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A Quantum Test Algorithm
Jacob Biamonte and Marek Perkowski

Abstract— Current processes validation methods rely on di-
verse input states and exponential applications of state tomog-
raphy. Through generalization of classical test theory exceptions
to this rule are found. Instead of expanding a complete operator
basis to validate a process, the objective is to utilize quantum
effects making each gate realized in the process act on a complete
set of characteristic states and next extract functional informa-
tion. Random noise, systematic errors, initialization inaccuracies
and measurement faults must also be detected. This concept is
applied to the switching class comprising the search oracle. In
a first approach, the test set cardinality is held constant tosix;
both testability and added depth complexity of an additional
”design-for-test” circuit are related to the function real ized in the
oracle. Oracles realizing affine functions are shown to generate
no net entanglement and are thus the easiest to test, where
oracles realizing bent functions are the most difficult to test. A
second approach replaces extraction complexity with a linear
growth in experiment count. An interesting corollary of thi s
study is the success found when addressing the classical test
problem quantum mechanically. The validation of all classical
degrees of freedom in a quantum switching network were found
to necessitate exponentially fewer averaged observables than the
number of tests in the classical lower bound.

Keywords:Reversible Computers, Quantum Computers, Quantum
Process Validation, Test Pattern Generation.
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I. I NTRODUCTION

T EST THEORY is now over70 years old. The materi-
alization of which emerged to avoid expanding the full

set of binary basis vectors used to characterize classical net-
works [1][2]. These methods are well established for classical
circuits, may they be generalized to quantum circuits?

The classical theory of computation implies local realism
in all states of a sequential program’s execution and is
therefore inconsistent with physical reality [3]. Furthermore,
quantum circuits often arise as a measure of algorithmic
complexity [4]. For example, Adiabatic, Cluster State and
Type-II Quantum Algorithms rely on computational models
with no direct classical equivalent [5][6][7]. How then could
purely quantum mechanical circuits be tested with ideas from
this celebrated classical theory? Many models of quantum
computation use circuits as a way to describe the actions on,
and the interactions between collections of bi-state systems
(qubits) sought to compute [8]. These interactions are induced
under the perturbation of a classical force, where the quantum
state of one system may alter the timed change of a second.
This forms a depiction of nodes, wires and gates in time-
dependent diagrams named quantum circuits. The design [9],
realization [10], and test [11][12][13][14] of the component
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circuits required to assemble quantum computational devices
continues to be a subject of much study.

Quantum computers will first impact society by simulating
physical systems intractable via classical means [15]. Suc-
cessful simulations are conjectured to necessitate as few as
fifty qubits [16]. Experimental physicists who build quantum
circuits have not yet experienced much need to research
optimized testing methods due to the current attainable qubit
count. All approaches to the quantum test problem are conse-
quently exhaustive. The main approach now is to use process
tomography such that for a system ofn qubits2n initial states
necessitate2n measurements, for a complexity ofΘ(22n)
and a growth rate proportional to the experimental accuracy
desired [13][14]. In a second approach (known as ancillary
assisted process tomography [17]),n qubits are mirrored
replacing2n initial states with ann dimensional state space
entangled with each of the2n basis states of the system
under test. However, in this approach any reduction in initial
states increases measurement complexity, therefore the only
offered advantage is experimental simplification (such as in
optics [18]). The time required to test quantum circuits using
current validation methods is just as intractable as the very
problems these circuits will be built to solve. The quantum
test problem must therefore be addressed.

Quantum computers offer a speed up over many classical
combinatorial algorithms (such as quantum search [20] and
counting [21]) that rely on quantum oracles [22]. As shown
in Sec. I-B, oracles are constructed as classical switching
networks whose implementation is quantum mechanical. Use-
ful quantum oracles require large numbers of qubits, making
process validation time even less tractable. Because of such
wide use in quantum algorithms [23], designing test strategies
specifically for oracles is one of the areas that classical test
theory is shown here to improve.

The difficulty of extending the classical test theory has
been a subject of discussion in recent times with the attempts
outlined in [24]. Despite this interest, no connection has
been made between established classical methods and any
of the subtleties of quantum computation, making this study
an important element to foster some growth in the field of
quantum test engineering. Classically, the testability ofthe
circuit class comprising the oracle has already received much
attention after the1972 paper by Sudhakar M. Reddy [2].
This paper presents a quantum mechanical switching network
generalization of classical methods.

1) Structure of the paper:We begin to address these
questions by first, in Sec. I-A and I-B giving an introductionto
quantum mechanics and oracle construction. Sec. II discusses
the quantum fault models used in this study. The intended
audience are engineers and test theorists wishing to extend
classical ideas to respective quantum counterparts. The Quan-
tum Test Algorithm is presented in Sec. III followed by the
conclusion in Sec. IV wherein we close with a short discussion
of some open problems.

mailto:biamonte@ieee.org
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A. Background
In quantum computation, classical bit registers are replaced

with collections of qubits described by a corresponding density
operator,ρ =

∑

i pi |ψi〉 〈ψi|, where |ψi〉 represents a state
vector, andρ has trace one. Whentr(ρ2) = 1 the pure
states description is complete and whentr(ρ2) < 1 the mixed
state of the system lacks information for complete description.
The n dimensional state space of quantum computation is a
composite complex vector space formed from an algebraic
tensor product(ρ0 ⊗ ρ1 ⊗ . . . ⊗ ρn) of density matrices
representing component physical systems,ρ acts on this state
space.

A set of measurement operators (observables) {Mm} acting
on the state space of a quantum system must be defined, in
which indexm references the measurement outcomes [23]
and

∑

mMmM
†
m = Im. Consider for example a collection

of measurement operators on a two qubit system:

{Mm} = {|00〉 〈00| , |01〉 〈01| , |10〉 〈10| , |11〉 〈11|}. (1)

This collection is complete since their sum is the4×4 identity
matrix, |00〉 〈00| + |01〉 〈01| + |10〉 〈10| + |11〉 〈11| = I4. If ρ
is found in eigenstatem, the resulting joint quantum state
of the system will beρm = (MmρM

†
m)/tr(M †

mMmρ). The
probability of resultm is p(m) = tr(M †

mMmρ). In the case
of Eqn. 3, the probability that the system will be found in state
M0 = |00〉 〈00| is calculated astr(|00〉 〈00| |00〉 〈00| ρe) = 1

2 .
It is helpful to consider that each real number indexed by
m along the diagonal of density matrixρ corresponds to the
probability of measuring a quantum system in the basis with
corresponding index and the sum of allm diagonal entries is
1. System measurement allowsm bits of classical information
to be extracted. If one or more of thesem bits is different than
expected, the quantum switching network contained an error.

A quantum program is represented as evolution of a (ideally
closed) system and described by a unitary transformationU
(a matrix). A program must be decomposed into a product
of physically realizable operations (matrices), and each ele-
mentary operation can be represented as a gate in a quantum
circuit. The qubits in the system are initialized to stateρ, and
the system evolves according toρ′ = UρU †. During evolution
it is possible for a register of qubits to reside in superpositions
of classical states. Superposition states may be factored,but
only to the level of description that is local with respect to
single qubits, such as:

ρs =
1

2
|00〉 〈00| + 1

2
|01〉 〈01| + 1

2
|10〉 〈10| + 1

2
|11〉 〈11|

=

( |0〉 〈0| + |1〉 〈1|√
2

)

⊗
( |0〉 〈0| + |1〉 〈1|√

2

)

. (2)

Evolution may also lead to entangled states that may not be
factored to local descriptions, like this one:

ρe =
1

2
(|00〉 〈00| + |11〉 〈00| + |00〉 〈11| + |11〉 〈11|) . (3)

Regardless of physical separation, action of a witness on an
entangled component has a composite impact. Furthermore,
for an entangled system, component observation leads to
classically impossible information gain regarding the state of
the composite system, as a consequence of altering all states.

We conclude this section with a comment on notational
conventions. Normalization constants are often omitted, as
is an introduction to state vectors.1 Shorthand notation for

1State vectors are referenced using Dirac Notation, such as arbitrary
example,|ψ〉 = α |0〉+β |1〉 and respective conjugate,〈ψ| = α∗ 〈0|+β∗ 〈1|.

some common states must be defined,|+〉 = |0〉 + |1〉,
|−〉 = |0〉 − |1〉, and ψ = |ψ〉 〈ψ|. The number of qubits
considered is (k+1) often denoted asn andN represents the
maximum number of items in an oracle (2n−1). The general
notational conventions and vocabulary terms outlined in the
textbook by Nielsen and Chuang [23] are used. A construction
method for quantum oracles is next given.

B. Constructing Quantum Oracle Search Spaces

A classical oracle may be viewed as a boolean function
f : {0, 1}k −→ {0, 1} in a black box, whose standard action
leaves the topk input variables unchanged. The oracle’s binary
response to a given queryf(x1, x2, ..., xk) is read on the(k+
1)th bit. A query leading to a response ofbinary-oneis called
a solution. Unlike a classical oracle, quantum oracles respond
to simultaneous queries by appending solutions with relative
phases and leaving the bottom(k + 1)th qubit unnoticeably
changed, but how would one construct such a device?

Any boolean equation may be uniquely expanded to the
fixed polarity Reed-Muller form [2] as:

f(x1, x2, ..., xk) = c0 ⊕ c1x
σ1

1 ⊕ c2x
σ2

2 ⊕ · · · ⊕ cnx
σn

n ⊕
cn+1x

σ1

1 xσn

n ⊕ · · · ⊕ c2k−1x
σ1

1 xσ2

2 , ..., xσk

k , (4)

where selection variableσi ∈ {0, 1}, literal xσi

i represents a
variable or its negation and anyc term labeledc0 through
cj is a binary constant0 or 1. In Eqn. 4 only fixed polarity
variables appear such that each is in either un-complemented
or complemented form. The case where all variables in the
expansion of Eqn. 4 appear in an un-complemented form will
be considered in this work, this is known as a PPRM.2

Example:

f(x1, x2, x3, x4) = 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x3x4 ⊕ x1x3x4 ⊕
x1x2x3 ⊕ x2x3x4 (5)

Each term in the expansion of Eqn. 5 is called a product
term [26], and each variablexi a literal. Here a total of
seven product terms and fourteen un-complemented literals
are given. For example,x3 · x4 is such a product term, with
literalsx3 andx4 (constant1 however, is not considered to be a
product term). Each product term for a given PPRM expansion
may be realized by the arbitrary quantum controlled-NOT gate
(k−CN) given in Fig. 1.

In the quantum circuit model of computation, horizontal
wires represent the passage of time from left to right, while
gates and controls3 represent both interactions between and
actions on qubits. A control is denoted with a black dot (•),
and may be connected with other black dots using wires. For
control gates, each connection is a conjunctive path; each
literal in a given product term receives one black dot on
the quantum circuit diagram. A vertical wire is next placed,
interconnecting all of the black dots and the target of the gate
written as a NOT symbol (⊕). Repeating this procedure for
each product term in Eqn. 5 leads to the network realization
given in Fig. 2. Above each gate is the labelpi, p refers to a
product term in the expansion of Eqn. 5, andi the index used
to label all seven products. The network realization given in
Fig. 2 may be implemented via a unitary approximation [23]
or by using controlled4th root of NOT gates in the design
considered by Barenco et al., (see [9], page17, § 7). This

2PPRM: Positive Polarity Reed-Muller Expansion such that each literal
appears only un-complemented.

3Controls are often called nodes.
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x1 • x1

x2 • x2

...
xk • xk

y �������� y ⊕ x1 · x2 · ... · xk

Fig. 1. k−CN Gate Realizingy⊕ x1 · x2 · ... · xk on the(k+ 1)th qubit.

example will be used again so it is worth stating explicitly
that p0 corresponds tox1, p1 to x2, p3 to x3, p3 to x3x4, p4

to x1x3x4, p5 to x1x2x3 and finallyp6 to x2x3x4.
The underpinning difference of operation between a clas-

sical and quantumphase oraclewill now be made clear.
Quantum gates exhibit a feature known as phase kick-back.4

That is, if the input state of the target is an eigenvector
of the control gate’s operation, the eigenvalue of the target
state traverses backwards to the activating state of the con-
trol qubit(s), leaving the target unchanged up to a global
phase. The eigenvector states ofk−CN gates are created
using another gate known as the Hadamard operator: drawn
schematically asH , defined algebraically in Eqn. 6 and it’s

action on some common states are:|0〉 −→ |+〉, |1〉 −→ |−〉,
|+〉 −→ |0〉 and |−〉 −→ |1〉.

H =
1√
2
(|0〉 + |1〉) 〈0| + 1√

2
(|0〉 − |1〉) 〈1| (6)

Typically Boolean functionf is constructed by means of a
k−CN network and placed in a black box with labelO (for
oracle). The bottom(k + 1)th bit contains the realization of
f to be read at the box’s right. The topk inputs to the box
begin in state|0〉 and the(k+1)th input (target) qubit starts in
state|1〉. The Hadamard operationH⊗(k+1) is next applied.
Generally the black box takes as input:

H⊗(k+1) : |0〉⊗k ⊗ |1〉 −→ (|0〉 + |1〉)⊗k ⊗ (|0〉 − |1〉) (7)

Inside the black box all of the targets act on state|−〉 (an
eigenvector of thek−CN gate) and the topk qubits remain in a
superposition of all possible classical states. The true minterms
are inputs to a Boolean function that evaluate to1 where the
false minterms evaluate to0. Each term in the superposition
on the topk bits representing a true minterm in the switching
function f realized in the oracle will be appended with a
negative (relative) phase. The phase of states that do not
represent true minterms are left invariant. This is seen by
examining the truth table from Fig. 3. The action of an oracle
O, realizing a binary functionf(x1, x2, ..., xk), is represented
by the general transformO : |k〉⊗|−〉 −→ (−1)f(k) |k〉⊗|−〉.

The oracle’s introduction is complete. Before continuing on
to Sec. II wherein the considered gate level quantum fault
models are defined, it is now mentioned that quantum phase
kickback is key to our study. Phase kickback faults impacting
k−CN gates are addressed in Axioms 4 and 5. Sec. III presents
the quantum test algorithm that extracts information from the
phase of the quantum state to determine if a given oracle is
functional.

II. GATE LEVEL QUANTUM FAULT MODELS

Classically, one defines a testability measure as the product
of observability and controllability. A fault present in an

4See [27], the 1999 PhD thesis of M. Mosca,Quantum Computer Al-
gorithms, for background on using quantum phase for various quantum
computational tasks.

p0 p1 p2 p3 p4 p5 p6

x1 • • • x1

x2 • • • x2

x3 • • • • • x3

x4 • • • x4

y = 1 �������� �������� �������� �������� �������� �������� �������� 1 ⊕ f(x1, x2, x3, x4)

Fig. 2. Quantum Network Realization of Eqn. 5 built from arbitrary k-CN
gates as shown in Fig. 1. The truth table of this oracle is given in Fig. 3.

phase state x1 x2 x3 x4 f
+ |0000〉 0 0 0 0 0
+ |0001〉 0 0 0 1 0
− |0010〉 0 0 1 0 1
+ |0011〉 0 0 1 1 0
− |0100〉 0 1 0 0 1
− |0101〉 0 1 0 1 1
+ |0110〉 0 1 1 0 0
+ |0111〉 0 1 1 1 0
− |1000〉 1 0 0 0 1
− |1001〉 1 0 0 1 1
+ |1010〉 1 0 1 0 0
+ |1011〉 1 0 1 1 0
+ |1100〉 1 1 0 0 0
+ |1101〉 1 1 0 1 0
+ |1110〉 1 1 1 0 0
− |1111〉 1 1 1 1 1

Fig. 3. Oracle Truth Table for Eqn. 5 implemented by the network in Fig. 2:
Boolean functionf is implemented quantum mechanically. Each of the2k

terms in a superposition input that evaluate tologic-onewill be marked with
a negative phase (also shown in Eqn. 15, in Sec. III).

entangled state generally results in probabilistic measurement
outcomes thereby decreasing the observability of failures.
Controllability allows one to propagate a specific input vector
through a network, such that it will map a test vector to a
place of fault. This represents an added challenge in the case
of quantum circuits, since inputs will become entangled and
in many cases specific (local) inputs to a certain fault location
may not be possible. Functional quantum faults at the gate
level were defined as Axioms that a complete test set must
satisfy in Ref. [24]. These Axioms are used to logically test
the gate level function of all network components and are
presented here for completeness. As will be seen in Sec. III,
the entanglement added to the state vector during a test must
then be removed to properly observe failures.

In quantum error correcting codes, error locations are be-
tween circuit stages, and have quantifiable error probabilities
or strengths of occurrence [28]. For example, consider the
single stage circuit shown in Fig. 4. The numbered locations
of possible gate external faults are illustrated by placingan
”×” on the line representing a qubits time traversal and
here, the gate, initial states (|i0〉 , |i1〉 , |i2〉) and measurements
(m0,m1,m2) may also contain errors. Error and Fault Loca-
tions are formally defined next in Def. 1.

Definition 1: Error/Fault Location: The wire locations be-
tween stages as well as any node, gate initial state or mea-
surement in a given network(see Fig. 4).

1 2

|i0〉 × • × m0;;��

3 4

|i1〉 × • × m1;;��

5 6
|i2〉 × �������� × m2;;��

Fig. 4. 2−CN gate with error locations.

A quantum test set is a set of initial state and measurement
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pairs designed to drive a network to threshold limits. For
example, one may develop a test set that first turns as many
gates on as possible, next turns the highest possible number
of gates off and then sends phase through as many gates
during one test as the structure of the network would allow.
It is the goal of this paper to develop complete test sets
that sample failure rates. We therefore consider a set of error
models adequately capturing the nature of fault types occurring
in a given circuit, together with their locations. Ref. [24]
introduced the concept of what is known as thequantum single
fault model. This allows the separate consideration of all errors
at each location for a given quantum circuit. We present first
Def. 2 and next Conjecture 1, both related to this idea.

Definition 2: Quantum Single Fault Model: For simplifi-
cation the ”quantum single fault model” is assumed in this
work. In the single fault model, test plans are optimized
for all considered faults assuming that only a single failure
perturbs the quantum circuit exclusively. Multiple faultswill
accumulate and be detected, but the single fault model makes
it much easier to develop test plans.

Conjecture1: A test set designed to detect all considered
single errors will detect and sample the accumulated impact
of multiple errors at multiple locations.

The following definitions are used to define some of the
fault types considered in this work. Complete fault coverage
occurs after a test set has determined that the considered
fault(s) are not physically present in a given circuit.

Definition 3: Pauli Fault Model: The addition of an un-
wanted Pauli matrix in a quantum network, at any error
location and with placement probabilityp. The Pauli matrices
are given in Eqn. 8, 9 and 10.

σx = |1〉 〈0| + |0〉 〈1| (8)

σy = i |0〉 〈1| − i |1〉 〈0| (9)

σz = |0〉 〈0| − |1〉 〈1| , (10)

Definition 4: Initialization Error: A qubit that statistically
favors correct preparation in one basis state over the other.

Definition 5: Measurement Fault Model: A single func-
tional measurement gate is replaced with a faulty measurement
gate that statistically favors returninglogic-zeroor a logic-one.

The Initialization Errors (Axiom 3) and the Measurement
Faults (Axiom 8) are considered to be largely part of the
quantum computers’ classical functionality and have clearly
defined error locations. Test sets detecting quantum noise
and systematic errors [30] satisfy Axioms 1, 2 and 3. To
avoid the complications experienced with quantum test vector
controllability the test sets in this work are shown to satisfy
the following gate level functional Axioms: Lost Phase Faults
(Axioms 4 and 5), Faded Control Faults (Axiom 6), and
Forced Gate Faults (Axiom 7). In Sec. III a test algorithm
in accordance with these Axioms that samples failure rates
(Conjecture 1) will be given.

Quantum Test Axiom1: A bit flip (σx or σy) at any error
location must be detectable.

Quantum Test Axiom2: A phase flip (σz or σy) at any
error location must be detectable.

Quantum Test Axiom3: Each qubit must be initialized in
both basis states|0〉 and |1〉.

Quantum Test Axiom4: With the target acting on state
|−〉: Each gate must be shown to attach a relative phase to

arbitrary activating state|a〉 with both positive and negative
eigenvalues. Furthermore, each gate must be shown not to
attach a relative phase to arbitrary non-activating state|n〉 with
both positive and negative eigenvalues. The target state must
remain globally invariant under both|a〉 and |n〉.

Quantum Test Axiom5: With the target acting on state
|+〉: relative phase must be shown not to change under
arbitrary activating state|a〉 with both positive and negative
eigenvalues. Furthermore, relative phase must not change
under arbitrary non-activating state|n〉 with both positive and
negative eigenvalues.

Quantum Test Axiom6: For the target acting separately
on basis state|0〉 and |1〉: All controls in a gate must be
activated concurrently. Furthermore, each control must be
addressed with a non-activating state.

Quantum Test Axiom7: Each target must separately act
on basis state inputs|0〉 and |1〉.

Quantum Test Axiom8: Each qubit must be measured in
both logic-zeroand logic-onestates.

Based on the Axioms and Definitions from Ref. [24], a
discussion of a test set satisfying these Axioms for quantum
oracles is discussed next is Sec. II-A.

A. Conclusions based on the Gate Level Fault Models

Traditionally test plans are optimized to detect all of the
most common error types [32] and circuits are designed with
ease of test in mind. A test plan is developed for the purpose
of isolating a correct circuit from a circuit containing anyof
the considered errors. In practice, the choice of the fault model
will be determined by a particular quantum circuit technology,
as well as how the circuit will be used. In this work the
functional use ofk−CN networks are oracle search spaces.
Building on an understanding of the different failures possible,
here it is shown constructively that anyk−CN gate exhibits
twelve, functionally distinct actions. When used in a phase
oracle, the gate level faults that need to be considered are
the Phase Faults from Axioms 4 and 5. When classical inputs
are considered, Faded Control Faults (Axiom 6) and Forced
Gate Faults (Axiom 7) must be taken into account. Theorem 1
presents the four classical degrees of freedom possible in any
k−CN gate.

Theorem1: A quantumk−CN gate is capable of four char-
acteristic classical operations. (By characteristic it ismeant
that all other operations are variants of this basic set.)

Proof: The gate is able to act on a|0〉 and a|1〉 state
when all controls are set to high. The two remaining functions
are simply to act on|0〉 and |1〉 when one or more control(s)
is addressed with a non-activating state (the action of course
should be to do nothing). There are2k − 1 input states that
do not activate the gate, but these inputs all probe theoff
function. Similarly, each control has two logical functions. The
first is to be addressed with a logical|0〉 and the second is to
be addressed with a|1〉. (See test vectorsv0, v1, v2 and v3
from Fig. 5. A similar situation arises with classical EXOR
gates [1].)

Provided the state of the topk bits is some equal super-
position and the target of the gate acts on a state with the
following form: |0〉+e±iϕ |1〉. Under this condition, the inputs
to a k−CN gate are expressed as:

|ψin〉 −→





2k−1∑

x = 0

wx |x〉



 ⊗ (|0〉 + e±iϕ |1〉), (11)
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Minterm Target State Minterm Target State

e+iφ |true〉
(
|0〉 + e+iϕ |1〉

)
e+i(φ+ϕ) |true〉

(
|0〉 + e+iϕ |1〉

)

e−iφ |true〉
(
|0〉 + e+iϕ |1〉

)
e−i(φ−ϕ) |true〉

(
|0〉 + e+iϕ |1〉

)

e+iφ |false〉
(
|0〉 + e+iϕ |1〉

)
e+i(φ) |false〉

(
|0〉 + e+iϕ |1〉

)

e−iφ |false〉
(
|0〉 + e+iϕ |1〉

)
e−i(φ) |false〉

(
|0〉 + e+iϕ |1〉

)

e+iφ |true〉
(
|0〉 + e−iϕ |1〉

)
e+i(φ−ϕ) |true〉

(
|0〉 + e−iϕ |1〉

)

e−iφ |true〉
(
|0〉 + e−iϕ |1〉

)
e−i(φ+ϕ) |true〉

(
|0〉 + e−iϕ |1〉

)

e+iφ |false〉
(
|0〉 + e−iϕ |1〉

)
e+iφ |false〉

(
|0〉 + e−iϕ |1〉

)

e−iφ |false〉
(
|0〉 + e−iϕ |1〉

)
e−iφ |false〉

(
|0〉 + e−iϕ |1〉

)

Fig. 6. A k−CN Gate Truth Table (Case: 2 top, Case: 1 bottom): Illustrating all of the different possible gate actions for orthogonalsetting of variablesφ
andϕ. A |true〉 minterm activates the gate, any|false〉 minterm does not.

v0 → 0 0 0 0 · · · 1
v1 → 0 0 0 0 · · · 0
v2 → 1 1 1 1 · · · 1
v3 → 1 1 1 1 · · · 0

Fig. 5. Classical test vectors (v0, v1, v2, v3) acting on binary basis vectors
{0, 1} with the gate first off (v0, v1) and then on (v2, v3). The rightmost bit
in the figure is applied to the(k + 1)th bit.

wherewx = e±iφ. Similarly, as in the case of Theorem 1, cer-
tain operations define the gate’s function. Furthermore, these
actions are independent of the entanglements5 experienced
in the system prior to the application of the gate (the gate
generates entanglement by acting on individual product terms
in a superposition). The arbitrary quantum superposition state
defined in Eqn. 11 allows one to consider each input as a
separate state. In the column denoted minterm from Fig. 6,
|true〉 minterms activate the gate while|false〉 terms do not.
Under this consideration the following holds:

Theorem2: A k−CN gate is capable of eight character-
istic quantum operations.(We consider quantum operations
as those that manipulate quantum phase and non-classical
superposition states; characteristic has the same meaningas
in Theorem 1.)

Proof: The proof is constructive:
Case 1: When activated, quantum gates exhibit phase

kickback when the state of the target is|0〉 + e−iϕ |1〉. The
activating state can have a phase of+wx or−wx. Furthermore,
a non-activating state can have a phase of+wx or −wx and of
course, nothing should happen when acted on by thek−CN
gate.

Case 2:(The opposite of Case 1.) The alternative case is that
the target acts on state|0〉+e+iϕ |1〉. As before, the activating
and non-activating states can have phases of+wx or −wx.
Nothing should happen under the case of both an activating
and a non-activating state. This functionality is probed infour
additional tests.

We draw the readers attention now to the table in Fig. 6 for
the illustration of Case1 and Case2. Variablesφ andϕ are
set to create states that are operated on by thek−CN gate,
these are the combinations of actions considered. The Proof
is concluded by mentioning that, all the quantum functions
of the k−CN gate represent one variant of these eight cases
when used in a phase oracle.

Thus according to Theorems 1 and 2 in total we need
4 + 8 = 12 non-entangled tests to identify the function of
any k−CN gate. Although Theorems 1 and 2 are simple in

5In terms of an ability to generate entanglement, the CN was shown to be
the most robust gate in the presence of noise [33].

concept, only when these ideas are made clear is one able to
fully characterize all of the gates in a given quantum search
oracle. It is therefore safe to move on and, in the next section
(III), present a test set in accordance with all the Axioms and
principles of this section.

III. T HE QUANTUM ERROR DETECTION ALGORITHM

The quantum test algorithm introduced in this section uti-
lizes entanglement as a controllability resource to combine
test vectors and hence reduce test sets while the inherent
reversibility of quantum circuits increases the observability of
errors [31]. The Axioms mentioned in Sec. II are shown to
be satisfied and the test algorithm is convergent. An explicit
example is given illustrating how one would go about testing
a quantum oracle.

Tests T1, T2, T5 and T6 verify all classical degrees of
freedom. TestsT3 andT4 verify the phase kickback features
of the oracle. As a proof of concept the introduced method
holds the test set cardinality to constant six, increasing the
complexity of added stages for testsT3 and T4. This ap-
proach helps better tie classical ideas with quantum test set
generation. This is due to the fact that classically, circuits
realizing linear functions are easy to test due to their high
level of controllability. Quantum mechanically, a search oracle
realizing an affine function generates no net entanglement in
the topk bits provided input state|±〉⊗k ⊗ |−〉. Thus, it is
easier to control these states, extract functional information
or observe failure. Entanglement added by the network during
testsT3 andT4 must be removed by additional circuit stages to
return the system to a product state and allow a deterministic
measurement outcome. An analysis of this presents powerful
concepts to design test plans for quantum circuits that are
both highly controllable and that allow high observabilityof
errors. For example, Sec. III-F presents a second approach
whereT3 andT4 are replaced with other tests. These highly
controllable tests have constant entanglement and reduce the
quantum test problem to a cardinality of(5 + 4⌈k/2⌉) by
”walking” ⌈k/2⌉ EPR pairs [23] down the controls mirrored by
⌈k/2⌉ Bell measurements. Classically, the additional circuitry
used to generate test sequences is known asBIST (Build In
Self Test Circuit). For completeness, Def. 6 is present.

Definition 6: Quantum Build In Self Test Circuit (QBIST):
A quantum circuit designed to test a second quantum circuit;
the quantum circuit under test (QCUT). A QBISTcircuit may
be built at the input and/or output terminals of theQCUT, and
the QBIST stage is always assumed to contain no errors.

Consider the example circuit presented in Fig. 2. The
analysis given in the coming subsections begins by generating
an input state that turns all the gates in the networkon andoff
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concurrently. This concurrent action tests all gates exhaustively
on both computational basis states|0〉 and |1〉, (something
classically impossible in just two tests). Denote these tests as
T1 and T2, and their general form on ak variable function
follows:
T1: (|0〉⊗k + |1〉⊗k) ⊗ |0〉
T2: (|0〉⊗k − |1〉⊗k) ⊗ |1〉

The classical equivalent of testsT1 and T2 was given in
Fig. 5 (whereT1 corresponded to vectorsv0 andv2, andT2

corresponded to bothv1 and v3). Together testsT1 and T2

will be shown to satisfy Axioms 1, 3, 6, 7 and 8 in Sec. III-A
and III-B.

Sec. III-C considers testsT5 andT6. These tests are shown
to satisfy Axiom 5 by using the following states as oracle
inputs: |+〉⊗k ⊗ |+〉 and |−〉⊗k ⊗ |+〉. In both tests, the state
at the controls will not impact the state at the target, leaving
all qubits—ideally—unchanged (since no net entanglement is
generated).

Sec. III-D and III-E investigate the ability of the network
to both attach a relative phase to each activating term in the
superposition and to leave non-activating states unaltered. This
in general is a complex procedure, that in the first case can
be done in two tests denoted asT3 and T4. TestT3 utilizes
state |+〉⊗k ⊗ |−〉 and testT4 utilizes state|−〉⊗k ⊗ |−〉
as input to the oracle. However, additional ”design-for-test”
stages must be added to the end of the circuit. These stages
remove the entanglements added by the oracle, returning the
system to a local (factorable) description, thereby leading to
a deterministic measurement. TestsT3 and T4 are shown to
satisfy Axiom 4. TestT1 is now considered.

A. TestT1: (|0〉⊗k + |1〉⊗k) ⊗ |0〉
In test T1, all qubits are initialized as:|0000〉 ⊗ |0〉. The

action of the firstQBIST11 stage (from Fig. 8) creates the
following oracle input state:

QBIST11 : |0000〉 ⊗ |0〉 −→
(

|0〉⊗k
+ |1〉⊗k

)

⊗ |0〉 . (12)

The left half of the entangled test sequence is|0000〉 ⊗ |0〉.
It is clear that for a ”gold circuit” not one gate turns on, and
the target qubit will be left untouched. For the right half of
the entangled test vector, each gate in the circuit turns on,and
this cycles the(k+1)th qubit initially starting in|0〉 back and
forth between basis states. The state of the last qubit afterthe
oracle is|0〉.6 The purpose ofQBIST12 is simply to remove the
phase induced entanglement experienced on the topk qubits.
The intermittent states at each stage of the circuit under test
T1 are shown in Fig. 7. The final step in theQBIST12 circuit
applies a Hadamard gate to the top qubit, resulting back in the
starting state,|0000〉 ⊗ |0〉, thereby completing testT1. The
complexity of the added CN and H gates needed for testT1

is 2(k − 1)CN+2H.

B. TestT2: (|0〉⊗k − |1〉⊗k) ⊗ |1〉
No physical change is made to the circuit from Fig. 8,

however the qubits are now initialized to state|1111〉⊗|1〉. The

6If an an even number of gates were present a slight modification to the final
half of the QBIST12 circuit must be made. This modification is the removal
of the first CN gate at the start of theQBIST12 acting on the(k+1)th qubit
and controlled by thekth qubit. In general for an odd number of gates in a
quantum network prior to the finalQBIST12 stage the circuit will be in state
|0〉⊗k |0〉 ± |1〉⊗k |1〉. The addition of a CNk,k+1 gate removes unwanted
entanglement so that the final qubit will be left in a product state.

Stage Action of Stage
in −→ |0000〉 ⊗ |0〉

QBIST11 −→ (|0000〉 + |1111〉) ⊗ |0〉
p0 −→ |0000〉 |0〉 + |1111〉 |1〉
p1 −→ |0000〉 |0〉 + |1111〉 |0〉
p2 −→ |0000〉 |0〉 + |1111〉 |1〉
p3 −→ |0000〉 |0〉 + |1111〉 |0〉
p4 −→ |0000〉 |0〉 + |1111〉 |1〉
p5 −→ |0000〉 |0〉 + |1111〉 |0〉
p6 −→ |0000〉 |0〉 + |1111〉 |1〉

QBIST12 −→ |0000〉 ⊗ |0〉

Fig. 7. T1 test pattern and impact at each gate in the circuit. Gates as labeled
left to right p1 to p6.

outcome is similar to testT1, the bottom qubit is toggled a total
of seven times resulting in the final state of|1〉. (Each gate that
acted on|0〉 in testT1 now acts on|1〉 thereby exhaustively
probing every classical input combination of eachk−CN gate,
seen in Fig. 8.) The QBIST12 again disentangles the test
responses, resulting back in the initial state of|1111〉 ⊗ |1〉.

In tests T1 and T2 each node is addressed with both
activating and non-activating states. Furthermore, each qubit is
initialized and measured in both basis states. TestsT1 andT2

have an added CN and H gate complexity of4(k−1)CN+4H.
The following Theorems prove which faults have been de-
tected with testsT1 and testsT2 and are general forn bit
oracles:

Theorem3: Either testT1 or testT2 will detectσx andσy

bit flips at any error location, thus satisfying Axiom 1.
Proof: TestsT1 andT2 both satisfy Axiom 1. The proof

in this section is given for testT1 and is nearly identical to
the steps taken for testT2. Consider now testT1:

Case 1: The top (1st) qubit is flipped:QBIST12 receives
state(|1〉 |0〉⊗(k−1) ±|0〉 |1〉⊗(k−1)

) as input. After successive
applications of CNi−1,i from i = k to i = 2 the state will
be (|11〉 |0〉⊗(k−2) ± |01〉 |1〉⊗(k−2)) = (|0〉 ± |1〉) ⊗ |1〉 ⊗
|0〉⊗(k−2). Thus, a bit flip impacting the1st bit is detectable
on the 2nd bit. Given a bit flip impacting any other qubit
q, (1 < q ≤ k) QBIST12 receives(|0〉⊗(q−1) |a〉 |0〉⊗(k−q) ±
|1〉⊗(q−1) |ā〉 |1〉⊗(k−q)

) as input state. A similar relation holds
such that a bit flip on the(q − 1)th bit is detectable on the
qth and possibly the1st bit if the phase is also inverted. For
errors impacting any qubit other than the1st, both theqth bit
as well as the(q + 1)th (impacted bit) will show the error.

Case 2: Bottom (k + 1)th qubit is flipped: Normally the
top k bits and the bottom(k + 1)th bits are factorable when
entering the finalQBIST12 stage. Assume an even number
of gates in the oracle and that instead of state:(|0〉⊗k

+
|1〉⊗k) ⊗ |0〉 the final QBIST12 receives the worst case state
of |0〉⊗k |0〉+ |1〉⊗k ⊗|1〉. The finalQBIST12 will not remove
the entanglement associated with the(k + 1)th bit. This is
detectable based onp, the probability that a bit flip occurred in
the computational basis in the first place, satisfying Axiom1.
This is the only fault that, when deterministically present
interjects a probabilistic outcome in observability.

Theorem4: Together testsT1 andT2 initialize each qubit
in both basis states so that Axiom 3 is satisfied.

Proof: In testT1 the initial state of the register is|0〉⊗k⊗
|0〉 and in testT2 the initial state is|1〉⊗k ⊗ |1〉, therefore
Axiom 3 is satisfied.

Theorem5: Taken together testsT1 and T2 activate all
controls concurrently and each control is addressed with a non-
activating state while the target is separately in basis state |0〉
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QBIST11 Circuit Under Test QBIST12

|a〉 �������� • • • • H |a〉
_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

|a〉 �������� • • • • • �������� |a〉

︷ ︸︸ ︷

|a〉 �������� • • • • • • • �������� |a〉

︷ ︸︸ ︷

|a〉 H •
|a〉 |ā〉 |a〉 |ā〉

• •
|a〉 |ā〉 |a〉 |ā〉

• • �������� |a〉

|a〉 �������� �������� �������� �������� �������� �������� �������� �������� |a〉

Fig. 8. TestsT1 and T2 (GHZ states): In TestT1, a = 0 so the circuit starts off in state:|0000〉. QBIST11 maps this state to the oracle’s input as:
(|0000〉 + |1111〉) ⊗ |0〉. In TestT2, a = 1 and the input to the oracle is:(|0000〉 − |1111〉)⊗ |1〉. QBIST12 removes entanglement and returns the system
to a product state.

and next|1〉 satisfying Axiom 6.
Proof: In testsT1 andT2 the test state prior to application

of the oracle is(|0〉⊗k ± |1〉⊗k
)⊗ |ā〉. In both testsT1 andT2

the term |0〉⊗k addresses each control with a non-activating
state, the term± |1〉⊗k activates all gates and in both tests the
target is in a basis state. This satisfies Axiom 6.

Theorem6: Taken together testsT1 andT2 force each gate
in the circuit to act on both basis states, thereby satisfying
Axiom 7.

Proof: In both testsT1 andT2 the term± |1〉⊗k activates
all gates. Each gate in testT1 that received target input state
|a〉 received target input state|ā〉 in test T2, thus satisfying
Axiom 7.

Theorem7: After executing testT1 andT2 each qubit will
be measured in both basis states, thus satisfying Axiom 8.

Proof: The result of testT1 is |0〉⊗(k+1) and the
measured result pending the success of testT2 is |1〉⊗(k+1)

thus satisfying Axiom 8.

C. Super TestsT5 andT6: |+〉⊗k ⊗ |+〉 and |−〉⊗k ⊗ |+〉
The two following tests are simple to conceptualize, as seen

in Fig. 9 they have an added gate complexity of4kH . When
a = 0 testT5 generates input state|+ + ++〉⊗ |+〉 and when
a = 1 testT6 generates input state|− − −−〉⊗|+〉. Since the
eigenvalue of the target state is+1, no change in relative phase
should result from propagation through the quantum circuit
and the state of the register should not become entangled.
Theorem 8 proves that testT5 combined with testT6 satisfy
Axiom 5 with an added gate complexity of4kH.

Circuit Under Test
|a〉 H • • • H |a〉

_ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _

|a〉 H • • • H |a〉

|a〉 H • • • • • H |a〉

|a〉 H
|+〉 |+〉 |+〉 |+〉

• •
|+〉 |+〉

• H |a〉

|0〉 H �������� �������� �������� �������� �������� �������� �������� H |0〉

Fig. 9. TestsT5 andT6 (Super Tests): Test|+〉⊗k ⊗ |+〉 is first generated
(a = 0, T5) and next test|−〉⊗k ⊗|+〉 is applied (a = 1, T6). The target of
eachk-CN gate acts on state|+〉. No entanglement is added in either test,
since no relative phase change of individual superpositionterm(s) will occur.

Theorem8: Together testsT5 andT6 satisfy Axiom 5.
Proof: In both testsT5 and T6 the state of the target

qubit is |+〉. Any gate that was activated by a state with an
eigenvalue+1 in testT5 will be activated by a state with an
eigenvalue−1 in testT6. Relative phase will not change under

arbitrary non-activating and activating states since the target
state has an eigenvalue of+1, satisfying Axiom 5.

Theorem9: Either one of testsT5 or T6 detectsσz or σy

phase flips and therefore satisfies Axiom 2.
Proof: Here the Proof is done considering testT5,

however the steps are the same as those needed for testT6.
Consider state|+〉⊗k⊗|+〉, this is a product state that may be
expanded as:|+〉⊗· · ·⊗|+〉⊗|+〉⊗|+〉⊗· · ·⊗|+〉. The state
of the target is|+〉 and therefore phase will not make the state
non-local (with an exception of a phase flip on the(k + 1)th

bit, in that case the bottom bit will deterministically reveal the
presence of an error). Given aσz fault impacting any qubit,
the state becomes|+〉⊗ · · · ⊗ |+〉⊗ |−〉⊗ |+〉 ⊗ · · · ⊗ |+〉. In
the final stage ofQBIST52 a Hadamard operationH⊗(k+1) is
applied to the register:

H⊗(k+1) · |+〉 ⊗ · · · ⊗ |+〉 ⊗ |−〉 ⊗ |+〉 ⊗ · · · ⊗ |+〉 −→
|0〉 ⊗ · · · ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 . (13)

Since theσz bit flip impacts the global state of a qubit, it will
be seen as a bit flip in the measured state ofT5 satisfying
Axiom 2. The proof is concluded mentioning that this result
coincides with observations drawn in [24], (Theorem2, § 4).

The classical degrees of freedom for an oracle have been
accounted for in testsT1, T2, T5 andT6 with an added gate
complexity of only4(k+1)H+4(k−1)CN. The phase kickback
features of the gates in the oracle are verified next in tests
T3 and T4. Superposition input states that have retaliative
phases to each other are difficult to control since they are
often entangled and therefore not expressible in a product state
description. Depending on the function realized in the oracle
a different amount of entanglement will be added. Returning
the system to a product state (removing this added entangle-
ment) adds complication to tests that verify this property.The
controllability of a circuit represents an ability to propagate
a specific input vector through a network, such that it will
map a state to a specific fault location. This represents an
added challenge in the case of quantum circuits, since inputs
will become entangled and in many cases specific inputs to
a specific location may not be possible. However, after a
discussion of the upper bounds of testsT3 andT4 in Sec. III-F
more controllable test input vectors are proposed (Sec. III-G)
replacing the added complexity of these tests with a linear
increase in the number of experiments needed. TestsT3 and
T4 introduce important concepts that will foster growth in this
research area and allow one to gain a better understanding of
the complexities of controllability and observability under the
influence of quantum entanglement. A purpose of this paper is
to introduce these concepts and connect ideas from quantum
process validation and classical test theory.
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Axioms(↓) Fault Types Tested(↓) − Tests(→) T1 T2 T3 T4 T5 T6 T1 ∪ T2 T3 ∪ T4 T5 ∪ T6

Axiom 1 Any σx or σy bit flips occurring? × × ×
Axiom 2 Any σz phase flips occurring? ◦ ◦ ◦ × × ◦ ◦ ×
Axiom 3 Is initialization into |0〉 and |1〉 O.K.? ◦ ◦ ◦ ◦ × ×
Axiom 4 With |−〉 at target is phase kickback O.K.? ◦ ◦ ×
Axiom 5 Any phase problems with|+〉 at the target? ◦ ◦ ×
Axiom 6 Are the controls activated with|0〉 and |1〉? ◦ ◦ ×
Axiom 7 Gate acts on basis|0〉 and |1〉 O.K.? ◦ ◦ ×
Axiom 8 Is measurement in|0〉 and |1〉 O.K.? ◦ ◦ ×

Fig. 10. Tests are depicted in columns3− 11, fault types in column2 and Axioms in column1. A given test (column) with table entry× below it satisfies
the Axiom listed in the row corresponding to that×. Entries with◦ inside correspond to tests that cover some, but not all of thefaults depicted in the
corresponding row.

D. TestT3: |+〉⊗k ⊗ |−〉
The goal of testT3 is to verify that phase traverses back-

wards correctly amongst all gates. For testT3 the Hadamard
gates at the left of Fig. 11 are used to prepare the following
superposition state as the oracle’s input on the topk bits:

=⇒ |0000〉 + |0001〉 + |0010〉 + |0011〉 + |0100〉 + |0101〉
+ |0110〉 + |0111〉 + |1000〉 + |1001〉 + |1010〉 + |1011〉
+ |1100〉 + |1101〉 + |1110〉 + |1111〉 (14)

Observe that Eqn. 15 is like a truth table where all the true
minterms of the function have phase factors of−1, (see Fig. 3).
This often results in phase induced entanglement as shown in
Eqn. 15.

=⇒ |0000〉 + |0001〉 − |0010〉 + |0011〉 − |0100〉 − |0101〉
+ |0110〉 + |0111〉 − |1000〉 − |1001〉 + |1010〉 + |1011〉
+ |1100〉 + |1101〉 + |1110〉 − |1111〉 (15)

In general, a product (local) superposition state may be written
as:

±
k−1⊗

i=0

(|0〉 + ai |1〉) (16)

where anyai term is either+1 or −1. For the state in Eqn. 15
to be expressible as a product state, Eqn. 17 must be satisfied:

(|0〉 + a0 |1〉)(|0〉 + a1 |1〉)(|0〉 + a2 |1〉)(|0〉 + a3 |1〉). (17)

Given Eqn. 17, any one of2i (0 ≤ i < k) possible choices
for ai results in a local description of the quantum state (the
implications of which will be discussed in Sec. III-F). The
general expansion of Eqn. 17 leads directly to the generic
state:

=⇒ |0000〉 + a3 |0001〉 + a2 |0010〉 + a1 |0100〉 + a0 |1000〉
+a0 · a1 |1100〉 + a0 · a2 |1010〉 + a0 · a3 |1001〉
+a1 · a2 |0110〉 + a1 · a3 |0101〉 + a2 · a3 |0011〉
+a0 · a1 · a2 |1110〉 + a0 · a2 · a3 |1011〉
+a0 · a1 · a3 |1101〉 + a1 · a2 · a3 |0111〉
+a0 · a1 · a2 · a3 |1111〉 (18)

Comparing Eqns. 15 and 18 for the considered circuit, the
system of arithmetic equations given in Eqn. 19 is obtained.
This system is clearly not specifying a product state since
Eqns. 15 and 18 matched with Eqn. 19 are inconsistent. The
interfering termsa0 · a1 · a2 and a2 · a3 could be changed
for the system to return to a local, product state description.
This may be done by inserting theQBIST32 circuit given in
Fig. 11.QBIST32 inverts the phase on terms|1110〉 and|0011〉

to +1, making the state factorable as(|0〉+|1〉)(|0〉+|1〉)(|0〉+
|1〉)(|0〉 − |1〉) ⊗ |−〉.











a0 = −1 a1 · a3 = +1
a1 = −1 a2 · a3 = +1
a2 = −1 a0 · a1 · a2 = +1
a3 = +1 a0 · a1 · a3 = −1

a0 · a1 = +1 a0 · a2 · a3 = +1
a0 · a2 = +1 a1 · a2 · a3 = +1
a0 · a3 = −1 a0 · a1 · a2 · a3 = −1
a1 · a2 = +1 ∀i, ai ∈ {−1, +1}











(19)

Circuit Under Test QBIST32
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|1〉

Fig. 11. Circuit Under TestT3 and T4: Test T3 −→ |+〉⊗k ⊗ |−〉 is
first generated (a = 0, T3) and next testT4 −→ |−〉⊗k ⊗ |−〉 is applied
(a = 1, T4). Nodes activated with|0〉 are denoted as (◦). QBIST32 removes
entanglement returning the system to a product state and hasthe same form
in both tests.

E. TestT4: |−〉⊗k ⊗ |−〉
Test T4 is an exact dual to testT3 and therefore, the

neededQBIST42 stage will have the exact same structure as
the QBIST32 already used. Now the register is initialized into
state|1111〉⊗|1〉 (by settinga = 1 in Fig. 11). The Hadamard
operators map this initial state as follows:

(

H⊗(k+1)
)

· (|1111〉 ⊗ |1〉) −→ |− −−−〉 ⊗ |−〉 (20)

and this acts as input to the oracle. The phase of each term
is now opposite when compared withT3. QBIST42 inverts the
phase on term|1110〉 and |0011〉 to −1, making the state
factorable and resulting in this local state description(|0〉 −
|1〉)(|0〉 − |1〉)(|0〉 − |1〉)(|0〉 + |1〉) ⊗ |−〉.

Theorem 10 proves that testT3 combined with testT4

satisfy Axiom 4. TestsT3 andT4 have a worst case added gate
complexity of at mostΘ(N−k)+4kH , whereΘ is a function
of the number of controls needed in the disentanglement stage
and the linearity of the oracle.

Theorem10: Together testsT3 andT4 satisfy Axiom 4.
Proof: In testsT3 andT4 the state of the target is|−〉.

Any gate that was activated by a state with eigenvalues±1
during testT3 is activated by a state with eigenvalues∓1
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in test T4. Furthermore, both testsT3 and T4 contain non-
activating terms, each with opposite eigenvalues. TestsT3 and
T4 therefore satisfy Axiom 4.

To conclude the test algorithms presentation, the Table in
Fig. 10 is now mentioned. This table provides a concise
illustration of the sets of faults entirely covered by giventest(s)
(denoted by×) as well as the sets of faults partially covered
by a given test (denoted by◦).

We have developed a quantum test algorithm for the quan-
tum phase oracle. It has been shown that this test pattern
satisfies all of the Axioms in Sec. II and the results coincide
with Theorems 1 and 2. This test pattern therefore probes the
logical function of eachk−CN gate in the oracle. Now upper
bounds on the extraction technique (QBIST32 circuit stage)
will be derived in Sec. III-F.

F. Upper Bounds for QBIST32:
The concepts of the presented test algorithm are general and

therefore work for any circuit. They do however require the
successful design of theQBIST32. This design varies between
oracles and has an upper bound of added depth complexity that
depends on the function realized in the oracle. The purpose
of this section is to present an analysis of this test method
designed for functional information extraction. It beginswith
the following definition.

Definition 7: An affine Boolean functionAf (x1, ..., xk) ,
on variablesx1, ..., xk is any function the takes the form

Af (x1, x2, ..., xk) = c0⊕ c1 ·x1⊕ c2 ·x2⊕· · ·⊕ ck ·xk, (21)

where · is Boolean AND,⊕ is EXOR (modulo2 addition),
ci ∈ {0, 1} and i = 0, 1, ..., n are indices of coefficients. It is
easy to see that there exist2k+1 affine functions all of which
have checkered cube patterns. A linear function is any one of
the 2k affine functions generated when coefficientc0 = 0.

We present the following theorem (11) relating state sepa-
rability to the function being realized by a given oracle. An
observation made during this study is that oracles realizing
affine functions produce no net entanglement on the topk
qubits. However, an oracle search space realizing bent function
produces maximal inseparability in state of the topk qubits
when used as a search oracle.7 Thus, an oracle realizing
an affine function will correspond to, in the ideal case, a
deterministic measurement result when interfered throughH
gates.

Theorem11: Consider oracleO for which testT3 obtains
only separable (local) measurements (requires no disentan-
glement).O necessarily realizes only affine functions overk
variables.

Proof: The formal proof involves complex notation but
is based on the straightforward generalization of the following
example:

Assume input variables(x1, x2, x3). The expression

|000〉 (+1) + |001〉 a2 + |010〉 a1 + |011〉 a1 · a2 +

|100〉 a0 + |101〉 a0 · a2 + |110〉 a0 · a1 +

|111〉 a0 · a1 · a2 (22)

corresponds to a classical truth table with
∏
ai expressions

corresponding to sum-of-product canonical coefficients. As-
suming the encoding

en(+1) = 0, en(−1) = 1, (23)

7It is interesting to note that a quantum computer can distinguish all affine
oracles with a single query; an exponential speed up over theclassical case,
with no known use yet, other than testing linear systems.

arithmetic expressions likea1 · a2 are changed to Boolean
values likeen(a1)⊕en(a2). Normally one would consider the
case thatb0 = 0 for linear functions. Because of global phase
b0 may take either binary value corresponding to all affine
functions onk variables. It is well known from the canonical
SOP to PPRM conversion method that PPRM =b0 · 1⊕ (b0⊕
b1) · x3 ⊕ (b0 ⊕ b2) · x2 ⊕ (b0 ⊕ b1 ⊕ b2 ⊕ b3) · x2 · x3 ⊕ (b0 ⊕
b2 ⊕ b4 ⊕ b6) · x1 · x2 ⊕ (b0 ⊕ b4) · x1 ⊕ (b0 ⊕ b1 ⊕ b4 ⊕ b5) ·
x1 · x3 ⊕ (b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b7) · x1 · x2 · x3,
wherebi are coefficients of minterms, i.e.b0 is a coefficient
of |000〉, b1 is a coefficient of|001〉, etc. The minterms of
canonical SOP obtain thus the following encoding (symbol
· is arithmetic multiplication)8 b1 = en(a2), b2 = en(a1),
b3 = en(a1 · a2) = en(a1) ⊕ en(a2) = b2 ⊕ b1, b4 = en(a0),
b5 = en(a0 · a2) = en(a0) ⊕ en(a2) = b4 ⊕ b1, b7 = en(a0 ·
a1 · a2) = en(a0) ⊕ en(a1) ⊕ en(a2) = b4 ⊕ b2 ⊕ b1.

Applying now the encoding from Eqn. 23 and substituting
into the above PPRM one obtains PPRM =b0·1⊕(b0⊕b1)·x3⊕
(b0⊕b2)·x2⊕[(b0⊕b1⊕b2)⊕(b2⊕b1)]x2 ·x3⊕[(b0⊕b2⊕b4)⊕
(b4⊕b2)]x1 ·x2⊕(b0⊕b4)x1⊕[(b0⊕b1⊕b4)⊕(b4⊕b1)]x1 ·x2⊕
[(b0⊕b1⊕b2)⊕(b2⊕b1)⊕(b4)⊕(b4⊕b1)⊕(b4⊕b2)⊕(b4⊕b2⊕
b1)]·x1 ·x2 ·x3 = b0 ·1⊕(b0⊕b1)x3⊕(b0⊕b2)x2⊕(b0⊕b4)·x1.
Thus, PPRM =b0⊕(b0⊕b1)x3⊕(b0⊕b2)x2⊕(b0⊕b4)x1 which
corresponds to all affine functions on variablesx1, x2, x3.

If oracleO contains functionf(x1, ..., xk) that is not affine,
a modification to any one of the affine functionsAi(x1, ..., xk)
must be made. This can be done by adding a circuit (such as
QBIST32(x1, ..., xk)) and can be thought of as EXORing it
with some function, like this:

f(x1, ..., xk) ⊕BISTi(x1, ..., xk) = Ai(x1, ..., xk). (24)

Thus, f(x1, ..., xk) = BISTi(x1, ..., xk) ⊕ Ai(x1, ..., xk).
The general disentanglement procedure is as follows:

1) Each functionAi(x1, ..., xk)⊕BISTi(x1, ..., xk) is re-
alized as an ESOP.

2) BISTi(x1, ..., xk) with the minimum cost is selected.
3) FunctionBISTi(x1, ..., xk) is added (XORed) afterf

asQBIST32.
Theorem12: The minimum number of product terms in the

ESOP realization of the BIST circuit ESOP[BIST(x1, ..., xk)⊕
Ai(x1, ..., xk)] whereAi is an arbitrary affine function on
variablesx1, ..., xk is equal top− k wherep is the minimal
number of product terms in ESOP(BIST(x1, ..., xk)).

Proof: Given is the minimal ESOP, denoted by
ESOP(BIST), of functionBIST (x1, ..., xk). Let A be an
arbitrary affine function on variablesx1, x2, ..., xk and c0 ⊕
c1 · x1 ⊕ ...ck · xk, where ci ∈ {0, 1}. There are two of
these functions that have the maximum number of variables
equalingk; x1 ⊕ x2 ⊕ ...xk and 1 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xk =
x̄1 ⊕ x2 ⊕ ...xk. Assuming that ESOP(BIST) has the minimal
number of product terms, the following cube pair types must
not be included in it:xi ·xj⊕xi, xi ·xj⊕xi ·x̄j , xi ·x̄j⊕x̄i ·xj ,
xi·xj⊕x̄i·x̄j . The only product terms possible in ESOP(BIST)
are necessarilyxi, x̄i, xi ·xj , xi · x̄j , xi⊕xi ·xj · ... ·xk . If one
writes ESOP(BIST⊕Ai) as ESOP(BIST )⊕ x1 ⊕ x2 ⊕ . . . xk

provided all the best merging cases, then all variables (literals)
from A are merged, each of them with some literal from
ESOP(BIST), like this:xi ⊕ xi = 0, x̄i ⊕ x̄i = 0 andxi ⊕ x̄i.
Each of these cases will decrease the ESOP cost by one.

8This is also called the polarity table in which one considersa Boolean
function over variables{−1, 1} instead of{0, 1}. In this case, XOR (⊕)
over {0, 1} is equivalent to real multiplication over{−1, 1}.
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Merging xi with xi · xj = xi; xi ⊕ xi · xj = xi · x̄j will
not change the ESOP cost. All other mergings will increase
the cost of the ESOP(BIST⊕Ai) with respect to ESOP(BIST).
Thus, the number of terms in the ESOP can be decreased by
no more thank. Observe also that the highest decrease of cost
is when BIST is already an affine function.

As proven by Gaidukov [34], the worst case complexity
of an ESOP expression fork variables is29 · 2k−7 product
terms for k > 6. It was however shown by exhaustive
search [36] that for functions of four variables only24 reach
the maximum bound of6 (counting constant1 as a term) and
only 3888 functions have5 terms. There exist several ESOP
minimizers that can efficiently realize large functions andgive
exponentially good results for arithmetic functions. In terms
of exact solutions, the best ESOP minimizer can be found
in [35].

Many useful functions (such as adders) are nearly linear.
The method of extraction introduced for testsT3 andT4 may
be considered as a discussion of controllability of quantum
systems when the concept of test is an issue. A maximally non-
linear Boolean function is known as a bent function, where the
measurement of nonlinearity depends on Hamming distance.
Bent functions have several applications in cryptography.Their
use in ciphers and a discussion of the difficulties of finding a
bent function can be found in [37] and the references therein.

G. Possible Extensions and Applications
An observation found in this study is that in some switching

circuits, both phase terms and product terms may need to
be changed in the finalQBIST×2 stage to make the states
description local and extract information. Nonetheless, the
principle of our algorithm is general and with an adjustment
has application to arbitrary structures ofn × n quantum
mechanical switching networks (as opposed to single output
quantum-realized functions). Respective test patterns for n×n
networks should now also be developed. For example, the
methods of making two non-adaptive oracle calls presented
in [38] are easily adapted to reduce the number of classical
tests atleast twice.

An alternative approach based on the theory outlined in tests
T3 andT4 utilizes highly controllable test vectors. The growth
in additional circuitry is thus replaced with linear growthin
the number of experiments needed. The total cardinality in the
number of experiments in this second method is(5+4⌈k/2⌉).
There is little added growth in circuit complexity. TestsT3 and
T4 are replaced with first repeating the circuitry needed in test
T1. (All replaced tests of course have state|−〉 at the target.)
Next, starting with the top2 qubits (Fig. 12), an EPR pair is
generated to test the oracle and mirrored with a measurement
in the Bell basis. This is then moved down all the topk qubits
(Fig. 13) a total of2⌈k/2⌉ times. The EPR generating circuitry
is used to create inputs that are products of state|01〉±|10〉 and
|1〉. These must be repeated with both positive and negative
versions to satisfy Axiom 4. This results in something in
classical test known aswalking-a-zero[26] (except quantum
mechanics allows two zeros to be walked at the same time).
This alternative approach however, does not probe the oracle
under the types of inputs experienced when used in a Grover
search algorithm. It does however illustrate that the algorithm
can be modified to reduce the complexity of the stages needed
to extract information. Alternative applications of the methods
presented in this paper also exist.

Disputing the implications of this testing method, we en-
vision that after quantum systems become more controllable,
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Fig. 12. Alternative setup for testsT3 andT4: Test |0111〉 ± |1011〉. The
target of eachk-CN gate acts on state|−〉. No entanglement is added in either
test, since all relative phases will result in a product measurement in the Bell
basis.
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Fig. 13. Alternative setup for testsT3 andT4: Test |1101〉 ± |1110〉.

methods such as ours will find more frequent use. The first idea
will be to use the proposed test set with one key exception.
Instead of computational basis measurements, perform tomo-
graphic state reconstruction and apply the distance measures
given in Ref. [11]. In the future these distance measures (ona
tailored test set) will be replaced with computational basis
measurements—as proposed in this study. It is interesting
that our method provides a non-classical speed increase when
an ensemble quantum computer is used (NMR for instance
or a machine capable of generating observable averages as
output). Classically, the lower bound of this circuit class
was found to be(k + 4 + 2ne) by Reddy [2] (where the
2ne term depends on the function being realized). However,
the classically impossible speed increase of this method was
only an interesting counterpart of our main goal. Our goal
was predominantly to generalize the classical test theory and
combine this theory and methodologies with quantum process
validation.

IV. CONCLUSION

This work reduced the classical test problem by utilizing
entanglement as a controllability resource in Sec. III. Quantum
effects were used to test multiple classical degrees of freedom
concurrently, hence the latter is used to verify the former and
quantum process validation was reduced to a linear growth of
(5 + 4⌈k/2⌉) in experiment count. When testing an oracle,
states become non-local due to the phase change undergone
by all true minterms as seen in testsT3 andT4 in Sec III-D
and III-E. It was shown in Sec. III-F that all affine oracles
generate no net entanglement when used as a search oracle,
while an oracle realizing a bent function requires the greatest
effort to disentangle the state and return the system to a local
product state. Since there are2k+1 affine functions, Sec. III-F
addressed the question of how close an arbitrary state is to a
factorable state with phase terms that represent the spectrum
of an affine function. The distance in many cases is close, but
the upper bound is∼ Θ(N − k). Linear and Affine functions
are very easy to test when realized quantum mechanically.
Based on the potential limitations highly controllable test
vectors were developed in Sec. III-G that do not undergo phase
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induced entanglement when propagation though a phase oracle
occurs. This test set is an application of our main approach.

In a correspondence from Agrawal in1981 [39], fault
detection probability was shown to be the highest when
the information output of a circuit is maximized. However,
the information content into a classical circuit is fixed. An
interesting result found in our study is that when a quantum
information source is used to increase information input,
the probability of detecting a fault is also increased. An
information theoretic approach to quantum fault testing might
lead to further useful insight into the quantum test problem.

The classical test problem is typically defined to be in the
classNP. Other circuit structures will be shown to be expo-
nentially easier to test using our methods. The high testability
of a quantum information processing device, may well prove
in fact to be yet another supporting argument to study quantum
information theory. Of course, the overwhelming failure rate
experienced with constructing quantum circuits at the timeof
this writing causes us to call the results of this paper somewhat
ironic.
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