.  Their paper [11]  
presents realization of such gates in ion trap technology. 
Based on gates of De Vos and Stroud/Muthukrishnan, we 
proposed [13, 14] a set of gates that generalize De Vos gates 
and generalize one particular realization (permutative) of 
Stroud/Muthukrishnan gates. It was shown in [13, 14] how a 
ternary Toffoli gate can be build from our Generalized 
Ternary Gates (GTGs). Synthesis of ternary permutative  
quantum cascades from ternary counterparts of Toffoli and 
Feynman  gates was discussed in [8]. However, such circuits 
can be highly non-minimal when the Toffoli-like multiple-
valued gates (which are not directly quantum-realizable) are 
built  using GTG gates, or using physically realizable gates 
from [6]. Therefore, recently we became interested in 
synthesis of ternary reversible cascades directly from GTG 
gates and their special cases, as well as with new realizable 
generalizations of GTG gates [7]. We believe that synthesis 
algorithms should be created only for gates about which we 
know that they are quantum-realizable and we can at least 
approximate their real realization costs. 
        In this paper, we propose an algorithm to 
systematically synthesize an m-valued (in particular, 
ternary) function with an arbitrary number of inputs, [14]. 
The synthesized implementation is a cascade of Generalized 
Multiple-Valued Gates (GMVGs) of arbitrary radices. In 
ternary case,  the gates are special cases of GTGs.  While 
there were 216 GTGs, a total of 12 ternary gates of the new 
type are sufficient to realize arbitrary ternary function. (The 
count can be further reduced to 5 gates, three 2-qubit and 
two 1-qubit). Some 1-qubit permutation gates [7, 8, 9, 14] 
that are more difficult to realize as quantum primitives are 
now avoided. We present experimental results that show the 
complexity and cost of the implementations on ternary 
benchmark functions from [9].  
        The paper is organized as follows: section 2 presents 
background on the new gates. The minimization technique 
for multi-valued expressions (and in particular, ternary 
expressions) discussed in Section 3 is entirely different from 
previous methods [9, 1, 2, 13, 8, 7] and is efficient. The 
basic algorithm is next enhanced in Section 4.  In section 5 
we present some experimental results of ternary benchmark 
functions using both the basic and the enhanced algorithms.  
We also discuss the complexity and cost functions of the 
enhanced algorithm.  Finally, we draw some conclusions 
and discuss future work to be done in this area. This paper 



assumes that the reader is familiar with the basic concepts of 
multiple-valued logic synthesis [5]. 

2. Background:  GMVG gates 
 
        Research in the synthesis of multiple-valued quantum 
reversible circuits remains relatively immature. In our work, 
we adapted the paradigms from both EXOR logic and  
evolutionary algorithms [9, 1, 2, 13, 8, 10, 7, 14]. We use 
EXOR-logic rather than OR-logic since EXORs are the 
combining operators in binary quantum gates. Analogously, 
Modulo-Sums are the best choice for combining operators 
in ternary reversible logic. It is clear that some circuits 
synthesized by this method are far from minimum; they 
create high garbage, and/or use costly methods to realize 
gates, such as 3*3 Toffoli, n-input Toffoli, or Swap. 

 
Figure 1. Generalized Multi-Valued Gate of 
Radix M+1. 
 
        Below we propose a synthesis algorithm, which, for 
ternary functions, utilizes a subset of quantum-realizable 
[11] generalized ternary gates (GTGs), as defined in [9].  
For higher radix multi-valued functions, we apply the same 
algorithm using an extension of the GTG, the Generalized 
Multi-Valued Gate (GMVG).  The GMVG is a multiplexing 
(conditional) gate analogous to the GTG with n-inputs.  The 
GMVG is depicted in Figure 1. Only gates in which one-
qubit xi operations are adding of constants (standard shift 
literals [8]) are used in this paper.  In the following section 
we present the basic algorithm for combining these GMVGs 
into a cascade to realize any function in a form which is 
somehow similar to the well known sum-of-products  and 
exclusive-or-sum-or-products forms, and especially to their 
special case – the-sum-of-disjoint-products form (called 
DSOP – disjoint sum of products in the literature).   
        The gate from Figure 1 can be denoted by [A, x0, x1, 
x2, … xM]. Using this notation and denoting by +I 
operations of adding a value of I to the argument, it can be 
easily proved that  the following  set of 12 ternary gates is 

universal: [X, +1, +0, +0], [X, +0, +1, +0], [X, +0, +0, +1], 
[X, +1, +1, +0], [X, +1, +0, +1], [X, +0, +1, +1], [X, +2, +0, 
+0], [X, +0, +2, +0], [X, +0, +0, +2], [X, +2, +2, +0], [X, 
+2, +0, +2], [X, +0, +2, +2]. There exists also a 5 gate 
universal set with 2-qubit gates:  [X, +1, +0, +0], [X, +0, +1, 
+0], [X, +0, +0, +1], and 1-qubit gates +1 and  +2 (these are 
the so-called cyclical shifts that add 1 or 2 modulo three). 
This can be further reduced to one 1-qubit gate from 
quantum realizable gates [11] and two ternary shift-gates.1 

3. Basic Cascade Mapping Algorithm 
 
        The algorithm generates a cascaded implementation of 
reversible generalized multi-valued gates (GMVGs). A 
ternary function f can be specified with two sets of DSOPs: 
one set for value 2 of function f and another for value 1 of 
function f. We will call them “value DSOPs” and will 
denote them DSOP-2(f) and DSOP-1(f), respectively. Those 
neither specified by DSOP-2(f) or DSOP-1(f) are assumed 
to be of value 0. The algorithm generates a cascade of 
GMVGs. Choosing disjoint sum of product implicants for 
many logic functions results in poor implementation. A 
method to relax this constraint and improve the resultant 
implementation is discussed in section 5.  
        The basic algorithm applies to arbitrary functions F, of 
N variables with radix M+1 (where M = 2 implies ternary, 
etc).  First a GMVG cascade is created for each product 
group in DSOP-k, where 1 ≤ k  ≤ M. This product group 
may or may not be a prime implicant of the output value of 
F. However, it is always a product implicant of the standard 
DSOP corresponding to the replacement of an output value 
k by Boolean value 1. Each resulting cascade can be 
implemented separately.  Each of the product groups are 
mutually exclusive, and they are combined using another 
GMVG cascade, called the OR-cascade.  A complete 
implementation of function F can be realized by connecting 
the OR--cascade serially after the longest product cascade. 
This joining cascades is referred to as a cascade of cascades 
or combined cascade. 
        For each product cascade, the quantum line begins with 
constant input “0”.  There is a GMVG corresponding to 
each literal in the product term, plus additional roll-over 
GMVGs as needed, described below.  Thus it is 
advantageous to have large prime implicants in every value 
expression for the original function F, not only because it 
may reduce the total number of product implicants and thus 
the number of product cascades, but also because the 

                                                 
1 In [11] it is not explicitly stated that GMVGs  generalized to the 
form from Figure 1 are directly quantum realizable in ion trap. 
Whether or not gates such as these will be realizable directly is not 
certain to these authors based on [11] and discussions with physicists. 
However, in ternary case, from the gates as presented by 
Muthukrishnan and Stroud, and two shift operators, we can create all 
ternary GMVG gates as illustrated on an example in Figure 10. Thus 
the GMVGs can be treated as macros or high level gates. 
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Figure 2. Example 1 of m+1 valued cascade for a disjoint product implicant 
 
product cascades will be shorter.  Each GMVG 
corresponding to a literal will have its select line driven by 
that literal.  The GMVG will have +1 operations at all 
GMVG inputs corresponding to that literal’s coverage in the 
product implicant.  
        Example 1. Assume function F of five variables A, B, 
C, D, E with product implicant A {0,1} B {1} C {0,2} E {1,2}, the 
product cascade will include a GMVG with control input 
driven by A, with +1 operations at the 0 and 1 selects of the 
corresponding GTG. B, C, and E make contributions in like 
form.  Input D controls no GTG as it makes no contribution 
to the product term. The cascade is shown in Figure 2. In the 
rightmost MV Karnaugh map in Figure 2, the value 4’s give 
the DSOP implicant given above. All other values are 

considered nonsensical and are discarded in the following 
steps. Converting this highest value (and eliminating the 
lesser values) is accomplished by the OR-cascade. 
        Realizing the product cascade is, in general, non-
trivial.  Realization depends on the radix and the number of 
literals. It should be clear that, with a low value of M or 
with many inputs in the product term, the +1 combining 
operators executed in the gates will eventually cause values 
of M-1 to “roll-over” as +1 is considered to be modulo-M 
addition.  In the event of “roll-over,” we no longer 
accurately track the maximum value.  If the example above 
represented a ternary function, values “3” become non-
distinguishable from the unchanged  “0” values.   

 

 
Figure 3. Ternary cascade of cascades to realize a product cascade for Example 1. 



 
Figure 4. A four variable, ternary function 
Karnaugh map for example 1. 

AB\EC 00 01 02 10 11 12 20 21 22 
00 0 0 0 1 1 1 1 1 1 
01 1 0 1 2 1 2 2 1 2 
02 0 0 0 1 1 1 1 1 1 
10 0 0 0 1 1 1 1 1 1 
11 1 0 1 2 1 2 2 1 2 
12 0 0 0 1 1 1 1 1 1 
20 0 0 0 1 1 1 1 1 1 
21 0 0 0 1 1 1 1 1 1 
22 0 0 0 1 1 1 1 1 1 

 
        When “roll-over” occurs, additional constant inputs are 
introduced.  X represents the number of GMVGs on a given 
line.  The value of X is incremented for each GMVG that is 
placed in the cascade.  When X = M-1, an additional 
GMVG is introduced on a new line (again starting with 
constant “0”). This is denoted by GMVG-X.  The control 
line of GMVG-X is provided by the output of the preceding, 
“rolled-over,” cascade.  The “+1” operation is placed at the 
X-th input of the GMVG-X.  All other inputs to GMVG-X 
have no operation (i.e. they are wires). By this method X is 
reset to value 1 and the cascade is continued. 
        Therefore, to implement a ternary function (M=2), a 
GMVG-X is required every two gates.  Consequently, 
GMVG-X cost does not increase as number of states M 
increases, because GMVG-X gates are needed less often.  

Using the product implicant from Example 1 for the case 
M=2, the circuit shown in Figure 3 is created. The desired 
implicant output is realized by the highest values in the 
lowest wire in Figure 3. In Figure 4, the maximum values of 
2 are correct, and the values of 1 have not yet been changed 
back to 0’s.  
        Figure 3 depicts the complete product cascade for one 
value. The other products for each value are implemented 
successively as cascades.  Once all the product implicants 
for all output values have been synthesized, the OR-cascade,  
which combines these output values, is placed serially after 
the longest product cascade.  The OR-cascade is a single 
line, again starting from a constant zero, shown by Figure 5. 

 
Figure 5. A naïve construction of a cascade of 
cascades. This OR-cascade combines the 
results from the product cascades. 
        

 

 
Figure 6. A naïve method of constructing a cascade for function: 
Min(A, B, C) = 2A {2} B {2} C {2} + 1 A {1} B {1,2} C {1,2} + 1 A {2} B {1} C {1,2}  + 1A {2} B {2} C {1}.



        The output of each DSOP product cascade drives the 
control line of one of the GMVG’s in the OR-cascade.   The 
OR-line is similar in operation to the GMVG-X “roll-over” 
gate, except in the sense that we have several GMVG-X 
gates in series, each of which contributing a disjoint 
covering for a particular value.  That is, shift operators (in 
this example +1 or +2) will be used as the M-input to the 
GMVG-X gate to realize each DSOP value (value 1s, +1; 
value 2s, +2). 
        Example 2. A complete example is shown in Figure 6 
for ternary function Min(A, B, C) = 2A {2} B {2} C {2} + 1 A 
{1} B {1,2} C {1,2} + 1 A {2} B {1} C {1,2}  + 1A {2} B {2} C {1}.  
        In Figure 6 the first gate of the OR-cascade (lowest 
line) has +2 in its input 2.  This is because of constant 2 in 
product term 2 A {2} B {2} C {2}. The garbage created by this 
method is large. Reducing this garbage is a goal of 
subsequent work. 
        This preliminary algorithm will see good improvement 
with optimizations under development, which we discuss in 
the following sections. 

4. Improved Cascade Algorithm 

 
Figure 7. (a) Disjoint groups for DFSOP-1(F) 
and DFSOP-2(F), (b) Non-disjoint groups for 
DFSOP-1(F) and DFSOP-2(F). 
 

        It is evident from Min (A, B, C) in Example 2 that the 
constraint of requiring product groups to be mutually 
exclusive results in an excessive number of groups. This 
requirement is not necessary, but was convenient for 
straightforward implementation of the OR-cascade.   
However, the OR-cascade can be created in such a way as to 
effectively layer coverings to create the proper output, 
similar to EXOR logic.  

Figure 7 shows two possible coverings for 
MIN(A,B,C).  As realized previously, (a) is composed of 
DSOP coverings. However, in (b), and the subsequent 
realization of (b) in Figure 8, we see that a more effective 
covering would be to choose coverings that conveniently 
cover implicants some Y number of times, Y being the 
particular value of the logic to be implemented, assuming 
only +1 operators across the OR-cascade. Even more 
freedom can be achieved by introducing all available 5 shift 
operators [8,9] in the OR-cascade. Ultimately this results in 
fewer, larger product implicants, and thus in fewer product 
cascades, shorter combined cascades, and a smaller garbage.  

5. Experimental Results and Future Work 
 
        The algorithms have been implemented in C++. The 
following results have been obtained for solutions both with 
and without the overlapping product implicant improvement 
(Table 1). The test-bench functions used here are the same 
or similar to those used in [9] (All benchmarks that have 
letter G (for Galois) are the same as in [9], other are new). 
The details of the functions are defined in Appendix A.  In 
several cases an improved algorithm (right part of the Table) 
gives a large savings over the basic algorithm (i.e., 
benchmark 4cyM3). Several observations can be made 
about the above data. It can be easily shown that the number 
of garbage outputs is always one less than the number of 
constant inputs.  

 
 Figure 8. An improved cascade for the function from Example 2: Min(A, B, C) = 2 A{2} B{2} C{2} + 1 A{1,2} 
B{1,2} C {1,2}. Of interest is the overlap between the DSOP-1 and DSOP-2. 
          



  
Figure 9.  Illustration of the “return to constant” approach to decrease the garbage bit count. 
 
        One obvious drawback of the algorithm, as presented, 
is the use of at least one constant input per product group.  
The maximum cost function for constant inputs for a 
function of N inputs, power M, and PI product groups is  
 
Max Constant Inputs = PI[(1)+(max # of GMVG-Xs)] + 
(1 for OR-cascade) = PI[(1)+(int N/(M-1))] + 1 
 
        Similarly, the number of garbage outputs equals the 
number of constant inputs used for the product group 
cascades. 
 
Max Garbage Outputs = PI[(1)+(int N/(M-1))] + 1 
 
        Often one needs less than the maximum number of 
GMVG-Xs per prime implicant, due to some primary inputs 
not being present in a given product implicant.  Still, for 
functions with a large number of product implicants, there 
are a high number of constant inputs.  In the future, the 
algorithms that expand the ideas from ESOP and GFSOP 
logic [7,8,9] should be created to minimize the total number 
of overlapping product groups that are not necessarily the 
product implicants.  
        One approach to reduce the garbage cost [13, 18] is to 
reuse lines by changing garbage outputs into a more useful 
form.  Because the GMVGs are all reversible, then we can 
apply the inverse GMVGs (once we are done with that line) 
to return to constant zero.  We can then reuse this line 
instead of introducing a new constant.  This concept is 
illustrated in Figure 9.  
        Another cost function to consider is the maximum 
length of the cascade, which is effectively the length of the 
longest prime-implicant cascade, plus the length of the 
combining cascade.  This can be expressed as follows: 
 
Max Length = (Max Length of PI Cascade) + (Length of 
OR Cascade) = (N + (int N/(M-1)))  +  (PI) 
 

        The upper bound on both the length and total gate cost 
functions can be reduced by having fewer, larger, prime 
implicants.  The algorithm is most affective for large values 
of M and low values of N.   
        No specific method was proposed here to find a 
minimal covering expression. We believe that our general 
approach will allow for cost-effective design of large 
functions under condition that a good choice of prime 
implicants in all layers will be done. This is our current 
research. 

6. Conclusion 
 
        We introduced a new type of multi-valued quantum 
cascade that is realizable in ion trap technology following 
[11]. This is in contrast to previous papers that were not 
concerned with the realization ability of their multi-input 
gates. The algorithm is implemented here in ternary logic, 
but generalization to arbitrary radix is both straightforward 
and sees a reduction in growth of cost as the radix is 
increased. 
 
      We proposed  two algorithms to synthesize single-
output functions with arbitrary number of inputs and 
arbitrary radix.  We have evaluated the algorithm using 
ternary benchmark functions from [9]. The algorithms are 
very fast and allow to minimize large functions, but their 
quality is not yet satisfactory, although the second algorithm 
is a substantial improvement over the first one.  
         
     We are working on several additional improvements that 
can be made to the presented second algorithm. Further 
effort should be made to reduce the impact of, or ideally 
remove, the constraint of mutually exclusive product groups 
in a covering.  The method should be also extended to 
multi-output functions. We work on minimization 
techniques based on exhaustive search, evolutionary 
approaches and extensions of the algorithms presented in 



this paper. New algorithms to find best covering of 
incomplete MV functions to be used as preprocessors to the 
current algorithms should be also created. 
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8. Appendix A: Ternary Benchmark 
Functions 

 
ncyGr:   input x0, x1, ... xn ;  output consists of n outputs of r 
input variables in cyclic order (e.g.  3cyG2:  y(a,b,c) = ab + bc + 
ca), using Galois mod3 multiplication. 
ncyMr:  input x0, x1, ... xn ;  output consists of n outputs of r input 
variables in cyclic order (e.g.  3cyG2:  y(a,b,c) = ab + bc + ca), 
using Min/Max operations. 
a2bccG:  input a, b, c;   output y = (a^2 + bc + c), using Galois 
mod3 operations. 
a2bccM:  input a, b, c;  output y = (a^2 + bc + c), using Min/Max 
operations. 
avgGn:  input x0, x1, ... xn ; output y = int [(x0 + x1 + .... + xn) / 
n], using Galois mod3 operations. 
prodGn:  input x0, x1, ... xn ;  output y = (x0 * x1 * ... * xn), 
where * is Galois mod3 multiplication. 
prodMinn:  input x0, x1, ... xn ;  output y = (x0 * x1 * ... * xn), 
where * is the Minimum operation. 
sqsumGn:  input x0, x1, ... xn ; output y = (x0^2 + x1^2 + .... + 
xn^2), using Galois mod3 operations. 
sqsumMn:  input x0, x1, ... xn ; output y = (x0^2 + x1^2 + .... + 
xn^2), using Min/Max operations.  This is omitted from the data 
taken in this paper, because this is the same as sumMaxn! 
sumGn:  input x0, x1, ... xn ;  output y = (x0 + x1 + ... + xn), 
where + is Galois mod3 addition. 
sumMaxn:  input x0, x1, ... xn ;  output y = (x0 + x1 + ... + xn), 
where + is the Maximum operation. 

 
 

 



Figure 10. (a) A Conceptual Ternary Muthukrishnan-Stroud  Quantum Realizable Gate, 
represented as a MUX. (b) A more general GTG and (c) its possible realization from a 
Muthukrishnan-Stroud Quantum Gate (if it cannot be realized directly). 
 
 
 
Table 1: Experimental Results 

 Mutually Exclusive Products Overlapping Products 

 Garbage Constant Length 
Total 
Gates 

Garbage  
Outputs 

Constant 
Inputs Length 

Total 
Gates 

2cyG2 4 5 6 12 3 4 5 9 
2cyM2 3 4 5 9 2 3 4 6 
3cyG2 22 23 16 56 20 21 15 51 
3cyG3 16 17 12 40 10 11 9 25 
3cyM2 18 19 13 38 10 11 9 22 
3cyM3 8 9 8 20 4 5 6 10 
4cyG3 94 95 38 220 73 74 31 171 
4cyG4 48 49 22 112 27 28 15 63 
4cyM2 28 29 18 66 16 17 14 40 
4cyM3 53 54 25 125 21 22 14 50 
4cyM4 15 16 11 35 6 7 8 14 
a2bccG 15 16 12 38 13 14 11 33 
a2bccM 15 16 12 38 12 13 11 31 
avgG2 3 4 5 9 3 4 5 9 
avgG3 14 15 12 36 14 15 12 36 
avgG4 54 55 26 128 50 51 25 119 
prodG2 4 5 6 12 3 4 5 9 
prodG3 16 17 12 40 10 11 9 25 
prodG4 48 49 22 112 27 28 15 63 
prodMin2 3 4 5 9 2 3 4 6 
prodMin3 8 9 8 20 4 5 6 10 
prodMin4 15 16 11 35 6 7 8 14 
sqsumG2 3 4 5 9 3 4 5 8 
sqsumG3 16 17 12 40 14 15 12 36 
sqsumG4 33 34 17 77 29 30 17 69 
sqsumM2 4 5 6 11 4 5 6 10 
sqsumM3 10 11 10 25 8 9 10 20 
sqsumM4 19 20 14 45 14 15 14 34 
sumG2 6 7 8 18 6 7 8 18 
sumG3 36 37 22 90 36 37 22 90 
sumMax2 4 5 6 11 4 5 6 10 
sumMax3 10 11 10 25 8 9 10 20 
sumMax4 19 20 14 45 14 15 14 34 

 
 


