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ABSTRACT 

Quantum computing is one of the most promising 

emerging technologies of the future. Reversible circuits are 

an important class of Quantum circuits. In this paper, we 

investigate the problem of optimally synthesizing four-

qubit reversible circuits. We present an enhanced bi-

directional synthesis approach. Due to the super-

exponential increase on the memory requirement, all the 

existing methods can only perform four steps for the CNP 

(Control-Not gate, NOT gate, and Peres gate) library. Our 

novel method can achieve 12 steps. As a result, we 

augment the number of circuits that can be optimally 

synthesized by over 5*10
6
 times. Moreover, our approach 

is faster than the existing approaches by orders of 

magnitude. The promising experimental results 

demonstrate the effectiveness of our approach.  

Categories and Subject Descriptors
M1.8 [Design Methodologies]: Logic Design 

General Terms
Design, Theory 

Keywords
Reversible Logic, Quantum Circuits, Minimization, Algorithm 

1. INTRODUCTION 

Quantum computing is one of the most promising 

emerging technologies in future. Reversible circuits are an 

important class of Quantum circuits.  There has been 

recently some research effort on synthesis of reversible 

circuits [1-6]. Exact minimal results were given only for 3-

qubit circuits. There are no exact results on 4-qubit circuits 

and all published results for more than 3-qubit circuits are 

only heuristics with no evaluation of distance from the 

minimal solution. Moreover, even these heuristic results are 

usually slow since they depend on algorithms such as 

evolutionary or simulated annealing. It has been known that 

any 3-bit reversible gate can be synthesized using the CNT 

gate library [1]. In [14], an optimal approach was proposed 

for synthesizing 3-bit reversible gates with an average of 

5.63 gates. In [2], a synthesis method of optimal circuits 

was proposed.  

Group theory has been demonstrated as a powerful tool 

for analysis in many applications. GAP [11] is a 

mathematical analysis package for group theory 

applications. It is composed of a set of efficient and fast 

algorithms for manipulating set and group operations. It 

was used to prove the universality of some given sets of 

reversible gates [8, 13]. Recently, more and more works on 

using group theory for reversible logic synthesis are being 

proposed [2, 3, 8, 13, 14, 15].  

In this paper, we investigate the problem of optimally 

synthesizing four-qubit reversible circuits. We present an 

enhanced bi-directional synthesis approach. Due to the 

super-exponential increase on the memory requirement, all 

the existing methods can only perform four steps for the 

CNP library [15]. Our novel method outperforms them 

being able to execute 12 steps. It is also orders of 

magnitude faster than the existing approaches. The number 

of circuits that can be optimally synthesized has increased 

over 5*10
6
 times. The promising experimental results prove 

the effectiveness of our approach. 

2. BACKGROUND 

Definition 1: Let B = {0, 1}. A Boolean logic function f

with w input variables, 
1B ,

2B , …, 
wB , and w output 

variables, 
1P ,

2P , …, 
wP , is a function f: wB → wB , where 

<
1B ,

2B , …, 
wB >∈ wB  is the input vector and < 

1P ,
2P , …, 

wP  >∈ wB   is the output vector. A Boolean logic function f

is reversible if it is a one-to-one, onto function (bijection). 

A Boolean reversible logic function with w inputs and w

outputs is also called a w×w reversible gate.

Now we introduce permutation group and its 

relationship with reversible functions.  

Definition 2: Let M = {1, 2,…, n}. A bijection (one-to-one, 

and onto mapping) of M onto itself is called a permutation 

on M. The set of all permutations on M forms a group [10], 

under composition of mappings, called a symmetric group 

on M, denoted by Sn [9]. If M is a set of all 2
w
 binary 
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vectors with length w, the symmetric group on M is 

denoted by
wS

2
. A permutation group is just a subgroup 

[10] of a symmetric group.  

A mapping a: M M can be written as a =

niii

n

,,,

,,2,1

21

. We use another notation, writing it as a 

product of disjoint cycles [9]. For example, 
7,8,6,5,3,4,2,1

8,7,6,5,4,3,2,1

will be written as (3, 4)(7, 8). The identity mapping ( ) is 

called the unity element in a permutation group. As 

convention, a product a*b of two permutations a and b

means applying mapping a before b.

To establish a one-to-one correspondence between a 

reversible function and a permutation, we encode a w-bit 

binary input (output) vector 
211 ,...,, >< − BBB ww

 as a 

unique integer value 

),,( 1BBindex w
= 12...22 12

3

1

21 +⋅++⋅+⋅+ −w

wBBBB .

We add one due to the following two reasons. First, in most 

of the permutation group books, M begins from one, 

instead of zero. Second, in GAP, M also begins from one, 

instead of zero. Therefore, we have the following relation: 

211 ,...,, >< − BBB ww
= ),,( 1BBindex w

−1. Using the 

integer coding, we consider a permutation as a bijection 

function f: {1, 2, ... , 2
w
} → {1, 2, ... , 2

w
}. Cascading two 

gates is equivalent to multiplying two permutations.  In 

what follows, we will not distinguish a w×w reversible gate 

from a permutation in
wS

2
. If A and B are subsets of a 

symmetric group, then A*B is defined as {a*b | a∈A∧b∈
B}. Let |S| be the size of S.

Definition 3: w_library is the set of w×w reversible gates 

which are used to synthesize w×w reversible gates, denoted 

as w_L, or simply as L. What a w×w reversible circuit g can 

be synthesized by L means that there are some gates in L 

such that g is the product of these gates. We use T(L) to 

denote a set of all w×w reversible circuits that can be 

synthesized using gates from library  L.

Definition 4: A minimum length l(a) of any element a in 

T(L) means that there exist l(a) gates in L (the gates can be 

of the same type) such that a is a cascade of these l(a)

gates, and there does not exist k gates in L such that k < l(a)

and a is a cascading of these k gates.  

3. ALGORITHM 

In this section, we will answer these questions: Given a 

library L and an arbitrary reversible gate g, can g be 

synthesized by using gates from L? If yes, how to 

synthesize g with minimal length in limited memory space?  

When we use breadth-first search algorithms [15] to 

deal with 4-qubit reversible problems, the memory 

becomes quickly exhausted. In our computer, the breadth-

first search algorithm can only go 4 steps (the depth of 

search with corresponds to the length of the reversible 

cascade) when we use library CNP (Control-Not gate, NOT 

gate, and Peres gate), and only about 1 million 4-qubit 

reversible functions can be realized (see Table 5 in section 

4). The breadth-first search method is a forward search 

from identity until the specification, the given reversible 

circuit g is found. Now we propose a bi-directional search 

method: a forward search from identity and a backward 

search from the specification g. The idea is to compute the 

inverse of the library L, L-1 
= {a|a

-1∈L}. Set s is the 

maximum number of steps which a computer can go when 

using breadth-first search method in the computer. 

Compute the forward sets Af(1) = L, …, Af(s) = Af(s-1)*L, 

and the backward sets Ab(1) = L-1
*g, …,    Ab(s) = L

-

1
*Ab(s-1). If Af(j)∩Ab(j-1) = φ, but Af(j)∩Ab(j) ≠ φ, then 

the minimum number of steps of g is 2j. If Af(j)∩Ab(j) = φ,

but Af(j+1)∩Ab(j) ≠ φ, then the minimum number of steps 

of g is 2j+1.  In the bi-directional search approach, the 

needed memory is only doubled, but the steps are doubled 

as well, up to 2*s. The number of the reversible circuits 

which can be constructed by library L is dramatically 

increased with the number of steps. The bi-directional 

algorithm is also significantly faster, because the number of 

the searched reversible circuits is much less than the 

forward search only (See table 4). For instance, when we 

synthesize a circuit with minimum length 4, we need to 

remember |Af(4)| = 1115774 permutations if we use 

forward search. But if we bi-direction search, we only need 

to remember |Af(2)|+|Ab(2)| = 2734 permutations.  We use 

a simple strategy to enhance the bi-directional method such 

that the length or cost grows up to 2*s+t (t ≤ s). In a 

forward search one begins from an identity. In our 

enhanced bi-directional search method, we form a loop: in 

the forward search, we search first from the identity, then 

from all elements in B(1), then B(2), …, then B(t). The 

backward search remains unchanged. The statement in the 

loop is the bi-directional search.  When g has not been 

represented, we do not need to keep the data, so the 

memory is not increased. 

Algorithm: Bi-direction Search (BDS) 

Input: L, g; 

Output: leng, h1, h2, …, hleng

1. Af(0)={()}; Ab(0)={g}; Flag=0; i=1; 

2. While Flag=0 do 

3.       Af(i)=Af(i-1)*L; Ab(i)=L
-1

*Ab(i-1); 

4.       If Af(i)∩Ab(i-1)≠φ then  

5.            Flag=1; leng=2*i-1; 
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6.            Select a in Af(i)∩Ab(i-1), find h1, h2, …, hi,

hi+1, …, h2*i-1 in L such that a=h1*h2*…*hi=g*(h2*i-1)
-

1
*…*(hi+1)

-1
;

7.       Elseif  Af(i)∩Ab(i)≠φ then 

8.            Flag=1; leng=2*i; 

9.            Select a in Af(i)∩Ab(i), find h1, h2, …, hi, hi+1,

…, h2*i in L such that a=h1*h2*…*hi=g*(h2*i)
-

1
*…*(hi+1)

-1
;

10.      Else i=i+1; 

11. End while. 

Theorem 1: In the algorithm BDS, the parameter leng is 

the minimum length l(g), and g=h1*h2*...*hleng is the 

minimum length  design of circuit g, where hj∈L for j=1, 2, 

…, leng. 

Proof: According to the algorithm BDS, g=h1*h2*...*hleng,

where hj∈L for j=1, 2, …, leng. Thus l(g)≤leng. In the 

following, we will prove l(g)=leng. Then the proof of the 

theorem finishes. 

Case 1. Suppose l(g)=2k-1, an odd number. Then there 

exist b1, b2, …, b2k-1 ∈L such that 

g=b1*b2*…*bk*bk+1*…*b2k-1.

So g*(b2k-1)
-1

*…*(bk+1)
-1

=b1*b2*…*bk. According the 

computation of Af(k) and Ab(k), b1*b2*…*bk ∈Af(k),  

g*(b2k-1)
-1

*…*(bk+1)
-1∈Ab(k-1). Thus leng ≤ 2k-1=l(g). 

Combining with l(g)≤leng, leng=2k-1=l(g). 

Case 2. l(g)=2k, an even number. Similar to case 1, 

leng=l(g).  

4. Synthesis of Non-Reversible logic circuit or 

odd reversible circuit 

This section shows how to realize any n-qubit non-

reversible logic circuit or odd reversible circuit by using 1-

qubit NOT gate, 2-qubit CNOT gate and 3-qubit Peres gate 

(CNP). 

Lemma 1: All even n-qubit reversible circuits can be 

realized by CNP. 

Proof: We know that all even n-qubit reversible circuits 

can be realized by 1-qubit NOT gates, 2-qubit CNOT gates 

and 3-qubit Toffoli gates (CNT) [2]. Toffoli gate can be 

realized by a Peres gate cascaded with a Feynman gate. 

Therefore, all even n-qubit reversible circuits can be 

realized by CNP.              €

Now we deal with any logic circuit f, a non-reversible 

logic circuit or odd reversible circuit.  

Theorem 2: Suppose that f is a non-reversible logic circuit. 

There are t inputs B1, …, Bt, s outputs P1, …, Ps (s ≤ t). The 

truth table of f is M. In M there are at most r rows that are 

the same. Then by adding log2r -(t-s) (if log2r  > (t-s), 

else 0) inputs with constant zero, f can be realized by CNP 

with log2r  garbage outputs. 

Proof: Consider the case: t = s = n, r = 2. We add one qubit 

for input and output, and consider a new (n+1)-qubit circuit 

with truth table (Table 1): 

Table 1: added Input and Output of function f 

Input Output 

Bn+1 Bn, …, B1 Pn+1 Pn, …, P1

0

0

11

00

C1 N1

1

1

11

00

C2 N2

The column vector 

2

1

C

C
is a binary vector, and the 

number of zeros and the number of ones are the same. We 

set N1=M, and construct C1, C2 and N2 such that the rows 

of matrix 

22

11

NC

NC
 is an even permutation of the rows of 

the input matrix. Then the (n+1)-qubit circuit is an even 

reversible circuit. According to Lemma 1, this circuit can 

be realized by CNP. Therefore, by adding a zero constant 

qubit, the circuit f can be realized by CNP. 

     Similarly the other cases can be dealt with.         €

5. EXPERIMENTS 

In this section, we present some experiments on 4-

qubit synthesis by using CNP (Control-Not gate, NOT gate, 

and Peres gate). All experiments are running on an 

850MHz Pentium® III computer. 

We first introduce how many permutations will be in 

the library CNP (Control-Not gate, NOT gate, and Peres 

gate) when we use GAP. 

Not gates Ni: Pi=Bi’, Pm=Bm, if m≠i. (The subscript number 

i means the 1-qubit converter gate connected to wire i, see 

Fig.1) There are four connections, thus there are four 
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permutations of NOT gate in our permutation library. For 

instance, 

N1=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16). 

                          

Figure 1: Not gate Ni

Control-Not gate Ci,j: Pi=Bi⊕Bj, Pm=Bm, if m≠i.  (The 

subscript numbers i and j mean that this 2-qubit Control-

Not gate is connected to the wire i and j, and the XOR is 

connected to the wire i, the first number of these subscript 

numbers, see Fig.2) There are 12 connections, thus there 

are 12 permutations of Control-Not gate in our permutation 

library. For instance, C2,3 =(5,7)(6,8)(13,15)(14,16). 

                         

Figure 2: Control-Not gate Ci, j 

Peres gate Pi,j,k: Pi=Bi⊕BjBk, Pj=Bj⊕Bk, Pm=Bm, if m≠i, j.  

(see Fig.3) There are 24 connections, thus there are 24 

permutations of Peres gate in our permutation library. For 

instance, P2,3,4 =(9,13,11,15)(10,14,12,16). 

          
                            

Figure 3: Peres gate Pi,j,k built from Toffoli and 

Feynman gates.

Only half of all 4-qubit reversible circuits (even 

reversible circuits) can be realized by CNP (which is the 

alternative group A16). The number |A16| is about 1 trillion 

(10
13

). In our computer, the traditional algorithm with only 

forward search can only go 4 steps, and only about 1 

million 4-qubit reversible circuits can be realized (see 

Table 3). When using enhanced bi-directional search, we 

set t=2 for time balance. The algorithm can use up to 8

steps. The number of reversible circuits with the minimum 

length becomes much larger. Denote Bf(k)=Af(k)-Af(k-1), 

the set of circuits with minimum length k. From the second 

step, the ratio of |Bf(j+1)|/|Bf(j)|, j=1,2,3, is 33.2, 29.9, 27.1 

(see Table 2). Therefore, before the number of the 

represented circuits reaches half of the all even circuit 

number |A16|, it is reasonable to assume that the ratio 

|Bf(j+1)|/|Bf(j)| is about 10% reduced forward. Based on 

this assumption, the estimation of the circuits with the 

minimum length represented by bi-direction method is 

24*21*18*16 millions = 1.4*1011
, about 1.4*10

5
 times 

more than using only the forward search. Using the 

enhanced bi-direction search, we calculate two more steps. 

1.4*10
11

*14*12 = 2.4*10
13

 bigger than half of | A16 |, which 

means over 50% of even 4-qubit reversible circuits can be 

optimally realized within the length of 10 (Table 3); after 

step 10, and the size of Bf(j) will decrease; and the 

maximum minimum length is less than 20. 

Table 2: Number of circuits with minimum length k

k 1 2 3 4 

|Af(k)| 41 1367 40967 1115774 

|Bf(k)| 40 1326 39600 1074807 

|Bf(k)|/|Bf(k-1)|  33.2 29.9 27.1 

Table 3: Number of minimum synthesized circuits 

 Forward search  

(one direction) 

Enhanced  Bi-direction   

search   (s = 4, t = 2) 

Lib. length # circuits length # circuits 

CNP 4 1.0*106 10 > 5*1012

By using the enhanced bi-direction search, we present 

two 4-qubit reversible circuits with minimum lengths 8 and 

9, respectively. 

Example:  Given f1 as: 

P=AB+AC’+A’CD’ 

Q=A’C+B’CD’+BCD+BC’D’+BCD 

R=BD+A’B’C+ABC+AC’D, 

S=CD’+B’D. 

We get the minimum length of f1 is 8 and: 

f1=CB,C*PC,B,D*PB,D,C*PC,B,D*CA,D*PC,A,D*PA,B,C*PB,A,D 

Bk

Bj

Bi

Pk

Pj

Pi

Bi

Bj

Pi

Pj

Bi Pi
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A

B

C

D

P

Q

R

S

Figure 4: Optimal Realization of f1

Given f2 as: 

P=AC’+AB’D+A’BC+A’CD’ 

Q=BD’+CD’+A’B’C+AB’C’D 

R=BD+AC’D+ABC+A’B’C 

S=AC+CD’+ABD+A’B’C’D. 

The minimum length of f2 is 9 and we have: 

f2=PB,A,D*PA,B,D*PB,A,C*PC,A,D*CD,B*PB,C,D*PD,C,B*PA,D,C*CB,D 

A

B

C

D

P

Q

R

S

Figure 5: Optimal Realization of f2

Our enhanced bi-directional search (EBS) is more 

efficient and powerful than a single forward search (FS). 

Not only the number of minimum synthesized circuits that 

can be handled by EBS is 5*106
 times bigger than that by 

FS, but also the speed of EBS is much faster than that of FS 

(see Table 4). Time is measured in seconds. 

Table 4: Time of minimum synthesis 

 Forward search Enhanced  Bi-direction   

search   (s = 4, t = 2) 

Input 

circuits 

length time length time 

g1 4 188 4 1

g2 exploded  5 4 

g3 exploded  6 5 

f1 exploded  8 508 

f2 exploded  9 1593 

Where, the corresponding permutations of the input circuits 

g1 , g2 and g3 are:

g1 = (11,14,16)(12,13,15),  

g2 = (10,11,13,16)(12,15), 

g3 = (9,12,14)(11,16,13). 

6. CONCLUSION 

We presented an efficient bi-direction synthesis 

approach to the synthesis of binary reversible circuits using 

CNP library. Our proposed method outperforms all the 

existing methods in both speed and scalability.  For the first 

time, we are able to find exact minimal solutions to some 

subset of 4-variable functions. The number of circuits that 

can be optimally synthesized is increased over 5*106
 times 

by our method comparing to standard search algorithms.  

The experimental results demonstrated the effectiveness of 

our approach. The method can be also used to invent new 

reversible 4-qubit gates to be next realized in quantum [13] 

and used in hierarchical heuristic-driven synthesis [5]. 
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