
Synthesis of Reversible Circuits from a Subset of Muthukrishnan-Stroud Quantum
Realizable Multi-Valued Gates

Nicholas Denler *, Bruce Yen *, Marek Perkowski *, Pawel Kerntopf +

*Department of Electrical and Computer Engineering, Portland State University,
1900 SW 4th Avenue, Portland, OR 97201, USA. mperkows@ee.pdx.edu

+ Institute of Computer Science, Department of Electronics and Information Technology, Warsaw Univ. of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland, pke@ii.pw.edu.pl

Abstract

We present a new type of quantum realizable reversible
cascade. Next we present a new algorithm to synthesize
arbitrary single-output ternary functions using these
reversible cascades. The cascades use “Generalized
Multi-Valued Gates” introduced here, which extend the
concept of Generalized Ternary Gates introduced
previously. While there were 216 GTGs, a total of 12
ternary gates of the new type are sufficient to realize
arbitrary ternary functions. (The count can be further
reduced to 5 gates, three 2-qubit and two 1-qubit). Such
gates are realizable in quantum ion trap devices. For
some functions, the algorithm requires fewer gates than
results previously published [1, 5, 8, 14]. In addition,
the algorithm also does conversion from arbitrary
ternary logic to reversible logic at the cost of relatively
small garbage. The algorithm is implemented here in
ternary logic, but generalization to arbitrary radix is
both straightforward and sees a reduction in growth of
cost as the radix is increased.

1. Introduction

 Reversible logic [16] is a promising approach to reduce
power consumption in several emerging technologies. It is
also a base of quantum circuits [12, 3]. There is a recent
interest in multiple-valued quantum computing. It has been
shown that most of 2x2 ternary reversible functions are
universal [6]. Which family, then, of the numerous universal
gates are a good choice for synthesis with respect to high
processing power, low gate count cost, and simplicity of
design? Picton [15] proposed reversible MV gates which
were not efficient to realize, especially using quantum
primitives, and lead to inefficient structures. No synthesis
method was given. Several new MV reversible gates and
respective circuit structures were proposed in [1, 2] but the
issue of their quantum realization was not addressed and in
some designs the garbage may be high. De Vos proposed
two universal 2*2 ternary gates [4] together with two 1*1
permutative ternary gates. Two universal quantum gates
(more general than permutative reversible gates) have been

proposed by Stroud and Muthukrishnan. Their paper [11]
presents realization of such gates in ion trap technology.
Based on gates of De Vos and Stroud/Muthukrishnan, we
proposed [13, 14] a set of gates that generalize De Vos gates
and generalize one particular realization (permutative) of
Stroud/Muthukrishnan gates. It was shown in [13, 14] how a
ternary Toffoli gate can be build from our Generalized
Ternary Gates (GTGs). Synthesis of ternary permutative
quantum cascades from ternary counterparts of Toffoli and
Feynman gates was discussed in [8]. However, such circuits
can be highly non-minimal when the Toffoli-like multiple-
valued gates (which are not directly quantum-realizable) are
built using GTG gates, or using physically realizable gates
from [6]. Therefore, recently we became interested in
synthesis of ternary reversible cascades directly from GTG
gates and their special cases, as well as with new realizable
generalizations of GTG gates [7]. We believe that synthesis
algorithms should be created only for gates about which we
know that they are quantum-realizable and we can at least
approximate their real realization costs.
 In this paper, we propose an algorithm to
systematically synthesize an m-valued (in particular,
ternary) function with an arbitrary number of inputs, [14].
The synthesized implementation is a cascade of Generalized
Multiple-Valued Gates (GMVGs) of arbitrary radices. In
ternary case, the gates are special cases of GTGs. While
there were 216 GTGs, a total of 12 ternary gates of the new
type are sufficient to realize arbitrary ternary function. (The
count can be further reduced to 5 gates, three 2-qubit and
two 1-qubit). Some 1-qubit permutation gates [7, 8, 9, 14]
that are more difficult to realize as quantum primitives are
now avoided. We present experimental results that show the
complexity and cost of the implementations on ternary
benchmark functions from [9].
 The paper is organized as follows: section 2 presents
background on the new gates. The minimization technique
for multi-valued expressions (and in particular, ternary
expressions) discussed in Section 3 is entirely different from
previous methods [9, 1, 2, 13, 8, 7] and is efficient. The
basic algorithm is next enhanced in Section 4. In section 5
we present some experimental results of ternary benchmark
functions using both the basic and the enhanced algorithms.
We also discuss the complexity and cost functions of the
enhanced algorithm. Finally, we draw some conclusions
and discuss future work to be done in this area. This paper

assumes that the reader is familiar with the basic concepts of
multiple-valued logic synthesis [5].

2. Background: GMVG gates

 Research in the synthesis of multiple-valued quantum
reversible circuits remains relatively immature. In our work,
we adapted the paradigms from both EXOR logic and
evolutionary algorithms [9, 1, 2, 13, 8, 10, 7, 14]. We use
EXOR-logic rather than OR-logic since EXORs are the
combining operators in binary quantum gates. Analogously,
Modulo-Sums are the best choice for combining operators
in ternary reversible logic. It is clear that some circuits
synthesized by this method are far from minimum; they
create high garbage, and/or use costly methods to realize
gates, such as 3*3 Toffoli, n-input Toffoli, or Swap.

Figure 1. Generalized Multi-Valued Gate of
Radix M+1.

 Below we propose a synthesis algorithm, which, for
ternary functions, utilizes a subset of quantum-realizable
[11] generalized ternary gates (GTGs), as defined in [9].
For higher radix multi-valued functions, we apply the same
algorithm using an extension of the GTG, the Generalized
Multi-Valued Gate (GMVG). The GMVG is a multiplexing
(conditional) gate analogous to the GTG with n-inputs. The
GMVG is depicted in Figure 1. Only gates in which one-
qubit xi operations are adding of constants (standard shift
literals [8]) are used in this paper. In the following section
we present the basic algorithm for combining these GMVGs
into a cascade to realize any function in a form which is
somehow similar to the well known sum-of-products and
exclusive-or-sum-or-products forms, and especially to their
special case – the-sum-of-disjoint-products form (called
DSOP – disjoint sum of products in the literature).
 The gate from Figure 1 can be denoted by [A, x0, x1,
x2, … xM]. Using this notation and denoting by +I
operations of adding a value of I to the argument, it can be
easily proved that the following set of 12 ternary gates is

universal: [X, +1, +0, +0], [X, +0, +1, +0], [X, +0, +0, +1],
[X, +1, +1, +0], [X, +1, +0, +1], [X, +0, +1, +1], [X, +2, +0,
+0], [X, +0, +2, +0], [X, +0, +0, +2], [X, +2, +2, +0], [X,
+2, +0, +2], [X, +0, +2, +2]. There exists also a 5 gate
universal set with 2-qubit gates: [X, +1, +0, +0], [X, +0, +1,
+0], [X, +0, +0, +1], and 1-qubit gates +1 and +2 (these are
the so-called cyclical shifts that add 1 or 2 modulo three).
This can be further reduced to one 1-qubit gate from
quantum realizable gates [11] and two ternary shift-gates.1

3. Basic Cascade Mapping Algorithm

 The algorithm generates a cascaded implementation of
reversible generalized multi-valued gates (GMVGs). A
ternary function f can be specified with two sets of DSOPs:
one set for value 2 of function f and another for value 1 of
function f. We will call them “value DSOPs” and will
denote them DSOP-2(f) and DSOP-1(f), respectively. Those
neither specified by DSOP-2(f) or DSOP-1(f) are assumed
to be of value 0. The algorithm generates a cascade of
GMVGs. Choosing disjoint sum of product implicants for
many logic functions results in poor implementation. A
method to relax this constraint and improve the resultant
implementation is discussed in section 5.
 The basic algorithm applies to arbitrary functions F, of
N variables with radix M+1 (where M = 2 implies ternary,
etc). First a GMVG cascade is created for each product
group in DSOP-k, where 1 ≤ k ≤ M. This product group
may or may not be a prime implicant of the output value of
F. However, it is always a product implicant of the standard
DSOP corresponding to the replacement of an output value
k by Boolean value 1. Each resulting cascade can be
implemented separately. Each of the product groups are
mutually exclusive, and they are combined using another
GMVG cascade, called the OR-cascade. A complete
implementation of function F can be realized by connecting
the OR--cascade serially after the longest product cascade.
This joining cascades is referred to as a cascade of cascades
or combined cascade.
 For each product cascade, the quantum line begins with
constant input “0”. There is a GMVG corresponding to
each literal in the product term, plus additional roll-over
GMVGs as needed, described below. Thus it is
advantageous to have large prime implicants in every value
expression for the original function F, not only because it
may reduce the total number of product implicants and thus
the number of product cascades, but also because the

1 In [11] it is not explicitly stated that GMVGs generalized to the
form from Figure 1 are directly quantum realizable in ion trap.
Whether or not gates such as these will be realizable directly is not
certain to these authors based on [11] and discussions with physicists.
However, in ternary case, from the gates as presented by
Muthukrishnan and Stroud, and two shift operators, we can create all
ternary GMVG gates as illustrated on an example in Figure 10. Thus
the GMVGs can be treated as macros or high level gates.

0

1

2

M

x0

x1

x2

xM

A P = A

 Q = x0(B) if A=0
 x1(B) if A=1
 x2(B) if A=2
 etc,
 xM(B) if A=M

where x* is some
 reversible operation,
also of radix M+1

B

Figure 2. Example 1 of m+1 valued cascade for a disjoint product implicant

product cascades will be shorter. Each GMVG
corresponding to a literal will have its select line driven by
that literal. The GMVG will have +1 operations at all
GMVG inputs corresponding to that literal’s coverage in the
product implicant.
 Example 1. Assume function F of five variables A, B,
C, D, E with product implicant A {0,1} B {1} C {0,2} E {1,2}, the
product cascade will include a GMVG with control input
driven by A, with +1 operations at the 0 and 1 selects of the
corresponding GTG. B, C, and E make contributions in like
form. Input D controls no GTG as it makes no contribution
to the product term. The cascade is shown in Figure 2. In the
rightmost MV Karnaugh map in Figure 2, the value 4’s give
the DSOP implicant given above. All other values are

considered nonsensical and are discarded in the following
steps. Converting this highest value (and eliminating the
lesser values) is accomplished by the OR-cascade.
 Realizing the product cascade is, in general, non-
trivial. Realization depends on the radix and the number of
literals. It should be clear that, with a low value of M or
with many inputs in the product term, the +1 combining
operators executed in the gates will eventually cause values
of M-1 to “roll-over” as +1 is considered to be modulo-M
addition. In the event of “roll-over,” we no longer
accurately track the maximum value. If the example above
represented a ternary function, values “3” become non-
distinguishable from the unchanged “0” values.

Figure 3. Ternary cascade of cascades to realize a product cascade for Example 1.

Figure 4. A four variable, ternary function
Karnaugh map for example 1.

AB\EC 00 01 02 10 11 12 20 21 22
00 0 0 0 1 1 1 1 1 1
01 1 0 1 2 1 2 2 1 2
02 0 0 0 1 1 1 1 1 1
10 0 0 0 1 1 1 1 1 1
11 1 0 1 2 1 2 2 1 2
12 0 0 0 1 1 1 1 1 1
20 0 0 0 1 1 1 1 1 1
21 0 0 0 1 1 1 1 1 1
22 0 0 0 1 1 1 1 1 1

 When “roll-over” occurs, additional constant inputs are
introduced. X represents the number of GMVGs on a given
line. The value of X is incremented for each GMVG that is
placed in the cascade. When X = M-1, an additional
GMVG is introduced on a new line (again starting with
constant “0”). This is denoted by GMVG-X. The control
line of GMVG-X is provided by the output of the preceding,
“rolled-over,” cascade. The “+1” operation is placed at the
X-th input of the GMVG-X. All other inputs to GMVG-X
have no operation (i.e. they are wires). By this method X is
reset to value 1 and the cascade is continued.
 Therefore, to implement a ternary function (M=2), a
GMVG-X is required every two gates. Consequently,
GMVG-X cost does not increase as number of states M
increases, because GMVG-X gates are needed less often.

Using the product implicant from Example 1 for the case
M=2, the circuit shown in Figure 3 is created. The desired
implicant output is realized by the highest values in the
lowest wire in Figure 3. In Figure 4, the maximum values of
2 are correct, and the values of 1 have not yet been changed
back to 0’s.
 Figure 3 depicts the complete product cascade for one
value. The other products for each value are implemented
successively as cascades. Once all the product implicants
for all output values have been synthesized, the OR-cascade,
which combines these output values, is placed serially after
the longest product cascade. The OR-cascade is a single
line, again starting from a constant zero, shown by Figure 5.

Figure 5. A naïve construction of a cascade of
cascades. This OR-cascade combines the
results from the product cascades.

Figure 6. A naïve method of constructing a cascade for function:
Min(A, B, C) = 2A {2} B {2} C {2} + 1 A {1} B {1,2} C {1,2} + 1 A {2} B {1} C {1,2} + 1A {2} B {2} C {1}.

 The output of each DSOP product cascade drives the
control line of one of the GMVG’s in the OR-cascade. The
OR-line is similar in operation to the GMVG-X “roll-over”
gate, except in the sense that we have several GMVG-X
gates in series, each of which contributing a disjoint
covering for a particular value. That is, shift operators (in
this example +1 or +2) will be used as the M-input to the
GMVG-X gate to realize each DSOP value (value 1s, +1;
value 2s, +2).
 Example 2. A complete example is shown in Figure 6
for ternary function Min(A, B, C) = 2A {2} B {2} C {2} + 1 A
{1} B {1,2} C {1,2} + 1 A {2} B {1} C {1,2} + 1A {2} B {2} C {1}.
 In Figure 6 the first gate of the OR-cascade (lowest
line) has +2 in its input 2. This is because of constant 2 in
product term 2 A {2} B {2} C {2}. The garbage created by this
method is large. Reducing this garbage is a goal of
subsequent work.
 This preliminary algorithm will see good improvement
with optimizations under development, which we discuss in
the following sections.

4. Improved Cascade Algorithm

Figure 7. (a) Disjoint groups for DFSOP-1(F)
and DFSOP-2(F), (b) Non-disjoint groups for
DFSOP-1(F) and DFSOP-2(F).

 It is evident from Min (A, B, C) in Example 2 that the
constraint of requiring product groups to be mutually
exclusive results in an excessive number of groups. This
requirement is not necessary, but was convenient for
straightforward implementation of the OR-cascade.
However, the OR-cascade can be created in such a way as to
effectively layer coverings to create the proper output,
similar to EXOR logic.

Figure 7 shows two possible coverings for
MIN(A,B,C). As realized previously, (a) is composed of
DSOP coverings. However, in (b), and the subsequent
realization of (b) in Figure 8, we see that a more effective
covering would be to choose coverings that conveniently
cover implicants some Y number of times, Y being the
particular value of the logic to be implemented, assuming
only +1 operators across the OR-cascade. Even more
freedom can be achieved by introducing all available 5 shift
operators [8,9] in the OR-cascade. Ultimately this results in
fewer, larger product implicants, and thus in fewer product
cascades, shorter combined cascades, and a smaller garbage.

5. Experimental Results and Future Work

 The algorithms have been implemented in C++. The
following results have been obtained for solutions both with
and without the overlapping product implicant improvement
(Table 1). The test-bench functions used here are the same
or similar to those used in [9] (All benchmarks that have
letter G (for Galois) are the same as in [9], other are new).
The details of the functions are defined in Appendix A. In
several cases an improved algorithm (right part of the Table)
gives a large savings over the basic algorithm (i.e.,
benchmark 4cyM3). Several observations can be made
about the above data. It can be easily shown that the number
of garbage outputs is always one less than the number of
constant inputs.

 Figure 8. An improved cascade for the function from Example 2: Min(A, B, C) = 2 A{2} B{2} C{2} + 1 A{1,2}
B{1,2} C {1,2}. Of interest is the overlap between the DSOP-1 and DSOP-2.

Figure 9. Illustration of the “return to constant” approach to decrease the garbage bit count.

 One obvious drawback of the algorithm, as presented,
is the use of at least one constant input per product group.
The maximum cost function for constant inputs for a
function of N inputs, power M, and PI product groups is

Max Constant Inputs = PI[(1)+(max # of GMVG-Xs)] +
(1 for OR-cascade) = PI[(1)+(int N/(M-1))] + 1

 Similarly, the number of garbage outputs equals the
number of constant inputs used for the product group
cascades.

Max Garbage Outputs = PI[(1)+(int N/(M-1))] + 1

 Often one needs less than the maximum number of
GMVG-Xs per prime implicant, due to some primary inputs
not being present in a given product implicant. Still, for
functions with a large number of product implicants, there
are a high number of constant inputs. In the future, the
algorithms that expand the ideas from ESOP and GFSOP
logic [7,8,9] should be created to minimize the total number
of overlapping product groups that are not necessarily the
product implicants.
 One approach to reduce the garbage cost [13, 18] is to
reuse lines by changing garbage outputs into a more useful
form. Because the GMVGs are all reversible, then we can
apply the inverse GMVGs (once we are done with that line)
to return to constant zero. We can then reuse this line
instead of introducing a new constant. This concept is
illustrated in Figure 9.
 Another cost function to consider is the maximum
length of the cascade, which is effectively the length of the
longest prime-implicant cascade, plus the length of the
combining cascade. This can be expressed as follows:

Max Length = (Max Length of PI Cascade) + (Length of
OR Cascade) = (N + (int N/(M-1))) + (PI)

 The upper bound on both the length and total gate cost
functions can be reduced by having fewer, larger, prime
implicants. The algorithm is most affective for large values
of M and low values of N.
 No specific method was proposed here to find a
minimal covering expression. We believe that our general
approach will allow for cost-effective design of large
functions under condition that a good choice of prime
implicants in all layers will be done. This is our current
research.

6. Conclusion

 We introduced a new type of multi-valued quantum
cascade that is realizable in ion trap technology following
[11]. This is in contrast to previous papers that were not
concerned with the realization ability of their multi-input
gates. The algorithm is implemented here in ternary logic,
but generalization to arbitrary radix is both straightforward
and sees a reduction in growth of cost as the radix is
increased.

 We proposed two algorithms to synthesize single-
output functions with arbitrary number of inputs and
arbitrary radix. We have evaluated the algorithm using
ternary benchmark functions from [9]. The algorithms are
very fast and allow to minimize large functions, but their
quality is not yet satisfactory, although the second algorithm
is a substantial improvement over the first one.

 We are working on several additional improvements that
can be made to the presented second algorithm. Further
effort should be made to reduce the impact of, or ideally
remove, the constraint of mutually exclusive product groups
in a covering. The method should be also extended to
multi-output functions. We work on minimization
techniques based on exhaustive search, evolutionary
approaches and extensions of the algorithms presented in

this paper. New algorithms to find best covering of
incomplete MV functions to be used as preprocessors to the
current algorithms should be also created.

7. References

1. Al-Rabadi, “Synthesis and Canonical Representations of

Equally Input-Output Binary and Multiple-Valued Galois
Quantum Logic,” Technical Report #2001/008,ECE Dept.,
PSU, August 2001.

2. A. Al-Rabadi, “Novel Methods for Reversible Logic
Synthesis and Their Application to Quantum Computing”, Ph.
D. Thesis, PSU, Portland, Oregon, USA, October 24, 2002.

3. J. L. Brylinski and R. Brylinski, “Universal Quantum Gates”,
Mathematics of Quantum Computation, CRC Press, 2002,
LANL e-print quant-ph/010862.

4. A. De Vos, B. Raa, and L. Storme, “Generating the group of
reversible logic gates”, Journal of Physics A: Mathematical
and General, Vol. 35, 2002, pp. 7063-7078.

5. E. Dubrova, “Multiple-Valued Logic Synthesis and
Optimization,” in Logic Synthesis and Verification (edited by
S. Hassoun and T. Sasao), Kluwer Academic Publishers,
2002, pp. 89-114.

6. P. Kerntopf, M. Perkowski, M.H.A. Khan, “On Universality
of General Reversible Multiple-Valued Logic Gates,” Proc.
ISMVL 2004.

7. M.H.A. Khan and M.A. Perkowski, “Genetic Algorithm
Based Synthesis of Multi-Output Ternary Functions Using
Quantum Cascade of Generalized Ternary Gates,” Proc.
Congress of Evolutionary Computation, 2004.

8. M.H.A. Khan, M.A. Perkowski, and P. Kerntopf, “Multi-
Output Galois Field Sum of Products Synthesis with New
Quantum Cascades”, Proc. 33rd IEEE Int. Symp. On Multiple-
Valued Logic, Tokyo, May 16-19, 2003, pp. 146-153.

9. M.H.A. Khan, M.A. Perkowski, M.R. Khan, and P. Kerntopf,
“Ternary GFSOP Minimization using Kronecker Decision
Diagrams and Their Synthesis with Quantum Cascades”,
Accepted to Journal of Multiple-Valued Logic and Soft
Computing: Special Issue to Recognize T. Higuchi’s
Contribution to Multiple-Valued VLSI Computing.

10. M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C.H. Yu, K.
Chung, H. Jee, B-G. Kim, and Y-D. Kim, “Evolutionary
approach to Quantum and Reversible Circuits synthesis”,
Artificial Intelligence Review, 20, pp 361-417, 2003.

11. A. Muthukrishnan, and C. R. Stroud, Jr., “Multivalued logic
gates for quantum computation”, Physical Review A, Vol. 62,
No. 5, Nov. 2000, 052309/1-8.

12. M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, 2000.

13. M. Perkowski, A. Al-Rabadi, and P. Kerntopf, “Multiple-
Valued Quantum Logic Synthesis”, Proc. of 2002
International Symposium on New Paradigm VLSI Computing,
Sendai, Japan, December 12-14, 2002, pp. 41-47.

14. M. Perkowski, P. Kerntopf, A. Al.-Rabadi, M. H. A. Khan,
“Multiple-Valued Quantum Computing. Issues, Open
Problems, Solutions,” Technical Report, Korea Advanced
Institute of Science and Technology (KAIST), Taejeon,
Korea, 2002

15. P. Picton, “A Universal Architecture for Multiple-Valued
Reversible Logic,” Multiple-Valued Logic Journal, Vol. 5, pp.
27-37, 2000.

16. T. Toffoli, „Reversible Computing”, in Automata, Languages
and Programming (edited by de J. W. Bakker and J. van
Leeuwen), Springer Verlag, pp. 632-644, 1980.

8. Appendix A: Ternary Benchmark
Functions

ncyGr: input x0, x1, ... xn ; output consists of n outputs of r
input variables in cyclic order (e.g. 3cyG2: y(a,b,c) = ab + bc +
ca), using Galois mod3 multiplication.
ncyMr: input x0, x1, ... xn ; output consists of n outputs of r input
variables in cyclic order (e.g. 3cyG2: y(a,b,c) = ab + bc + ca),
using Min/Max operations.
a2bccG: input a, b, c; output y = (a^2 + bc + c), using Galois
mod3 operations.
a2bccM: input a, b, c; output y = (a^2 + bc + c), using Min/Max
operations.
avgGn: input x0, x1, ... xn ; output y = int [(x0 + x1 + + xn) /
n], using Galois mod3 operations.
prodGn: input x0, x1, ... xn ; output y = (x0 * x1 * ... * xn),
where * is Galois mod3 multiplication.
prodMinn: input x0, x1, ... xn ; output y = (x0 * x1 * ... * xn),
where * is the Minimum operation.
sqsumGn: input x0, x1, ... xn ; output y = (x0^2 + x1^2 + +
xn^2), using Galois mod3 operations.
sqsumMn: input x0, x1, ... xn ; output y = (x0^2 + x1^2 + +
xn^2), using Min/Max operations. This is omitted from the data
taken in this paper, because this is the same as sumMaxn!
sumGn: input x0, x1, ... xn ; output y = (x0 + x1 + ... + xn),
where + is Galois mod3 addition.
sumMaxn: input x0, x1, ... xn ; output y = (x0 + x1 + ... + xn),
where + is the Maximum operation.

Figure 10. (a) A Conceptual Ternary Muthukrishnan-Stroud Quantum Realizable Gate,
represented as a MUX. (b) A more general GTG and (c) its possible realization from a
Muthukrishnan-Stroud Quantum Gate (if it cannot be realized directly).

Table 1: Experimental Results

 Mutually Exclusive Products Overlapping Products

 Garbage Constant Length
Total
Gates

Garbage
Outputs

Constant
Inputs Length

Total
Gates

2cyG2 4 5 6 12 3 4 5 9
2cyM2 3 4 5 9 2 3 4 6
3cyG2 22 23 16 56 20 21 15 51
3cyG3 16 17 12 40 10 11 9 25
3cyM2 18 19 13 38 10 11 9 22
3cyM3 8 9 8 20 4 5 6 10
4cyG3 94 95 38 220 73 74 31 171
4cyG4 48 49 22 112 27 28 15 63
4cyM2 28 29 18 66 16 17 14 40
4cyM3 53 54 25 125 21 22 14 50
4cyM4 15 16 11 35 6 7 8 14
a2bccG 15 16 12 38 13 14 11 33
a2bccM 15 16 12 38 12 13 11 31
avgG2 3 4 5 9 3 4 5 9
avgG3 14 15 12 36 14 15 12 36
avgG4 54 55 26 128 50 51 25 119
prodG2 4 5 6 12 3 4 5 9
prodG3 16 17 12 40 10 11 9 25
prodG4 48 49 22 112 27 28 15 63
prodMin2 3 4 5 9 2 3 4 6
prodMin3 8 9 8 20 4 5 6 10
prodMin4 15 16 11 35 6 7 8 14
sqsumG2 3 4 5 9 3 4 5 8
sqsumG3 16 17 12 40 14 15 12 36
sqsumG4 33 34 17 77 29 30 17 69
sqsumM2 4 5 6 11 4 5 6 10
sqsumM3 10 11 10 25 8 9 10 20
sqsumM4 19 20 14 45 14 15 14 34
sumG2 6 7 8 18 6 7 8 18
sumG3 36 37 22 90 36 37 22 90
sumMax2 4 5 6 11 4 5 6 10
sumMax3 10 11 10 25 8 9 10 20
sumMax4 19 20 14 45 14 15 14 34

