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Abstract This work justifies several quantum gate level fault models and discusses the causal error
mechanisms thwarting correct function. A quantum adaptation of the classical test set generation tech-
nique known as constructing a fault table is given. This classical technique optimizes test plans to detect
all the most common error types. This work therefore considers the set of predominate errors modeled
by unwanted qubit rotations. In classical test, a fault table is constructed allowing the comparison be-
tween a circuit’s nominal response and a response perturbed by each separately considered error. It was
found that isolating a correct circuit from a circuit containing any of the Pauli Fault rotations, requires
applications of just two independent test vectors. This is related to the proven fact that a reversible
system preserves the probability that additional information may be present. Thus, the probability of
detection for an observable fault is related only to the probability of presence. A theorem that better
connects classical ideas to quantum test set generation is presented. This leads directly to a relationship
between the deterministic presence of a fault in the state vector observed with some probability and the
probabilistic presence of a fault observed deterministically (Relating Time and Space Error Models).

1 Introduction

The difficulty of extending classical test theory [1][2] has been a subject of discussion [3] in recent times,
with the main results reported in [4][5][6][7]. Despite this and recent interest by several other authors,
adequate justification has yet to be given for any of the fault models used. Much of the current research
has applied the classical stuck at fault model, in which a lead is permanently connected to a power rail
or to a ground, directly to quantum circuits. We however, present a comprehensive analysis of gate level
errors impacting quantum circuits. The faults justified in this work will lead to the adaptation of classical
methods that can address the quantum test problem by considering physically realistic error models.

Experimental physicists who build quantum circuits [8] have not experienced much need to research
optimized testing methods due to the current attainable qubit count [9][10][11][12]. All current approaches
to the quantum test problem are consequently exhaustive. The main approach now is to use process to-
mography such that for a system of n qubits 2n initial states necessitate 2n measurements, for a complexity
of Θ(22n) and a growth rate proportional to the experimental accuracy desired [13][14]. In a second ap-
proach (known as ancillary assisted process tomography [15][16]), n qubits are mirrored replacing 2n

initial states with an n dimensional state space entangled with each of the 2n basis states of the system
under test. However, in this approach any reduction in initial states increases measurement complexity,
therefore the only offered advantage is experimental simplification (such as in optics [17]). Quantum
computers are known to solve classically intractable problems [18][20]. However, the time required to test
these circuits using current process validation methods is also intractable.

Classically [19] a test set complete for the stuck fault model, propagates both binary values 0 and 1,
quantum mechanically known as basis vectors |0〉 and |1〉, through all nodes in a circuit. This allows for
all nodes to be completely tested and partially verifies the function of many gates. A major weakness of
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this fault model applied to quantum circuits is that it assumes deterministic locality in the state acted on
by all gates in the circuit. Furthermore, it is very possible to develop test sets for reversible and quantum
circuits complete for the stuck at model, that never turn on a gate [21].

In this work, a quantum circuit is viewed as an abstract structure of gates, mathematically represented
as unitary matrices that describe quantum evolution. Quantum circuits are wired together using direct
field interactions and gates are built by applying a force. By using properly justified fault models, test
patterns that sample the interconnectivity of the network nodes, wires and gates in an attempt to locate
maximum structural instability and minimal structural connectivity can be developed. Consequently,
this work puts forth several functional fault models defined as Axioms and dependent on the structure
of quantum gates comprising a given network. Test plans complete for functional fault models drive the
quantum circuit to its bounds of operation determining if any faults are present in the interconnections
of the quantum network or internal to gates.

Classically, one may define a testability measure as a product of observability and controllability. An
entangled state is hard to control and therefore has decreased controllability and the observability of a
fault present in the state generally leads to probabilistic measurement outcomes. The controllability of a
circuit represents an ability to propagate a specific input vector through a network, such that it will map
a test vector to a place of fault. This represents an added challenge in the case of quantum circuits, since
inputs will become entangled and in many cases location specific (local) inputs may not be possible. The
classical and quantum degrees of freedom possible in a gate are therefore considered separately. Some
of the fault models defined have the same form as the cell fault model [2], with different motivation.
Quantum faults are represented as Axioms to avoid the complications experienced with controllability.
These Axioms are designed to logically test the gate level function of all network components.

1.0.1 Structure of the paper We begin by first giving a background of quantum mechanics in Sec. 1.1.
This is followed by presenting a simple quantum computation in Sec. 1.2. Sec. 2 presents the current
state of the art in quantum process validation. Next Sec. 3 discusses the quantum fault models used in
this study. The intended audience are engineers and test theorists wishing to extend classical ideas to
respective quantum counterparts. A quantum adaptation of the classical test set generation technique
known as constructing a fault table is given in Sec. 4. This is followed by the conclusion in Sec. 5.

1.1 Background

In this work, a basic knowledge of quantum circuits is assumed. The field is now well established with
adequate background appearing in several texts such as [22]. Most literature however, introduces only
the state vector. Due to the importance and wide spread use in error modeling the following introduction
of the density operator formalism is given.

In quantum computation, classical bit registers are replaced with collections of qubits described by a
corresponding density operator, ρ =

∑

i pi |ψi〉 〈ψi|, where |ψi〉 represents a state vector, and ρ has trace
one. When tr(ρ2) = 1 the pure states description is complete and when tr(ρ2) < 1 the mixed state of the
system lacks information for complete description. The n dimensional state space of quantum computation
is a composite complex vector space formed from an algebraic tensor product (ρ0⊗ρ1⊗. . .⊗ρn) of density
matrices representing component physical systems, ρ acts on this state space.

A set of measurement operators (observables) {Mm} acting on the state space of a quantum system
must be defined, in which index m references the measurement outcomes [22] and

∑

mMmM
†
m = Im.

Consider for example a collection of measurement operators on a two qubit system:

{Mm} = {|00〉 〈00| , |01〉 〈01| , |10〉 〈10| , |11〉 〈11|}. (1)

This collection is complete since their sum is the 4 × 4 identity matrix,

|00〉 〈00| + |01〉 〈01| + |10〉 〈10| + |11〉 〈11| = I4. (2)

If ρ is found in eigenstate m, the resulting joint quantum state of the system will be

ρm = (MmρM
†
m)/tr(M †

mMmρ). (3)

The probability of result m is:
p(m) = tr(M †

mMmρ). (4)

It is helpful to consider that each real number indexed by m along the diagonal of density matrix ρ
corresponds to the probability of measuring a quantum system in the basis state with corresponding
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index m.1 System measurement allows m bits of classical information to be extracted. If one or more of
these m bits is different than expected, the quantum switching network contained an error.

A quantum program is represented as the evolution of an ideally closed system, described by a unitary
transformation U (a matrix). A program must be decomposed into a product of physically realizable
operations (matrices), and each elementary operation can be represented as a gate in a quantum circuit.
The qubits in the system are initialized to state ρ, and the system evolves with U , according to ρ′ = UρU †.
During evolution it is possible for a register of qubits to reside in superpositions of classical states.
Superposition states may be factored, but only to the level of description that is local with respect to
single qubits, such as:

ρs =
1

2
|00〉 〈00| + 1

2
|01〉 〈01| + 1

2
|10〉 〈10| + 1

2
|11〉 〈11|

=

( |0〉 〈0| + |1〉 〈1|√
2

)

⊗
( |0〉 〈0| + |1〉 〈1|√

2

)

. (5)

Evolution may also lead to entangled states that may not be factored to local descriptions, like this one:

ρe =
1

2
(|00〉 〈00| + |11〉 〈00| + |00〉 〈11| + |11〉 〈11|) . (6)

Regardless of physical separation, action of a witness on an entangled component has a composite impact.
Furthermore, for an entangled system, component observation leads to classically impossible information
gain regarding the state of the composite system, as consequence of altering all states.

We conclude this section with a comment on notational conventions. Normalization constants are
often omitted, as is an introduction to state vectors.2 Shorthand notation for some common states must
be defined, |+〉 = |0〉 + |1〉, |−〉 = |0〉 − |1〉, |±〉 = |0〉 ± |1〉 and ψ = |ψ〉 〈ψ|. The general notational
conventions and vocabulary terms outlined in the textbook by Nielsen and Chuang [22] are used. An
example quantum computation is next given.

1.2 Example Quantum Computation

We now outline the details of a simple quantum computation by considering a two qubit quantum
processor. The collection of measurement operators defined for a dual bit system given in Eqn. 2 will be
used. A useful unitary operator is the quantum controlled-NOT gate (CNct),

3 such that the top control
qubit |a〉 inverts the target qubit |b〉 = {|0〉 , |1〉} whenever the control qubit is in state |1〉. The function
of this gate is illustrated in several ways, the first is, |a〉 −→ |a〉 , |b〉 −→ |b〉 ⊕ |a〉 where ⊕ represents
modulo 2 addition. Apart from classical functionality, quantum gates exhibit a feature known as phase
kick-back.4 That is, if the input state of the target is an eigenvector of the control gate’s operation, the
eigenvalue of the target state traverses backwards to the activating state of the control qubit(s), leaving
the target unchanged up to a global phase. This may be seen from the CN gate’s truth table given in
Fig. 3. Phase kickback is a feature unique to quantum circuits. All known quantum algorithms utilize
phase kickback in some fashion [22]. The unitary matrix representing the CN gate is given in Eqn. 7.

CN12 =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






(7)

The CN gate may also be written in what is known as an outer product representation,

CN = 1/2(|00〉 〈00| + |01〉 〈01| + |10〉 〈11| + |11〉 〈10|). (8)

Finally, Fig. 1 (a) illustrates the CN gate as a quantum circuit. A second common gate that will be used
is known as the Hadamard operator: drawn schematically as H , defined algebraically in Eqn. 9 and

1 For each indexed diagonal entry 0 ≤ m ≤ 1 and their sum is 1.
2 State vectors are referenced using Dirac Notation, such as arbitrary example, |ψ〉 = α |0〉+β |1〉 and respective

conjugate, 〈ψ| = α∗ 〈0| + β∗ 〈1|. Lecture notes accompanying [22] are given in [23] and D. Deutsch has an
informative online video series linked to in Ref. [24].

3 Harrow and Nielsen [25] have shown that the two qubit quantum CN gate is the most robust quantum gate
in the presence of depolarizing noise in terms of an ability to generate entanglement.

4 See [26], the 1999 PhD thesis of M. Mosca, Quantum Computer Algorithms, for background on using quantum
phase for various quantum computational tasks.
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(a)
|a〉 • |a〉

|b〉 �������� |a〉 ⊕ |b〉

(b)

|0〉 H •
|00〉 + |11〉

|0〉 ��������

Fig. 1 CN Gate: (a) The action of the CN gate when |a〉 and |b〉 are basis state vectors, (b) Using the CN and
Hadamard gate to generate an entangled pair.

x1 • x1

x2 • x2

...
xk • xk

y �������� y ⊕ x1 · x2 · ... · xk

Fig. 2 Arbitrary Quantum k−CN Gate Realizing y ⊕ x1 · x2 · ... · xk on the (k + 1)th qubit.

it’s action on some common states are: |0〉 −→ |+〉, |1〉 −→ |−〉, |+〉 −→ |0〉 and |−〉 −→ |1〉.

H =
1√
2
(|0〉 + |1〉) 〈0| + 1√

2
(|0〉 − |1〉) 〈1| (9)

With the quantum processor initialized to state ρ = |00〉 〈00|, analysis of the quantum circuit depicted
in Fig. 1 (b) will be conducted. The first register is acted on with a Hadamard operator,

ρ′ = (H ⊗ I) |00〉 〈00| (H ⊗ I)† = (10)

( |0〉 + |1〉√
2

)

|0〉
( 〈0| + 〈1|√

2

)

〈0| = (11)

1

2
(|00〉 〈00| + |00〉 〈10| + |10〉 〈00| + |10〉 〈10|) . (12)

The next operation performed is the CN12 gate, with the control and target being the first and the second
qubits respectively. The resulting state of the system is now

ρ′′ =
1

2
(|00〉 〈00| + |00〉 〈11| + |11〉 〈00| + |11〉 〈11|) . (13)

Considering the normalization constant the state of the system written as an explicit density matrix is
shown in Eqn. 14.

ρ =
1

2
(|00〉 + |11〉)(〈00| + 〈11|) =

1

2







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1






(14)

Eqn. 4 gives the probability p(m) that the system will be found to reside in a particular state m. This
is calculated by using the collection of measurement operators defined in Eqn. 2. For example, given
the measurement operator |00〉 〈00|, determining the probability that the system will be found in the
basis state with corresponding index is tr(|00〉 〈00| ρ) = 1

2 . This means that half of the time the quantum
system will be found in the same state as initially prepared, and half the time the quantum system will
not be found in that state. The interesting property of the post measurement state and entangled states
in general is that—independent of spacial separation—by a single measurement of one qubit, information
is gained regarding the state of the second. For a maximally entangled state—such as this example—the
state of the second qubit is instantly known by observation of only the first.

Quantum CN gates can have any number of controls. These gates are known as k−CN gates as shown
in Fig. 2. They may be implemented via a unitary approximation [22] or by using controlled nth root of
NOT gates in the design considered by Barenco et al., (see [27], page 17, § 7; as well as Sec. 3.4). The
fault models presented in this work are for general k−CN gates.

This section concludes by providing references to additional quantum computing and quantum physics
resources [22][23][24]. In the next section (2) a discussion of the current methods used to test quantum
circuits is given.
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2 Current Methods Used to Test Quantum Circuits

In the mid to late 90’s experimentalists developed a method of black box characterization known as
quantum process tomography [14]. A quantum process is described as a map between input and output

quantum states, e.g. ρout = E(ρin) =
∑

j EjρinE
†
j , where the map E is a quantum operation5 and

the operators Ej are called operation elements.6 Process tomography is a procedure that allows the
reconstruction of the behavior of a quantum network by performing state tomography on a set of initial
states ρi that form an operator basis for the system in question [13].7 The input states and measurement
projectors in process tomography each form a basis for the set of n−qubit density matrices requiring
d2 = 22n elements in each set [22], where d is the dimensions of the Hilbert space. For a two-qubit gate
d2 = 16, resulting in 256 different settings of input states and measurement projectors. One of many
possible input combinations (adapted from the optics experiment in [28]) forming an operator basis
needed to characterize the space of two-qubit circuits is the following:8

{|00〉 , |01〉 , |10〉 , |11〉 , |0+〉 , |0y−〉 , |1y−〉 , |1+〉 ,
|++〉 , |y+y−〉 , |y++〉 , |+y+〉 , |+1〉 ,

|y+1〉 , |+0〉 , |y+0〉}. (15)

Of course there exist many possible choices for such a basis. In general however, for a system of n qubits the
computational basis states |0〉 , ...,

∣

∣2n−1
〉

and superpositions (|q〉±|r〉)/
√

2 are prepared, where q 6= r [32].
Given many copies of an experimental sample, state tomography is a procedure allowing one to

reconstruct an arbitrary quantum state to a given accuracy. It requires a set of simple measurement
operators that are products of Pauli matrices,

σx =

(

0 1
1 0

)

= |1〉 〈0| + |0〉 〈1| (16)

σy =

(

0 −i
i 0

)

= i |0〉 〈1| − i |1〉 〈0| (17)

σz =

(

1 0
0 −1

)

= |0〉 〈0| − |1〉 〈1| , (18)

and the identity matrix, σi = |0〉 〈0|+ |1〉 〈1|. The method relies on creating a set of orthogonal measure-
ments and using the Hilbert-Schmidt inner product [22] to expand the state of ρ based on the average
outcome of each measurement. A single qubit may be reconstructed as the following density matrix:

ρ =
tr(ρ)σi + tr(σxρ)σx + tr(σyρ)σy + tr(σzρ)σz

2
. (19)

Expressions like tr(σxρ) in Eqn. 19 refer to an average measurement outcome where σx is an observable.
A similar expansion to that of Eqn. 19 applies to n bit systems. For example, reconstruction of any
two-qubit operator requires a total of 22n = 16 measurement observables:

{σi ⊗ σi, σi ⊗ σx, σi ⊗ σy , σi ⊗ σz , σx ⊗ σi, σx ⊗ σx, σx ⊗ σy, σx ⊗ σz , σy ⊗ σi, σy ⊗ σx,

σy ⊗ σy , σy ⊗ σz , σz ⊗ σi, σz ⊗ σx, σz ⊗ σy, σz ⊗ σz}. (20)

A difficulty associated with quantum process tomography is that in experimental practice, the ob-
servables are not so easily realized, as they are defined in our purely mathematical model. It turns out
that a system with d dimensions requires 16d − 4d independent parameters to uniquely describe the
process [13], where d = 2n. Little growth in the number of qubits possible in the quantum circuits de-
signed today will quickly take memory requirements past current Quantum Automatic Test Equipment
(QATE) abilities. The useful method of quantum process tomography was developed out of a need for
black box characterization (for that purpose its use appears unavoidable). However, process tomography

5 In this work we only consider the case where
∑

j
EjE

†
j = I .

6 A review of the properties of operation elements is given in Ch. 3 of the 1998 PhD Thesis by Nielsen [29].
7 A purely mathematical discussion of process tomography is presented, all measurements are treated as yielding

exact probabilities and all sources of error in those measurements are ignored. For experimental background see for
example [28] and [30][31]. Chapter 8 in Ref. [22] also has an introduction to both State and Process Tomography.

8 Using the notation that: (|y+〉 = |0〉+ i |1〉 and |y−〉 = |0〉− i |1〉). The measurement projectors corresponding
to this set of initial states adapted from the optics experiment given in [28] are: 〈00|, 〈10|, 〈+1|, 〈y−0|, 〈y−1|,
〈11|, 〈01|, 〈0−|, 〈0y−|, 〈y−y−|, 〈y−−|, 〈+−|, 〈+y+|, 〈1−|, 〈1y−| and 〈+0|.
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works independently of the set of gates realized in the network and their possible faults and when used
as a method to test quantum switching networks, it has a classical counterpart known as brute-force or
complete functional-testing.

In order to continue discussion, distance measures between quantum states must be introduced. Let
us first define the well known Fidelity measure between quantum states.

Definition 1 The Fidelity between density matrices ρ and σ is defined as:

F (ρ, σ) ≡ tr

(

√√
ρσ

√
ρ

)2

(21)

When ρ = |ψ〉 〈ψ| is a pure state the fidelity has an easy interpretation as the overlap between ρ and σ,
reducing to:

F (ψ, σ) = 〈ψ|σ |ψ〉 . (22)

Furthermore, the Fidelity evaluates to zero when pure states are orthogonal, it evaluates to one when
identical, and is not considered a metric.9 For a discussion regarding an operational interpretation of the
Fidelity for a mixed state see Reference [33].

A second common distance measure that will now be defined is known as the Trace Distance between
quantum states.

Definition 2 The Trace Distance between density matrices ρ and σ is defined as:

D(ρ, σ) ≡ 1

2
tr|ρ− σ| (23)

where |Z| =
√
Z†Z. Since 0 ≤ D ≤ 1 the trace distance is a genuine metric on quantum states [34][22]

and thus has the following three properties: (i) D(ρ, σ) ≥ 0 with D(ρ, σ) = 0 iff σ = ρ, (ii) Symmetry:
D(ρ, σ) = D(σ, ρ), and (iii) the Triangle Inequality: D(E(ρ),G(ρ)) ≤ D(E(ρ),F(ρ)) + D(F(ρ),G(ρ)).
The Trace Distance has an obvious compelling physical interpretation as the statistical measurement
distinguishability between quantum states. Furthermore, the Trace Distance has the interesting property
of contractivity, that is, D(E(ρ), E(σ)) ≤ D(ρ, σ) whenever E is a trace-preserving quantum operation.
This just means that acting on arbitrary quantum states ρ and σ both with operation E will never increase
their distinguishability [34][22].

The Trace Distance and Fidelity are complimentary measures and should be considered equally im-
portant when comparing two quantum states. Distance measures may also be used to compare and
contrast a real process F and an ideal process E , such that ∆(F , E) defines an error metric on a quantum
process [34].

Definition 3 The S-Fidelity between real quantum process F and ideal quantum process E is defined as:

∆F
min(F , E) ≡ min

|ψ〉
∆(F(ψ), E(ψ)) (24)

where the minimum is over all possible pure state inputs and ∆ is a Fidelity measure on quantum states.

Definition 4 The S-Distance between real quantum process F and ideal quantum process E is defined
as:

∆D
max(F , E) ≡ max

|ψ〉
∆(F(ψ), E(ψ)) (25)

where the maximum is over all possible pure state inputs and ∆ is a Distance metric on quantum states.

Instead of considering all pure states, we will restrict our thinking to a set of inputs needed to form
a complete operator basis for the system in question. In this case, experimentally determining the S-
Distance/S-Fidelity amounts to performing state tomography on this complete operator basis input set
while keeping track of the worst Trace Distance (23)/Fidelity (21) between the reconstructed state and
that of the ideal.

We return now to the dialogue. Due to the mentioned limitations of process tomography, recent
literature has risen seeking methods to quickly judge whether a quantum circuit is within tolerance

9 Two common ways of turning the Fidelity into a metric are the Bures metric, B(ρ, σ) ≡
√

2 − 2
√

F (ρ, σ) and

the angle, A(ρ, σ) ≡ arccos
(

√

F (ρ, σ)
)

, a very comprehensive discussion of these details can be found elsewhere,

e.g. Ref. [34].
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required for successful application, such as Bowdrey et. al. [36], and later Nielsen [32]. Of particular
interest to our goal is the work by Gilchrist, Langford, and Nielsen [34]. This paper influenced our point
of view by presenting a logical set of Axioms that an error measure ∆ between the real process F(ψ)
and ideal process E(ψ) should adhere to. They developed criteria allowing experimentalists to avoid full
process tomography by applying ”distance measures” between the circuit’s response to a set of input
states forming a complete operator basis [34], as opposed to reconstructing the operator in full process
tomography. This is done by comparing the real process F(ψ) with the ideal process E(ψ) while keeping
track of the worst case Trace Distance (S-Distance) and worst case Fidelity (S-Fidelity) for all considered
input states. In light of a ”gold standard10” Ref. [34] stated that, ”...the S-Distance and S-Fidelity are
the two best error measures, and should be used as the basis for comparison of real quantum information
processing experiments to the theoretical ideal.”

Before proceeding to Sec. 3 for a discussion of quantum fault models, this section is concluded by
mentioning that the current methods of quantum process validation (as applied to switching networks)
are classically equivalent to keeping track of the largest variance from the nominal voltage response for
a complete set of input states. Although this is a practical way to test small switching networks, in the
future it will become intractable as it did classically, when the early days of ad hoc validation were aimed
at exhaustively filling in the entries of a truth table.

3 Quantum Fault Models

The purpose of this section is twofold. The first is to connect the abstract concept of quantum evolution
with gate level functional fault models. The second and main purpose of this section is to introduce a set
of physically motivated Axioms believed to adequately capture the nature of faults inherent in quantum
circuits (built with k−CN gates). Developing a test set completely satisfying these Axioms enables the
elimination of many unnecessary input patterns that a priori appear highly plausible.

To separate the general from the particular, a focus is made on error and fault models that are
independent of implementation and dependent on the quantum circuit. However, information cannot
exist without a physical representation. Thus, without loss of generality we employ examples from liquid
state nuclear magnetic resonance spectroscopy (NMR)11 and optical quantum computation. Since the
NMR implementation is currently the most successful [37] it therefore offers insight into the types of
problems that may occur in a robust implementation. On the other hand, although optical networks offer
a lower qubit count, most engineers are already familiar with the principles of classical optics, and the
state and process tomography methods are simpler and well understood, see [28][38].

NMR exploits the ability of the spin active nuclei in molecules of a liquid sample decoupling from
each other and therefore being separately addressable. When a nucleus is placed in a magnetic field the
spin will be quantized and transitions between quantization levels can be induced by oscillating the field
with a given resonance frequency [39]. Strong superconducting magnets are used to generate the field
oscillation in the radio frequency (RF) band [39]. The most important nuclei are spin(1

2 ) systems. Given

the arbitrary assignment of |0〉 to spin up (+z) and |1〉 to spin down (−z), one may consider spin(1
2 )

nuclei analogous to bits in a digital computer.

Each nuclear spin may thus act as a separate addressable qubit, and each molecule as a separate
few-qubit quantum computer. The original interests in NMR was from chemists. They relied on the
chemical shift present in the electron cloud around the nucleus (along with the J-coupling interaction
between spins) as a powerful method of insight into molecular structure [39]. The first time these (or
any) quantum mechanical properties where harnessed to compute information took place around August
1st in 1998 when J. A. Jones and M. Mosca implemented Deutsch’s algorithm on a two qubit NMR
quantum computer based on the small molecule cytosine [41]. NMR has since progressed to control on
the order of ∼ 7 bit coherent quantum evolution, thereby enabling many small quantum computations
to be successfully realized [42].

Optical quantum computation has also recently made progress. In 2003 O’Brien et al. successfully
demonstrated an all-optical quantum CN gate [43]. This gate was improved and further characterized
in 2004 by both O’Brien et al. [28] and White et al. [38]. In an optical system, qubits are realized via
photon polarizations. Given the arbitrary assignment of |↔〉 to basis |0〉 (Horizontal) and |l〉 to basis |1〉

10 Given in Ref. [34] is the notion of a ”gold standard” for quantum information processing. A ”gold standard”
is a single measure of distance ∆ that may be used to compare and contrast a real process F and an ideal process
E , ∆(F , E).
11 See Jones [39] for an introduction geared towards those new to NMR Quantum Computing.
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(Vertical), one may consider photon polarization states as that required for qubit realization.12 Optical
networks represent physical sequences of gates. This lends well to the ideas of classical test, wherein a fault
is space time invariant. Furthermore, the ideas of classical noise impacting a signal during propagation
can be viewed as unwanted perturbation acting on the photons during their journey through the circuit.

Despite these rapid advancements, optical networks are currently limited to ∼ 2 qubits and none
of the quantum mechanical information processing systems available today are robust enough to solve
problems of any interest. Quantum systems will one day become large scale. Verification techniques need
to be well established to detect and diagnose improper functions. The presented fault models will allow
researchers to approach the quantum test problem from testing the gate level function of all network
components.

An example of a gates’ structure dependent function is a yes/no ability to send the phase of the
target backwards to the controls a tolerable percentage of the time. For example, consider the case that
an otherwise functional CN gate may not adequately send phase backwards. A quantum test engineer
must develop a complete test set (that is ideally minimal) to show that this fault is not present. Such a
test set is complete, if it illustrates the gate’s ability to send phase backwards from target to control, as
previously explained in Sec. 1.2. Repeating this test set many times—as in an ensemble—allows one to
sample over the ability of the gate to send phase backwards.

Each element in a quantum test set is an initial state and observable pair. Consider now a functional
test set for the CN gate:

T = {t0, t1, t2, t3, t4, t5} =

{{|∓〉 ⊗ |1〉 , B̂}, {|±〉 ⊗ |0〉 , B̂},
{|−〉 ⊗ |−〉 , X̂}, {|+〉 ⊗ |−〉 , X̂},
{|−〉 ⊗ |+〉 , X̂}, {|+〉 ⊗ |+〉 , X̂}} (26)

where B̂ is a measurement in the Bell Basis [22] and σ⊗2
x = X̂. Test t0 concurrently examines the gate’s

on and off action provided basis input |1〉 in addition to the controls’ impact on both basis states. Test
t1 is similar to test t0 except now the gate is toggled with the target state in basis |0〉. The gate has now
acted on all (classical) basis states. Test t2 and t3 determine if the gate exhibits correct backwards phase
traversal. Test t4 determines if any phase crosstalk occurs such that the phase of the control impacts the
phase of the target. Test t5 determines if any relative dephasing between the target and control takes place.
As an alternative to the measurement observables defined in T, each initial state may be reconstructed
with state tomography and compared to the ideal via the Trace Distance and the Fidelity measures.
For example t0 and t1 allow the calculation of what we will call the Gate-on/off-Fidelity, t2 and t3
allow calculation of the Phase-Kickback-Fidelity, test t4 allows calculation of the Phase-Crosstalk-Fidelity
and using test t5 the Relative-Phase-Damping may be determined. Phase faults are better described in
Sec. 3.3. We have thus completely characterized the function of the CN gate as illustrated in the truth
table in Fig. 3 and can thereby infer correct function.

|a〉 |b〉 |p〉 |q〉

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉
|+〉 |+〉 |+〉 |+〉
|−〉 |+〉 |−〉 |+〉
|+〉 |−〉 |−〉 |−〉
|−〉 |−〉 |+〉 |−〉

Fig. 3 CN Gate Truth Table for a Complete (bi-orthogonal) Functional Operator Basis. (”The Computational,”
and ”Conjugate Basis [30].”)

Aside from the gate level functional fault models that will be introduced, we consider the case of
random and systematic errors as they appear in the current literature.13 Since quantum noise is randomly

12 All possible pure polarization states may be constructed from coherent superpositions of these two states: For
example, diagonal, anti-diagonal, right-circular and left-circular polarized light are respectively represented by,
|D〉 = |ր〉 = (|↔〉 + |l〉), |A〉 = |ւ〉 = (|↔〉 − |l〉), |R〉 = (|↔〉 + i |l〉) and |L〉 = (|↔〉 − i |l〉).
13 Without loss of generality local Markovian noise models are considered.



Fault Models for Quantum Mechanical Switching Networks 9

distributed, a complete test set must adequately sample its uniform impact. Circuit locations impacted
by random and systematic errors must now be defined.

In quantum error correcting codes, fault locations are between circuit stages,14 and have quantifiable
error probabilities or strengths of occurrence [45]. For example, consider the five stage circuit shown
in Fig. 4. The numbered locations of possible gate external faults are illustrated by placing an ”×” on
the line representing a qubits time traversal and here, the five gates, initial states (|i0〉 , |i1〉 , |i2〉) and
measurements (m0,m1,m2) may also contain errors. Next definitions of some terms used throughout this
section are given:

Definition 5 Error Location: The wire locations between stages as well as any node or gate in a given
network (see Fig. 4).

1 2 3 4

|i0〉 × • × • × • × m0;;��

5 6 7 8 9 10

|i1〉 × • × �������� × • × �������� × × m1;;��

11 12 13 14

|i2〉 × ∨ × ∨† × ∨ × m2;;��

Fig. 4 2−CN (2−CN) gate with 14 gate external error locations numbered above an ” × ” and five possibly
erroneous gates. (The construction of the gates used in this circuit are outlined in Sec. 3.4.)

Definition 6 Gold Circuit: A quantum circuit denoted GC defining a standard by operating in the ideal.
Typically a non-ideal quantum circuit is denoted QC.

It is the goal of this paper to develop fault models that sample failure rates. We therefore consider a
set of error models adequately capturing the nature of fault types occurring in a given circuit, together
with their locations.

Definition 7 Fault Set: Denote by Fq a set containing all considered faults assumed to impact QC.

We introduce the concept of what will be called the quantum single fault model. This allows researchers
using the defined fault models to consider separately all errors at each location for a given quantum circuit.
We present first Def. 8 and next Conjecture 1, both related to this idea.

Definition 8 Quantum Single Fault Model: For simplification the ”quantum single fault model” is in-
troduced in this work. Consider the fault set Fq. In the single fault model, test plans are optimized for
all f ∈ Fq assuming that only a single f perturbs QC exclusively. Multiple faults perturbing QC will
accumulate and be detected, but the single fault model makes it much easier to develop test plans.

Conjecture 1 A test set designed to detect all considered single errors will detect and sample the accu-
mulated impact of multiple errors at multiple locations.

A quantum test set is a set of initial state and measurement pairs designed to drive a network to
threshold limits. For example, one may develop a test set that first turns as many gates on as possible,
next turns the highest possible number of gates off and then sends phase through as many gates during
one test as the structure of the network would allow.

Definition 9 Quantum Test Set: A sequence of initial states |ψi〉 and measurements Mm denoted as
Ti = {|ψi〉 ,Mm} used to distinguish QC possibly perturbed by any f ∈ Fq from a gold circuit GC.

Complete fault coverage occurs after a test set has determined that the considered fault(s) are not
physically present in a given circuit.

Definition 10 Fault Coverage: Denote by QC a quantum circuit possibly perturbed by any element of a
set of faults f ∈ Fq and a test set Ti complete for all f ∈ Fi. Fault Coverage occurs for fault f ∈ Fq by
experimentally running t ∈ Ti that samples f . A quantum test pattern that detects (covers) all f ∈ Fq is
called a complete test set. A complete test set with the fewest test vectors is called minimal.

With the basic definitions behind us, the coming subsections discuss gate level errors and introduce
several Axioms. These Axioms act as functional, gate level fault models. Each Axiom must be satisfied
by some element(s) of a test set in order to cover all considered faults.
14 In particular see [45] where, in that early work, Knill, Laflamme, and Zurek justified the idea of an error
location for the purpose of quantum error correction.
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3.1 Pauli Faults

Quantum computation involves manipulating coherent superpositions [44]. These superpositions are de-
scribed as fragile by several authors including Shor [44], Amin et. al. [9], Knill, Laflamme and Zurek [45],
and are naturally prone to several types of failures. Decoherence destroys the information contained in
the superposition possible among qubits [44][46]. Its typical form in NMR is known as spin-spin and
spin-lattice relaxation [47]. Decoherence is typically thought of as the environment constantly measuring
a quantum system though interacting with it [48]. To model this impact, one may adopt what is known
as the partial trace.

For example, consider ρe from Eqn. 6. Now assume our quantum computer was only a single bit device
that became entangled somehow with an environment represented by the second qubit. Unbeknownst to
us, the second qubit is implicitly measured at a later time, altering the state of the first. To model this
impact, one will trace over the second qubit,15 leaving the first qubit in a mixed state. To do this, define
first a basis to perform the trace with respect to:

|ei〉 =⇒
{ |e0〉 = |0〉 , i = 0 (27a)

|e1〉 = |1〉 , i = 1 (27b)

Now sum over the inner products of the quantum state and the basis formed by |ei〉, like this:

tr2 (ρe) =
∑

i

〈ei| ρe |ei〉 = (σi ⊗ 〈0|) ·ρe · (σi ⊗ |0〉)+(σi ⊗ 〈1|) ·ρe · (σi ⊗ |1〉) =
1

2
(|0〉 〈0| + |1〉 〈1|) . (28)

The state of the first qubit is now assumed randomized as shown in Eqn. 28.
This entanglement of a quantum processor with the outside world [45] is described by many authors

including [49] as, ”coupling to an initially independent environment.” A large amount of research has been
devoted to impeding decoherence by means of quantum error correcting codes. Consequently, common
fault models are found in the quantum error correcting code literature [44][50][51][52][53]. The most
investigated error model is known as an ”independent depolarizing error [45].” This model has the effect
of completely randomizing a given qubit with some probability p [22]. ”Error models designed to control
depolarizing errors apply to all independent error models [49].” These codes are designed to correct
unwanted occurrences of the Pauli Spin Matrices. The following is a list of the wide range of errors
modeled assuming Pauli Faults, with some supporting references:

1. Depolarizing Channels [22][49]
2. Amplitude Dampening [22][45]
3. Phase Damping [22][54]
4. Phase-Flips [22][45][54]
5. Bit-Flips [22][45]
6. Initialization Inaccuracies [54][55]
7. Measurement Inaccuracies [31][56][57]

Definition 11 Pauli Fault Model: The addition of an unwanted Pauli matrix f in quantum network QC,
at error location l and with placement probability p. The Pauli matrices are given in Eqn. 16, 17 and 18.

A large variety of potential error sources must be circumvented in any physical implementation. For
example, in NMR pulses must be ’shaped’ or tailored to physical parameters of the individual molecules
in the sample. Proper RF coil homogeneity is crucial in avoiding excessive signal attenuation [47] and in
quantum optical circuits, ”...the imperfect mode matching of the interferometers... [28]” lead to repro-
ducible errors. The types of errors associated with physical construction lead to another class of faults
addressed in the literature, known as systematic errors. Systematic errors are closer to the types of errors
that classical test engineers refer to as faults.16 An introduction to some of the most common systematic
errors will be given in the next three paragraphs. These errors are described by Cummins and Jones
as, ”arising from the reproducible imperfections in the apparatus used to implement quantum computa-
tions [58].” These types of errors are very generally modeled by inserting Eqns.. 29, 30 and 31 into error
locations as done with Pauli Faults. The difference is that instead of a Pauli Fault occurring with a given
probability, these inaccuracies occur with a gaussian distribution of angle θ and accumulate throughout
the computation [44]. (These will be referred to as Rotational Faults and modeled using Eqns. 29, 30 and

15 The partial trace is further discussed in Appendix A.
16 Interesting Fact : In NMR quantum computing [62] it is well known that both the air conditioner in the room,
and the quantum computer’s power supply have periodic impact on a circuit’s function. The time between cycles
is around 20 minutes as opposed to the very short time allowed for current quantum circuits to be run.
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31. However, Theorem 1 relates the Rotational and Pauli Fault models.) The most advanced research
regarding these failures is found in NMR literature [35][47][58], however similar forms of these error types
are found in all quantum circuit realization technologies.

Rx(θ) =

(

cos (θ/2) −i · sin (θ/2)
−i · sin (θ/2) cos (θ/2)

)

(29)

Ry(θ) =

(

cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

)

(30)

Rz(φ) = e−iφ/2 |0〉 〈0| + eiφ/2 |1〉 〈1| (31)

Systematic Pulse Length Errors In NMR gates are created by making adjustments to a Hamiltonian
similar to Eqn. 32 thereby addressing the nuclear spins of the sample by time dependent RF pulses. These
adjustments allow for the controlled change of the state of qubits.17

Ĥ =
∑

i,α

αiασiα +
∑

i,j

Jijσiασjα (32)

Eqn. 32 contains a term for individual bitwise operations, Ri,α(θ) = e−i
φ

2
σiα and an interaction (Ising)

term Jij(φ) = e−i
φ

2
σiασjα to allow entanglement between qubits and is thus general [59]. Controlling the

Hamiltonian in Eqn. 32 results in pulse length errors since a machine is never able to supply infinite
precision regarding continuous parameters [35]. A goal of developing test plans is to show experimentally
that these inaccuracies are small enough to be tolerated. The accuracy of a machine’s ability to translate
one state to another depends on the NMR Rotor Fidelity.18 Bowdrey and Jones [35] have given a simple
measure of NMR Rotor Fidelity. (Trapped Ion quantum computers also suffer from a similar error in
the inaccuracies of the applied laser [63]). In NMR literature, pulse length errors are described as, ”the
machine not being set correctly [58],” or when the applied RF field deviates from its nominal value,
known as, ”spatial inhomogeneity [58].” Even if the implementation does not rely on a time controlled
Hamiltonian [59], one may still consider something very similar to pulse length errors as: ”...imprecise
unitary operations acting on the system and accumulating over the computation [45][44].”

Systematic Off-Resonance Effects Each spin nuclei in an NMR sample may be addressed via an individ-
ual resonant frequency in terms of an electromagnetic pulse. Simultaneous (as opposed to consecutive)
pulses at two or more nearby frequencies are desirable to shorten sequences, yet transient phase shifts
(∼tens of degrees) greatly deteriorate such simultaneous rotations [58][35][47].19 Cummins and Jones
formally describe this as, ”...off resonance effects [in NMR quantum computation] arise from the use
of a single RF source to excite transitions in two or more spins which have different resonance frequen-
cies... [58].” Independent of any particular implementation, these errors are modeled by considering all
unwanted rotations given in Eqns. 29, 30 and 31.

Systematic Refocusing Errors Quantum operations designed to impact a component subset of qubits
in a quantum register inadvertently impact composite qubits. Refocusing [64] is a procedure that allows
correction for this unwanted impact. In terms of NMR, ”the unselected spins must not be affected by the RF
irradiation [47].” This can result in substantial (∼tens of degrees) phase shifts of neighboring unaddressed
spins [47]. Very generally, these errors are modeled by considering all of the unwanted rotations given in
Eqns. 29, 30 and 31.

This concludes our introduction to the wide range of errors modeled with Pauli Faults. Before pro-
ceeding to Sec. 3.2 two Axioms that quantum test sets must satisfy are given. Axioms 1 and 2 provide
necessary and sufficient conditions for a test set Ti to be complete for the Pauli Fault Model.

Quantum Test Axiom 1 A bit flip (σx or σy) at any error location must be detectable. �

Quantum Test Axiom 2 A phase flip (σz or σy) at any error location must be detectable. �

17 The timed ”evolution” of a quantum system is governed by the Schrödinger equation [60], and controlled by
the Hamiltonian represented as Ĥ .
18 A general or universal NMR rotor translates any state independent of the initial spin [58] using what are
known as composite pulses [61].
19 Called ”Bloch-Siegert effects” or ”transient Bloch-Siegert effects” in NMR, see [47].
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(a)
|a〉 •

FE



|b〉 •
FE



|c〉 ��������
FE



(b)
|a〉 ×•× ?88��

|b〉 •
FE



|c〉 ��������× ?88��

(c)
|a〉 •

FE



|b〉 × •× ?88��

|c〉 ��������× ?88��

(d)
|a〉 • × · · · ?88��

|b〉 • × · · · ?88��

|c〉 × �������� ×· · · ?88��

Fig. 5 Initialization Errors Impacting a 2−CN Gate: (a) correct circuit, (b)-(d) various initialization errors.

3.2 Initialization Errors

Initialization faults were discussed in detail by Kak [54], and addressed experimentally in [55].20 Of
particular support to our idea of quantum test set generation is Kak’s claim that certain initialization
errors are very difficult to circumvent via error correcting codes. Because initialization accuracies relate
to a machine’s ability to perform a task (such as not permuting the initial state population in NMR [47]),
this supports well the idea of using a test set to determine if the machine is functional before we rely
on the quantum computer to solve a problem of interest. These faults are modeled next in Def. 12, by
assuming that they are independent and uncorrelated.

Definition 12 Initialization Error: A qubit with an initial state differing from the ideal due to the addition
of a rotation Rn(θ) where n ∈ {x, y, z}, around one axis of the Bloch Sphere, or a qubit that statistically
favors correct preparation in one basis state over the other.

Considering Def. 12, contrived examples of how initialization faults spread are shown in Fig. 5. Correct
measurements are illustrated by drawing a

FE


to the right of the circuit. In Fig. 5 (a) three functional

measurement gates are shown and one finds the first example of a fault in Fig. 5 (b). This could occur
when the desired initial state is |01c〉 and the top qubit is rotated around the x axis (inverting |c〉 → |c̄〉)
and resulting in state cos θ |01c〉 − i sin θ |11c̄〉. After passing through the 2−CN gate, the state of the
system becomes cos θ |01c〉 − i sin θ |11c〉. There is now a probability of (sin θ)2 that an incorrect value
will be measured.21 This uncertainty is denoted by replacing

FE


symbols with ?88�

� .

A similar scenario holds for Fig. 5 (c), the difference is that the center qubit is impacted by an
initialization fault as opposed to the top qubit in Fig. 5 (b). In Fig. 5 (d), suppose that the desired initial
state of the register is |− − +〉, however an error impacts the bottom qubit such that its phase is flipped.
This results in the incorrect initial state of |− − −〉. Now the 2−CN gate will entangle the state of the
system incorrectly, resulting in state (|00〉 − |01〉− |10〉− |11〉) |−〉. This fault can be detected with a test
set detecting unwanted instances of the Pauli Faults at the start of the circuit—sufficiently addressed in
Axioms 1 and 2. A second type of initialization error will now be discussed.

Generally, there exists a certain set of states left invariant under a quantum operation [22]. For
example, qubit preparation may be permuted with a form of amplitude dampening. Thus, a qubit may
have favored preparation in one state over the other. A qubit that favors preparation in state |0〉 〈0| is
modeled with the following operation elements:

E0 = |0〉 〈0| +
(

√

1 − γ
)

|1〉 〈1| (33)

E1 = |0〉 〈0| + (
√
γ) |1〉 〈1| (34)

Consider a register prepared in density state matrix ρ = ρ0 ⊗ . . . ⊗ ρk ⊗ . . . ⊗ ρn. The kth qubit is
desired to start the computation in an arbitrary state, expressed as:

ρ = ρ0 ⊗ . . .⊗
(

α2 αβ∗

βα∗ β2

)

⊗ . . .⊗ ρn (35)

20 In NMR, temporal and spatial averaging have been the most popular choices for preparing effective pure
states [47].
21 This example illustrates the fact that an initialization error will not grow in an otherwise ideal quantum
mechanical computation as noted by Zurek [65] in 1984.
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The unwanted impact of initial state dampening is expressed as: E(ρ) =
∑

k I ⊗ . . .⊗Ek ⊗ . . .⊗ I · ρ · I ⊗
. . .⊗ E†

k ⊗ . . .⊗ I. This results in the state:

ρ′ = ρ0 ⊗ . . .⊗
(

α2 + γβ2 αβ∗
√

1 − γ
βα2

√
1 − γ β2(1 − γ)

)

⊗ . . .⊗ ρn (36)

The portion of the kth qubit’s superposition in basis state |1〉 〈1| is forced into basis state |0〉 〈0| and the
interfering terms are suppressed (both based on some parameter γ). Similarly, a qubit may also favor
preparation into state |1〉 〈1|. Axiom 3 is logically justified by considering the case that a qubit favors
correct preparation in basis states |0〉 or |1〉.

Quantum Test Axiom 3 Each qubit must be initialized in both basis states |0〉 and |1〉. �

3.3 Lost Phase Faults

Shenvi, Brown and Whaley [53] studied Grover’s search algorithm [22] impacted by a random phase error
in the oracle.22 Their work addressed the complexity of finding a solution to the search problem impacted
by quantum noise. They model these errors by applying a certain unwanted phase ±ǫ to the state of a
quantum register marked by an oracle:

O : |k〉 −→ (−1)f(k±ǫ) |k〉 , (37)

this is referred to classically, as ”fault-simulation.” Several references including [53] call this a ”phase-
kick-error.” In this work we present Fig. 6 (b), (c) and (d) to illustrate the idea that one of the controls
in a given gate is not functioning and therefore will not exhibit correct phase kick-back behavior. There
are two related Axioms introduced in this section. The first of which is intended to test phase kickback,
while the second is intended to account for unwanted phase swap and relative phase damping.

Quantum Test Axiom 4 Provided the state of the target is |−〉: Each gate must be shown to attach a
relative phase to an arbitrary activating state |a〉 with both positive and negative eigenvalues. Furthermore,
each gate must be shown not to attach a relative phase to arbitrary non-activating state |n〉 with both
positive and negative eigenvalues. The target state must remain globally invariant under both |a〉 and
|n〉. �

GC (a)

•

•

•
��������

(b)

×
__�� ��
__
•

•
��������

(c)

•

×
__�� ��
__
•
��������

(d)

•

•

×
__�� ��
__
��������

Fig. 6 3−CN Gate and Phase Faults: (a) Gold Circuit (GC), (b) Weak top control, (c) Weak second control, (d)
Weak bottom control.

Phase damping is a noise process altering relative phases between states [22]. The next Axiom is
designed to determine if any gates in the network apply unwanted relative phase shifts or unwanted
phase swaps between target and control.

Quantum Test Axiom 5 Provided the state of the target is |+〉: relative phase must be shown not
to change under arbitrary activating state |a〉 with both positive and negative eigenvalues. Furthermore,
relative phase must not change under arbitrary non-activating state |n〉 with both positive and negative
eigenvalues. �

22 Grover’s original algorithm under the impact of noise addressed in [53] has recently been updated by L.
Grover [66]. Although this new ”Fixed Point Algorithm” is more robust, it of course is still subject to phase
errors (no modification of the oracle took place). The algorithm has been experimentally verified in the recent
preprint by Li Xiao and J. A. Jones [67], systematic errors in the physical implementation were briefly explored.
B. Reichardt and L. Grover have also recently developed methods of systematic error correction for this new
algorithm [68].
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A functional 3−CN gate will map an input state |+ + +〉 |−〉 into the output state (|000〉 + |001〉 +
|010〉+ |011〉+ |100〉+ |101〉+ |110〉 − |111〉) |−〉. Here, it must be pointed out that each true minterm in
the superposition that activates the control gate will undergo a phase shift of |n〉 −→ eiπ |n〉, as shown by
the − |111〉 term above. Similar ideas will be used to detect faults. For example, if the fault in Fig. 6 (b)
is present, the circuit’s response may be (|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉+ |110〉− |111〉) |−〉.
If such is the case, negative phase is assigned to both |011〉 and |111〉 since those both activate the gate
(now that the top control is broken).

This section is concluded by mentioning that, under the influence of the considered faults, information
will be encoded in the phase of the superposition output state that represents the function of the circuit.
Phase is negated for every superposition state that represents a minterm of the function. The Phase of
states that do not represent true minterms is left invariant. The goal of the quantum test engineer is to
develop a complete and minimal test set to extract this functional information.

3.4 Faded Control Faults

Aside from the phase properties discussed prior to this section (3.3), suitable Hamiltonians must be
sequenced to correctly create control gates which act properly (non-inclusively of course) on classical
n−dimensional basis input state vectors:

|ψb〉 = {|0〉 , |1〉}⊗n. (38)

The building blocks needed to implement any quantum algorithm with NMR can be based on single
spin rotations and CN gates [47]. CN gates are realized using a scheme similar to that given in Fig. 7,
where the center gate is called a CZ gate (built using a φ gate with angle π, see [69], § 3.1 Eqn. 34),
taking an ideal form:

CZi = |00〉 〈00| + |01〉 〈01| + |10〉 〈10| + eiπ |11〉 〈11| . (39)

• •
⇐⇒

�������� H σz H

Fig. 7 CN gate constructed with elementary building blocks [69]. The H gate (H = iRy(π/2)Rz(π)) is given as
H = 1√

2
(|0〉 + |1〉) 〈0| + 1√

2
(|0〉 − |1〉) 〈1| and the center controlled phase shift gate (CZi) is given in Eqn. 39.

Of course, in any physical implementation, quantum logic gates are never nominal. The CZi gate
deviates according to our ability to apply phase eiφ correctly to term |11〉 〈11|. This can be represented
as:

CZr = |00〉 〈00| + |01〉 〈01| + |10〉 〈10| + eiφ |11〉 〈11| . (40)

Assuming no other gate is dysfunctional, return to Fig. 7 observing that an ideal CN gate creates the
following mapping: CNi : |10〉 −→ |11〉. In the presence of the network’s inability to supply phase at a
correct angle φ, the mapping becomes: CNr : |10〉 −→ (1 + eiφ) |10〉+ (1− eiφ) |11〉. The fidelity between
the real and ideal CN gate is easily calculated to be:

F (CNi |10〉 , CNr |10〉) =
1

2
(1 − cosφ). (41)

A second common operation constructed similarly to a CN gate (using a φ gate with angle π/2 [69]) is

known as the CV gate. The V gate (known as the square root of NOT, often denoted
√
NOT ) is given

as:
∨ = |∨0〉 〈0| + |∨1〉 〈1| , (42)

where |∨0〉 = (1 + i) |0〉 + (1 − i) |1〉 and |∨1〉 = (1 − i) |0〉 + (1 + i) |1〉. The CN and CV gates may be
combined to create 2−CN gates as shown in Fig. 8. It turns out that by adjusting φ, nth root of NOT
gates can be constructed [27]. These can be used to build any k−CN gate (by setting φ = ±π/4 the 4th

root of NOT gates can be created and used to build the 3−CN gates in this paper).
Test sets complete for the faded control fault model concurrently activate all controls.23 These test

sets also address each control with a non-activating state, as can be seen in Fig. 9. This allows one to

23 In classical logic a similar fault model could arise when an AND gate is dysfunctional [21].
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• • • •
• ⇐⇒ • �������� • ��������

�������� ∨ ∨† ∨
Fig. 8 2−CN (2−CN) gate constructed with elementary building blocks.

determine the controls’ correct function with the target in a basis state. It also tests the controls’ impact
on both activating and non-activating states. This subsection concludes by presenting Axiom 6. Sec. 3.5
continues the gate level fault discussion.

Quantum Test Axiom 6 For the target acting separately on basis state |0〉 and |1〉: All controls must
be activated concurrently. Furthermore, each control must be addressed with a non-activating state. �

input GC(a) b c d input GC(a) b c d

|0〉 0 0 0 0 |8〉 8 8 8 8

|1〉 1 1 1 1 |9〉 9 9 9 9

|2〉 2 2 2 2 |10〉 10 10 10 10

|3〉 3 3 3 11 |11〉 11 11 11 3

|4〉 4 4 4 4 |12〉 12 12 12 12

|5〉 5 5 13 5 |13〉 13 13 5 13

|6〉 6 14 6 6 |14〉 14 6 14 14

|7〉 15 15 15 15 |15〉 7 7 7 7

Fig. 9 Truth Table containing decimal entries for the 3−CN Gate Impacted by Missing Control Faults. The
column denoted ’input’ shows the input combinations possible on the amplitude plane where GC denotes the
correct response. Columns denoted ’b’ to ’d’ illustrate the circuit’s response given the presence of faults from
Fig. 6 (b) through (d).

3.5 Forced Gate Faults

In the most general case, quantum circuits are wired together using direct field interactions and gates are
built by applying a force. Any quantum algorithm may be depicted as a sequence of unitary transforma-
tions represented as rotations in a Hilbert space. In NMR, ”...examples of unitary transformations are
evolution during RF pulses and free evolution under the system Hamiltonian... [47].” In practice, ”non-
qubit degrees of freedom are possible [70]” and experimentally quantum gates perform a process which
approximates the desired unitary operation, that adds decoherence [22]. (In NMR, ”...relaxation processes
give rise to non-unitary transformations [47]...”) A complete test set for the fault model presented in
Fig. 10 forces each gate in a binary quantum network to act on both basis input states |0〉 and |1〉. This
can be seen further by examining the Truth Table in Fig. 11. The Forced Gate Fault model is given in
Fig. 10.

(a)

|a〉 •

|b〉 •

|c〉 0 |0〉

(b)

|a〉 •

|b〉 •

|c〉 1 |1〉

Fig. 10 Forced gate Faults: (a) A 2−CN gate that favors correctly acting on a |1〉 by changing the state to |0〉,
(b) A 2−CN gate that favors acting on a |0〉 by changing the state to |1〉. (Both of these show the state response
assuming only binary inputs.)

A brief (and simple) mathematical explanation of how one would model non-unitary computations
is given next: If a quantum computer is wanted to perform computations in Hilbert space A ∈ H of
dimension w, yet the system is housed in Hilbert space B ∈ H with dimension l, a non-ideal composite
computational space A⊗B will result with dimension w product l. Of course, B does not form a space for
any meaningful computations, however, B is controllable to the point that any initial state |el〉 ∈ B is pure.
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input GC a b

|000〉 000 000 000

|001〉 001 001 001

|010〉 010 010 010

|011〉 011 011 011

|100〉 100 100 100

|101〉 101 101 101

|110〉 111 110 111

|111〉 110 110 111

Fig. 11 The Truth Table for 2−CN Gate and the impact of Forced Gate Faults: The column denoted ’input’
shows the respective input combinations possible on the amplitude plane. Columns denoted ’a’ and ’b’ show the
circuit’s response given the presence of faults from Fig. 10 (a) and (b).

input a b

|000〉 0 0

|001〉 0 0

|010〉 0 0

|011〉 0 0

|100〉 0 0

|101〉 0 0

|110〉 1 0

|111〉 0 1

Fig. 12 Fault Table for 2−CN Gate perturbed by the Forced Gate Faults given in Fig. 10. Each binary entry in
the fault table corresponds to a single test (row) and a single fault (column). Tests are labeled |000〉 to |111〉 and
faults are labeled ’a’ and ’b’, as shown in Fig. 10 (a) and (b). A ’1’ in the table corresponds to a given test (row)
detecting a given fault (column).

In order to construct an operator Ua =
∑

i |ai〉 〈a′i| designed to act on space A alone, one inadvertently
interacts with system B. The desired operator Ua becomes Uab = Ua ⊗ Ub =

∑

i |ai〉 〈a′i| ⊗
∑

i |bi〉 〈b′i|,
this results in Uab taking the form

∑

i |ai〉 |bi〉 〈a′i| 〈b′i|. If one wishes to find the impact Uab has on the
component system of interest (any |a〉 ∈ A) a trace over the impact of system B must be made. This leads
to 〈ew|Uab |el〉 =

∑ 〈ew| |ai〉 |bi〉 〈a′i| 〈b′i| |el〉 =
∑

i |ai〉 〈ew| |bi〉 〈a′i| 〈b′i| |el〉 =
∑

i 〈ew| |bi〉 〈b′i| |el〉 |ai〉 〈a′i|.
It is now clear that Ua in general is not a unitary operator.

An example of a non-unitary operation is a gate that when activated applies an ”amplitude dampening
process [22]” to the target bit (a type of relaxation process [47]). Axiom 7 forces the gate to act on both
a |0〉 and a |1〉 to uniquely show that a forced gate fault is not present. This type of fault model is called
a functional fault model in classical test, as it probes the logical function of the circuit.

Quantum Test Axiom 7 Each target must separately act on basis state inputs |0〉 and |1〉. �

3.6 Measurement Faults

Measurement faults result from a ”limitation in the sensitivity of a measurement apparatus [56].” Here
a faulty measurement instrument is modeled as a probe that couples to a qubit and statistically favors
returning a certain value. In Fig. 13 the single measurement fault model is illustrated by placing a
faulty measurement gate at the output of the circuit. Faulty measurement probes that statistically favor
returning logic-zero are illustrated by replacing

FE


symbols with 099�

� . Similarly, probes that always

return logic-one are illustrated with 199�
� ’s. The truth table derived from Fig. 13 is shown in Fig. 14.

The corresponding fault table if given in Fig. 15.
Measurement faults may also be modeled by placing unwanted Pauli Faults at the end of a circuit just

before the correct measurement. For example, consider the photon polarization realization of a qubit. To
project and measure the state of a photon one places a slit24 in front of a photo detector. Polarization
states inline with the slit will be allowed to reach the photo detector. The angle of the slit may be set as
needed and this is subject to an error [31], described in [31] as, ”...an uncertainty in the settings of the
angles of the slit [wave-plates] used to make tomographic projection states.” These faults were adequately

24 A detailed discussion of errors in Photon measurement is in Ref. [31].



Fault Models for Quantum Mechanical Switching Networks 17

(a)
|a〉 • 099��

|b〉 •
FE



|c〉 ��������
FE



(b)
|a〉 •

FE



|b〉 • 099��

|c〉 ��������
FE



(c)
|a〉 •

FE



|b〉 •
FE



|c〉 �������� 099��

(d)
|a〉 • 199��

|b〉 •
FE



|c〉 ��������
FE



(e)
|a〉 •

FE



|b〉 • 199��

|c〉 ��������
FE



(f)
|a〉 •

FE



|b〉 •
FE



|c〉 �������� 199��

Fig. 13 Measurement Errors: Figs (a), (b) and (c) illustrate measurement faults that statistically favor logic-zero.
Figs (d), (e) and (f) contain measurement faults statistically favoring logic-one.

input GC a b c d e f

|000〉 000 000 000 000 100 010 001

|001〉 001 001 001 000 101 011 001

|010〉 010 010 000 010 110 010 011

|011〉 011 011 001 010 111 011 011

|100〉 100 000 100 100 100 110 101

|101〉 101 001 101 100 101 111 101

|110〉 111 010 100 110 110 110 111

|111〉 110 011 101 110 111 111 111

Fig. 14 Truth Table for 2−CN Gate Impacted by Measurement Faults. The column denoted ’input’ shows the
input combinations possible on the amplitude plane. Columns denoted ’a’ through ’f’ show the circuit’s response
given the presence of faults from Fig. 13 (a) through (f).

input a b c d e f

|000〉 0 0 0 1 1 1

|001〉 0 0 1 1 1 0

|010〉 0 1 0 1 0 1

|011〉 0 1 1 1 0 0

|100〉 1 0 0 0 1 1

|101〉 1 0 1 0 1 0

|110〉 1 1 0 0 0 1

|111〉 1 1 1 0 0 0

Fig. 15 Fault Table for 2−CN Gate Derived From Fig. 13. Each binary entry in the fault table corresponds to a
single test (row) and a single fault (column). Tests are labelled |000〉 to |111〉 and faults are labelled ’a’ through
’f’. A value of ’1’ in the table corresponds to a given test (row) detecting (covering) a given fault (column).

addressed in Axioms 1 and 2; the only addition that must be made models statistical inconsistency. Test
sets in accordance with Axiom 8 detect the statistical faults defined in Def. 13.

Definition 13 Measurement Fault Model: A single functional measurement gate is replaced with a faulty
measurement gate that statistically favors returning logic-zero or a logic-one.

Quantum Test Axiom 8 Each qubit must be measured in both logic-zero and logic-one states. �

All the Axioms that a test set must satisfy have been introduced. This work considers the Initialization
Errors (Axiom 3, Sec. 3.2) and the measurement faults (Axiom 8) discussed in this section to be largely
part of the quantum computers’ classical functionality. The gate level quantum faults considered were
the Lost Phase Faults (Axioms 4 and 5, Sec. 3.3), Faded Control Faults (Axiom 6, Sec. 3.4), and Forced
Gate Faults (Axiom 7, Sec. 3.5). In Sec. 4 conclusions will be drawn based on Axioms 1 & 2 related to
the occurrence of Pauli faults.
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4 Conclusions Drawn From The Pauli Fault Model

With a basic introduction to the wide range of errors addressed with the Pauli Fault Model in place, a
few important properties will be discussed starting with fault domination [71]. Classically, f2 dominates
fault f1 when the set of tests covering f1 is included in the set of tests covering fault f2. Fault f1 is
therefore no longer considered. It turns out that fault domination plays an important role in quantum
test engineering as well.

Input Test σx1 σy1 σz1 σx4 σy4 σz4 σx5 σy5 σz5 σx10 σy10 σz10 σx11 σy11 σz11 σx14 σy14 σz14

{|000〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|001〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|010〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|011〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|100〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|101〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|110〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|111〉 , Ẑ} p p 0 p p 0 p p 0 p p 0 p p 0 p p 0

{|+ + +〉 , X̂} 0 p p 0 p p 0 p p 0 p p 0 p p 0 p p

{|+ + −〉 , X̂} 0 0 0 0 0 0 0 0 0 0 0 p 0 p p 0 p p

{|+ − +〉 , X̂} 0 p p 0 p p 0 p p 0 p p 0 p p 0 p p

{|+ − −〉 , X̂} 0 0 0 0 0 0 0 0 0 0 0 p 0 p p 0 p p

{|− + +〉 , X̂} 0 p p 0 p p 0 p p 0 p p 0 p p 0 p p

{|− + −〉 , X̂} 0 0 0 0 0 0 0 0 0 0 0 p 0 p p 0 p p

{|− − +〉 , X̂} 0 p p 0 p p 0 p p 0 p p 0 p p 0 p p

{|− − −〉 , X̂} 0 0 0 0 0 0 0 0 0 0 0 p 0 p p 0 p p

Fig. 16 2−CN Gate Fault Table: Generated by placing Eqns. 16 , 17 and 18 at the error locations
{1, 4, 5, 10, 11, 14} shown in Fig. 4 with placement probability p. Table entries correspond to the probability
of observing a fault in a corresponding column under that row’s input test vector and corresponding observable,
where σ⊗3

z = Ẑ and σ⊗3
x = X̂. (Preparation of superposition states and using X̂ observables can be done with

only basis inputs and Ẑ observables. This is done by putting Hadamard gates on both sides of the circuit and
preparing all basis inputs, each with a corresponding computational basis measurement)

In classical test there is an approach known as constructing a fault table used to better understand
test set properties and reduce test sets. A fault table is constructed by comparing a nominal response
to a circuit perturbed by each considered fault for each error location and under all input vectors. One
may adapt this method to quantum test, but the table entries will typically contain probabilities [6].
Observe now the quantum fault table in Fig. 16. Each row corresponds to an initial state and observable
pair (Def. 9). Each column is denoted as σi×, where subscript i refers to a corresponding x, y or z Pauli
Matrix and × corresponds to each of the error locations shown in Fig. 17 (the outer error locations derived
from Fig. 4). The internal entries of the fault table correspond to the output probability of detecting a
given fault (column) by a given test (row). A table entry that contains element 0 means that the test
corresponding to that element’s row would not detect the fault depicted in that element’s corresponding
column. Entries containing p correspond to probabilities of observing given faults (columns) under a given
input test vector (row).

1 4

|i0〉 × • × m0;;��

5 10

|i1〉 × • × m1;;��

11 14

|i2〉 × �������� × m2;;��

Fig. 17 2−CN gate shown with only the external error locations from Fig. 4.

As mentioned, not all of the error locations shown in Fig. 4 have a corresponding table element in
the quantum fault table from Fig. 16. This is due to something known as row and column domination. A
dominating row (td) has a corresponding entry for each non-zero element in the row being dominated (ts)
and may possibly contain additional non-zero elements (ts ⊆ td). Dominating columns are analogous. In
the case of the 2−CN gate in Fig. 4 all of the internal error locations {2, 3, 6, 7, 8, 9, 12, 13}were dominated
by rows and columns generated by external error locations. A complete test set can therefore be derived
considering only the external error locations: {1, 4, 5, 10, 11, 14} shown in Fig. 17. Each of these error
locations may possibly be impacted by three faults (σx, σy and σz) for a total of eighteen table columns.
After the introduction of a related Theorem (1) row and column domination will again be discussed.

Theorem 1 provides some insight into the observability of a bit flip error impacting the computational
basis. It is based on the following constraints: 1.) The network is comprised solely of quantum k−CN
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gates, 2.) The workings of the gates are otherwise nominal. This theorem states that any σx or σy fault
occurring in a k−CN network is detectable with any computational basis input state. Furthermore, this
leads to a relationship between the deterministic presence of a fault in the state vector observed with
some probability and the probabilistic presence of a fault observed deterministically (Relating Time and
Space Error Models). Theorem 1 is based on the idea that a reversible system preserves information.
Moreover, a reversible system preserves the probability that additional information may be present (see

Zurek, 1984 [65]). Thus, the probability of detection for fault f observable with Â for instance, is related
only to the probability of f ’s presence.

Theorem 1 Pauli Faults σx and σy impacting an n qubit network QC comprised of k−CN gates at any
gate external error location are trivially detected with any basis state input |k〉 given an observable in the
computational basis.

Proof Any reversible binary quantum network QC of l qubits and n stages bijectively maps each distinct
input |s〉 to a unique output |s′〉. Each gate g ∈ QC is reversible, thus any stage n acting on input vector
|s〉 corresponds to exactly one output vector at the (n+1)th stage. A qubit flip (fp) occurs before or after
any stage n on any wire l, changing the output from the previous stage (and input to the next). Any σx
or σy fault is therefore detectable based on the properties of reversibility [65] with any basis state input
|k〉 given an observable in the computational basis. �

References [4][6] addressed adapting the rotational and Pauli fault models to quantum test pattern
generation; we better explain these findings here. A somewhat obvious corollary of Theorem 1 is the
relationship between the probability p that a Pauli fault will occur at some location and the deterministic
presence of a rotational fault at some angle θ.25 Consider now a quantum network QC wherein resides
error location l perturbed deterministically by a rotational fault f at some angle θ or alternatively by a
Pauli fault f at the same location with probability p. One relates p and θ as,

θ =
1

2
arcsin (

√
p) . (43)

Returning again to Fig. 16. Closer examination reveals that all σx and σy faults are detected with
any basis input vector coinciding with Theorem 1. In the computational basis one can not detect phase
faults as they impact the eigenvectors of the computational basis. For a demonstration of this, observe
that no basis input vector will detect a σz fault. On the other hand, σy faults are often detectable with
both basis state inputs and superposition inputs, since these faults represent both phase and bit flips.
(The column with label σy1 dominates all columns representing σz faults: σz1, σz4, σz5, σz10, σz11 and
σz14.) It should also be mentioned that all σz faults (as well as σy faults) are detected with input |+ + +〉
and observable X̂ and this is true for all quantum switching networks. (The row with entry |+ + +〉
dominates the following rows: |+ + −〉, |+ − +〉, |+ −−〉, |− + +〉, |− + −〉, |− − +〉 and |− − −〉.)

Considering again Conjecture 1, aside from row and column domination, the quantum fault table in
Fig. 16 illustrates the aforementioned important property of quantum fault domination. A test set that
is complete for the quantum single fault model (Def. 8) will detect (sample) the accumulated impact
of errors at multiple locations. Since quantum noise is defined to be random, a test set that covers all
considered faults will sample its uniform distribution. Although on occasion both random and systematic
errors may cancel themselves out, we are concerned only with the severity of the accumulated negative
impact. This section is concluded by introducing a simple Theorem.

Theorem 2 All Pauli Faults (σx, σy and σy) impacting an n−qubit quantum switching network are

detected with separate applications of any basis input vector |x〉⊗n and superposition state |+〉⊗n, where
x ∈ {0, 1}.

Proof The Proof follows directly from Theorem 1 and the above discussion of the Fault Table from
Fig. 16. �

5 Conclusion

This work has justified several fault models and discussed the error causing mechanisms that thwart
correct function. The fault models that have been justified are: Initialization Errors (Axiom 3, Sec. 3.2),
Measurement Faults (Axiom 8, Sec. 3.6), Lost Phase Faults (Axioms 4 and 5, Sec. 3.3), Faded Control

25 Consider for example an optical circuit that applies a partial bit flip at one location based on a mode mis-
match [28]. The fault is always present in the state vector, but its observability is probabilistic.
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Faults (Axiom 6, Sec. 3.4), and Faded gate faults (Axiom 7, Sec. 3.5). Axioms have been presented
that a test set must satisfy in order to drive a quantum network to its bounds of operation for the
purpose of error detection. With this justification in place Theorem 1 was presented. The classical test
set generation technique known as constructing a fault table, was next adapted to quantum circuits, in
Sec. 4. The adapted classical technique, optimizes test plans to detect all of the most common error
types. This work therefore considered the prevalent set of errors modeled by unwanted qubit rotations.
We found, that isolating a correct circuit from a circuit containing all of the considered Pauli Fault models
(given in Axioms 1 & 2) requires applications of just two test vectors as shown in Theorem 2. With the
justification of fault models in place, researchers are enabled to develop test plans for quantum circuits
with necessary confidence.
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A The Partial Trace

In this Appendix we explain the partial trace [22]. Consider a Hilbert space denoted as A of system
A ⊗ B. We will trace over system A, leaving system B in what is known as a mixed state. We have,
trA(|a1〉 〈a2|⊗ |b1〉 〈b2|). Now consider |ei〉i as an orthogonal basis for system A, we may write the partial
trace as,

∑

i 〈ei| |a1〉 〈a2|⊗|b1〉 〈b2| |ei〉. After we recall the general fact about tensor products, |a〉 〈b|⊗|c〉 〈d|
= |a〉 |c〉 〈b| 〈d|, it is easy to see a well known equation for the trace of a component part of a composite
system,

∑

i 〈ei| |a1〉 〈a2| |ei〉 ⊗ |b1〉 〈b2| =tr(|a1〉 〈a2|) |b1〉 〈b2|.
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