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 Abstract 
It is believed that quantum computing will begin to have a 
practical impact in industry around year 2010. We 
propose an approach to test generation and fault 
localization for a wide category of fault models. While in 
general we follow the methods used in test of standard 
circuits, there are two significant differences: (2) we use  
both  deterministic and probabilistic tests to detect faults, 
(2) we use special  measurement gates to determine the 
internal states. A Fault Table is created that includes 
probabilistic information. “Probabilistic set covering” 
and “probabilistic adaptive trees” that generalize those 
known in standard circuits, are next used.

1. Introduction 

Quantum computers will reach a lower limit as to how 
much heat the computing device can generate. They will 
solve some problems never possible with standard 
computers and they will be super-fast and super-small in 
size for standard applications. Quantum logic gate 
[1,3,4,5,6,8,9,10,11,14,15,30] is a device which performs 
an operation described by a unitary matrix on selected 
qubits (quantum bits, [10]). Binary quantum gates process 
qubits which can have either a |0> or |1> or both |0> and 
|1> at the same time to varying extents and hence exhibit a 
superposition state |0>+ |1> where | |2 + | |2 = 1,  and 

 are complex numbers such that measurement probability 
of |0> is | |2 and measurement probability of |1> is | |2.
|X|2 is a result of multiplication of complex number X and 
its conjugate. When the qubit state is observed or 
measured, it becomes invariably either |0> or |1>. 
Quantum gates and circuits exhibit the additional property 
of reversibility as their mechanism of action is through 
Schrödinger’s evolution. Thus, test methods developed for 
permutative (reversible) circuits [11,24] are to some extent 
helpful for quantum circuits as well. Matrices of all 
quantum operations are unitary (and usually have complex 
numbers as entries). Matrix X is unitary when X * X+ = I, 
where I is an identity matrix and X+ is a adjoint matrix of 
X. Adjoint matrix of X is conjugate transpose matrix of X. 

Permutative circuits have only basis states and their 
unitary matrices are permutative [10]. 

The Test Generation Problem is to find a sequence of 
input vectors (tests) that applied to the circuit will either 
confirm that the circuit is correct or will determine that it 
has one or more faults from certain library of faults. 
When only a single fault in a circuit is assumed, we use a 
single-fault model [11]. In a multiple-fault model there is 
more than one fault (error) in the circuit. Fault 
localization problem is to locate the faults that are 
distinguishable, it means show the type of fault and where 
it is located in the netlist. 

The basic quantum gates that are used in quantum 
circuits in this paper are Inverter (NOT, Pauli X rotation), 
Hadamard, Toffoli, Feynman, CV (controlled square root 
of NOT) and CV+ (controlled square root of NOT Adjoint 
gate). These gates are selected for explanation only, since 
they are truly quantum and universal. Their subset 
{NOT,CV,CV+} allows creating all permutative binary 
quantum gates by compositions. However, our test 
generation and fault localization methods (see also 
[16,17,18,24,26,27] for more details) are for arbitrary 
(binary, ternary or quaternary) quantum gates and for 
broad category of fault models. Our software can be 
applied for both binary and multiple-valued quantum 
circuits and also for standard CMOS reversible circuits. 
We allow to use many fault models  (including stuck-at 
basis states, stuck-at superposition states, bridging-AND, 
bridging-OR, shift of value, phase shift, gate change, gate 
removal, local measurement, and many others), some of 
which are only for non-quantum realization of reversible 
logic, such as CMOS. In principle, from our software 
point of view any fault model can be used to any type of 
circuit realization technology, but in practice we just do 
not use stack-at models for quantum circuits, or phase 
fault models for CMOS reversible circuits. In addition, 
when we test quantum circuits, we can insert additional 
gates that change the measurement base. This way, 
probabilistic testing can be changed to deterministic 
testing, at the price of measurement gate modification 
(these additional gates are inserted just before the 
measurement gates). 
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Pioneering work in the area of testability of reversible 
logic [11] showed that such circuits are much better 
testable than irreversible circuits. This is because every 
test covers half of the faults and every fault is covered by 
half of the tests [11]. The reversible circuits are then more 
“transparent” to faults than  standard circuits, making the 
reversible circuits well observable and controllable [24]. 
It was also shown [24] that fault localization in reversible 
circuits is easier. The reversibility property notably 
simplifies all testing-related problems for reversible 
circuits compared to irreversible circuits [11,24]. Because 
permutative matrices are a special case of unitary 
matrices of quantum circuits, one may expect  similar 
properties for quantum circuits. This is partially true (for 
some fault types the fault tables are dense) but some 
special properties of reversible logic for stuck-at model 
[11,24] do not hold anymore.  

The preliminary results on testing binary quantum 
circuits are in [16,17,18] and on fault localization of 
quantum circuits in [26,27]. The fundamental idea of test 
generation is straightforward and similar to classical test 
theory. Test generation is done using a quantum circuit 
simulator. First, the good circuit is simulated with basis 
binary input signals (tests). Next every possible quantum 
fault is inserted (our fault model is inserting arbitrary 
matrix in place of fault, this allows to simulate many 
different types of faults) and the circuit with fault is 
simulated in Hilbert space (no measurement). A local 
entanglement or local measurement can be inserted as a 
fault model.  A gate can be also removed as a fault model. 
From the simulator, all possible complex amplitude 
values before measurement are calculated for all inserted 
faults. Superposed input bits (as through a vector of 
Hadamard gates – Hadamard Transform – used in 
quantum algorithms such as Deutch-Jozsa [10] can be 
also used [18]. Additional gates can be inserted just 
before the measurement gates to change the measurement 
base. Next, all the measurement values corresponding to 
complex amplitude values are calculated with their 
probabilities.  The comparison of a measurement from the 
unitary matrix of a correct circuit and measurement(s) 
from a circuit with fault determines those input 
combinations (tests) that produce different measurement 
values. Observe that in contrast to standard testing and 
reversible circuits testing, there are four types of faults in 
quantum domain: (1) faults that can be detected 
deterministically by standard measurement, (2) faults that 
cannot be detected (like global phase faults), (3) faults 
that can be detected by repeated application of tests; these 
faults can be detected only with certain probability, (4) 
faults that can be detected deterministically by using 
special measuring gates. These categories are not 
necessarily disjoint. Thus, in general, quantum testing is 
probabilistic testing, but there is a trade-off between the 

ratio of probabilistic to deterministic tests and the number 
of measurement bases. 

The paper is organized as follows. Section 2 discusses 
basic concepts. Section 3 discusses fault models. Section 
4 presents testing of binary quantum circuits. We present 
briefly the software to generate minimum quantum test 
set and the adaptive tree for fault localization in quantum 
circuits in section 5. Section 6 concludes the paper. It is 
assumed that the reader is familiar with classical testing 
fundamentals, basic quantum gates, unitary matrix 
calculus of quantum mechanics and simulation. 
Information about test generation and fault localization 
can be found in [7] and quantum textbooks like [10], as 
well as papers [14,15] are recommended. 

2. Preliminaries. 

By V we denote the “square root of NOT” gate. This is 
not a permutative gate, but a truly quantum gate. It means, 
applied to basis states it creates superposition states on its 
output. The conjugated transpose of a unitary matrix X is 
called the adjoint of matrix X and denoted by X+. By V+

we denote a gate that has a unitary matrix which is a 
adjoint of V.  Therefore, the adjoint of V is called “square 
root of NOT adjoint” and has the unitary matrix UV+ of 
gate V+. Design of many permutative gates is based on 
(controlled) cascading of V and V+ gates. Cascading two 
square root of NOT gates acts as a basic inverter gate (see 
Figure 1a). The operation of the circuit from Figure 1a 
can be explained by the matrix multiplication. 
Multiplying the unitary matrix UV by the input state we 
obtain the vector ½ [1+i 1-i] T = V0, Figure 2a. By 
multiplying V by this vector we obtain vector [0 1] T = 
|1>.

Figure 1 (a) Cascading V gates creates an inverter. 
Measurement of intermediate state would give  |0> and 
|1> with equal probabilities, (b) Controlled-V  gate, (c) 
its unitary matrix, (c) Controlled-V+ gate and its unitary 
matrix.
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Let us now try to find, by matrix/vector multiplication, 
all possible states that can be created by applying all 
possible serial combinations of gates V and V+ to states 
|0> , |1> and all states created from these basis states 
(Figure 2).  A qubit |0>, given to a “square root of NOT” 
gate (Figure 2a) gives a state denoted by |V0>. After 
measurement this state gives |0> and |1> with equal 
probabilities ½.   Similarly all other possible cases are 
calculated in Figure 2b – h.  As we see, after obtaining 
states |0>, |1> |V0> and |V1> the system is closed and no 
more states are generated. Therefore the subset of 
(complex, continuous) quantum space of states is 
restricted with these gates to a set of states that can be 
described by a four-valued algebra with values  {|0>, |1>, 
|V0>, |V1>}.

Figure 1b shows a Controlled-V gate (Controlled-
Square-Root-of-Not, denoted also by CV) and its unitary 
matrix. The gate operates as follows. Control signal a
goes through the gate unaffected, i.e. P = a.  If the control 
signal has value 0 then the qubit b goes through the 
controlled part unaffected, i.e. Q = b. If a = 1 then the 
unitary operation that is inside the box is applied to the 
input signal b, it means Q = V (b) in our case. This 
operation is general for all binary controlled gates, for 
instance the Controlled-V-adjoint(Controlled-Square-
root-of-Not-adjoint, denoted also by CV+). This gate and 
its unitary matrix are shown in Figure 1c. 

3. Fault Models used in our Methodology 

We will present below two fault models, in sections 3.1, 
and 3.2. The first fault model is for the binary permutative 
quantum circuits that internally use quaternary logic. This 
model was introduced in [20] for exact synthesis. They 
are interesting since systematic methodologies of their 
synthesis can be created that are not based on binary 
reversible logic methods and can allow synthesis of larger 
circuits than other methods of quantum circuit design. 
The second model is general: every kind of quantum gate, 

including the truly quantum entanglement producing 
gates such as Hadamard, can be used in this model. They 
can appear in any quantum wire and any type of fault can 
occur in any location in any quantum wire. In this model 
there is no expected determined set of values that are 
measured. This makes testing and localization more 
difficult. 

3.1. Multiple-Valued Fault Model 
(simplified)

In [20] synthesis of binary permutative quantum 
circuits with NOT, Feynman, CV and CV+ gates is 
discussed. Each quantum wire in this model is either a 
control wire and is binary {|0>, |1>} or a data wire and is 
quaternary {|0>, |1>, |V0>, |V1>}. Note that a data wire 
cannot be used as a control wire! (For instance, in Figure 
4, lines a and b are control lines and line c is a data line. It 
is not possible to use line c to control lines a or b.) The 
input-output behavior of a correct circuit is however 
always binary. In this model it is assumed that as a result 
of a fault (gate removal or insertion) the binary wire 
remains binary and the quaternary wire remains 
quaternary. Thus, in binary wires the faults are observed 
as output values {|0>, |1>} and in quaternary wires the 
faults are observed as values {|0>, |1>, |V0>, |V1>}.  This 
fault model will be presented here for ease of the  
presentation and to illustrate simplifications that are 
possible when certain additional assumption can be made 
about the quantum circuit. In this type of model the set of 
all possible complex amplitudes that are measurable is 
limited to a finite set of values of some multiple-valued 
algebra. This simplifies the testing procedure and also the 
selection of special measurement gates. 

Observe that in bulk technology such as NMR [10] the 
measurement process can distinguish not only between 
basis values  |0>, |1> but also between values |0>, |1> and 
the measured values the superposed  states such as |V0>
and |V1>.  This property is also used in the first model. 

3.2. General Fault Models for arbitrary 
quantum circuits 

In contrast to the model from section 3.1, the general 
fault model does not assume a finite set of internal 
quantum states that are measurable/observable. There are 
no special types of quantum wires and the fault can be an 
insertion or removal of single programmable pulses that 
correspond to parts of  permutative gates. For instance, if 
a Feynman gate is composed by serial connection of two 
CV gates, the model from section 3.1 above would 
assume that both wires are binary, but if only one of the 
CV gates is removed, the binary controlled wire changes 
to a quaternary wire – this shows the limitation of the 
model from sec. 3.1. 

Figure 2. Calculating all possible superposition states 
that can be obtained from basis states |0> and |1> using 
V and V+ gates.
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For further simplification of explanation, we present 
here two special variants of the general quantum fault 
model: (1) gate insertion, (2) gate removal. We assume 
that Pauli X, Y and Z rotation gates, Hadamard gates and 
phase gates are inserted in the location of fault. Pauli 
gates are a standard model known from quantum error 
correction. The removal gate model is that any single gate 
is removed from the circuit - it has also certain 
technological substantiation [29]. We selected these types 
of faults because they have been selected for quantum 
correction circuits or for quantum testing, but our basic 
methodology and software are independent on particular 
fault model selection. 

Figure 3 shows some selected examples of fault 
matrices (these matrices are square and in general 
complex non-unitary). In general they are complex 
matrices, depending on the assumed faults’ nature. The 
“insertion” fault model in our system is that a fault matrix 
is inserted in place of the fault. More formally, the fault 
matrix is inserted in the netlist of parallel-serial 
connections of unitary matrices of gates. Pauli rotations 
have unitary matrices, but the general model of our 
software allows non-unitary matrices as well [17].  The 
matrices of stuck-at faults are not unitary, but some other 
fault matrices may be unitary, like for instance changing 
phase (by a small angle) or inserting a Pauli rotation. 

The gate removal general fault model can be treated as 
a special case of the gate insertion model. This means that 
to remove a gate G (represented by a unitary hermitian 
matrix G), one just inserts its own inverse matrix (G-1)
and thus transforms the gate G into identity operation. 
Examples of using these models are shown later.  

4. Principles of Test Generation for 
Binary Quantum Circuts 

4.1. Explanation of the gate removal model 
for Multiple-Valued Fault Model 

Assume a permutative binary quantum circuit. We 
assume that the first from left gate CV (Figure 4a) is 
removed. Assume first that standard measurement gates 
are used. The output measurements of this circuit in a 
presence of fault are in general probabilistic, because the 
circuit uses non-permutative quantum gates such as 
Controlled-V. To illustrate the test generation method, the 
fault-free output is calculated and is represented by a K-
map of function f from Figure 4a, as shown in Figure 4b. 
Similarly, the K-map of the faulty outputs are calculated 
in four-valued algebra in quantum wire c   of the circuit 
from Fig. 4a. By comparing the faulty output (in general, 
a vector of complex numbers) with the faultless output (a 
binary vector), it can be observed whether the test for this 
fault is deterministic or probabilistic. As seen from 
Kmaps in Figure 4b-e the tests a’b’c’, a’b’c, a’bc’, a’bc, 
ab’c’, and ab’c, are deterministic and tests abc’ and abc
are probabilistic (by b’ we denote a negation of b). The 
Kmap can be drawn for each output separately (Figure 
4b,c) or for all outputs together (Figure 4d,e). All outputs 
are measured (observed) together (Figure 4e). Obviously, 
the internal signals (in general, complex numbers) of the 
quantum world cannot be observed by the tester 
equipment that operates on the measured signals (as in a 
classical physics world). Therefore, only the externally 
measured classical signals |0>, |1> are observed and 
measured at the input to the Tester Program. We know, 
however, from the symbolic (in general complex) output 
value what are the binary vector values that can occur on 
the circuit output and with what probabilities they are 
occurring there. Therefore, all possible measurement 
vectors with their probabilities can be known in advance 
before the measurement. If these measurement values 
include the correct output vector (of a non-faulty circuit) 
the corresponding test vectors (inputs) are called the 
probabilistic tests, otherwise the input vectors are called 
the deterministic tests. If the output vectors are the same 
in the faulty and non-faulty circuits then their 
corresponding input vector cannot be used as a test for 
this fault. This is represented by a zero or a blank cell in 
the Fault Table. Fault table is created as in [7] but it has 
also probabilistic (fractional) values in its cells. 

If the outputs are “deterministic”, we apply test vectors 
and detect the fault using standard deterministic approach 
to testing. If the outputs are “probabilistic” (complex 
numbers denoted by symbolic values like V0 and V1 in 
this example), we calculate the probability of occurrence 
of the observed output as explained in the following 
sections. While solving the “probabilistic set covering 

Figure 3 Matrices of faults. (a) stuck-at-0 in binary 
reversible circuit, (b) stuck-at-1 in binary reversible 
circuit, (c) inverter in  binary quantum circuit, (d) 
Hadamard in binary quantum circuit, (e) phase fault 
in binary quantum circuit, (f) stuck-at-2 in ternary 
reversible circuit, (g) truncated plus 1 in ternary 
quantum circuit, (h) AND-bridging fault in binary 
reversible circuit, (i)stuck-at-3 of quaternary 
reversible circuit.
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problem” we give priority to deterministic tests. The same 
is true while creating the probabilistic adaptive tree. 
Observe that a deterministic fault in quantum circuit can 
be observed on the output probabilistically.  

4.2. Probability calculation of the random 
output

By iteratively applying the same input test vector (a 
probabilistic test) we are calculating the probability of 
getting the observed output. The input vectors are always 
vectors of basis states. Each of the successive iterations of 
applying the probabilistic test reduces the probability of 
obtaining a correct measurement for a faulty circuit.  For 
five iterations the probability of obtaining a correct 
measurement in presence of a given fault is reduced to 
1/32. We say that the test  accuracy of 1/32 requires 5 
repetitions of test 110.  Similarly for six iterations it is 
1/64 and for eight iterations it is 1/256 (See Figure 5a). 
Hence, the greater the number of iterations the lesser is 
the probability of getting the correct measurement for 
faulty circuit. Suppose that we use test 110 for fault of 
gate removal as in Figure 4a.  According to Fig. 4d the 
correct output should be 111 and according to Figure 4e 
the faulty output is 11V0, which means 110 or 111 with 
equal probabilities of ½ are measured. If we tested eight 
times and we get |1> in bit f each time, we have the 
probability 255/256 that there is no fault of removing the 
first CV gate. Of course, in this particular case we should 
apply deterministic tests such as a’b’c’ or ab’c’ because 
they are possible. The setup from Figure 5b is used. In 
general,  depending on a circuit, fault types, and their 
location, probabilistic tests may not exist, or all tests may 
be probabilistic as special cases. Usually, part of tests is 

deterministic and part is probabilistic. The number of 
iterations should depend on the expected accuracy and 
cost of testing. This will lead to the generalized 
probabilistic “quantum covering problem” [17,18]. 

4.3. Repeated measurements in different 
bases.

When one knows what are all the possible faulty values, 
the probabilistic test can be replaced with a deterministic 
test in a different measurement base. As we remember 
from Figure 2, gate V+ converts the probabilistically 
measurable values |V0> and |V1> to the deterministically 
measurable values |0> and |1>, respectively. Similarly for 
gate V (see Figure 2). Thus if the bulk technology 
measurement is “value other than |0> or |1>” and we 
know that the faulty value in quantum wire just before the 
measurement can be only in set {|V0>, |V1>} we apply an 
additional measurement base in which gate V+ precedes 
the standard measurement gate. The first gate converts 
thus values |V0>, |V1>) to |0> and |1>. This is done in a 
second measurement (see Figure 5c). The entire 
measurement procedure is then the following. (1) Set the 
input signals to the test value. (2) do the standard 
measurement (Fig. 5b) (3) if the measured  value is |0> or 
|1>, terminate, else (3) insert gate V+ before the 
measurement gate to the circuit, (4) set the input values to 
the same test value for the second time, (5) do the 
measurement in the new measurement base with gate V+

inserted (Fig. 5c), (6) From the second measurement, 
determine if the complex amplitude value was |V0> or 
|V1>.

Figure 4. (a)  Realization of a Toffoli gate from 
Controlled V, Controlled V+ and Feynman gates.( b) 
Kmap of the fault free output f for circuit from Figure 6, 
(c) the Kmap of the same output f when there is a gate CV 
removal  fault of the first gate from left, (d) binary output 
signals of a correct circuit, (e) symbolic faulty outputs 
with probabilistic tests for the same fault.

Figure 5. (a) Probabilistic Supernode – a tree for 
calculating the probability of obtaining a sequence of n 
signals “1” from gate which has probability ½ of output 
“1”, (b) Measurement in normal measurement base, (c) 
Measurement in modified base in which gate V+ is 
inserted before the measurement gate in the lowest bit.
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As we see, the repeated probabilistic test in standard 
measurement base can be in this case replaced with two 
deterministic tests in a modified measurement base. This 
trade-off property is fundamental to all kinds of test 
generation and fault localization procedures for quantum 
circuits.

5. Generation of Test Sets and Adaptive 
Trees for Quantum Circuits 

For binary quantum circuits our approach is very 
efficient since we use a technique for gate-level 
simulation of quantum circuits that uses new data 
structure called Quantum Information Decision Diagrams 
(QuIDDs),  Viamontes et al [14,15,25].  Program 
QuiDPro that we use is based on QuIDDs, which are 
generalizations of Algebraic Decision Diagrams which in 
turn generalize the Binary Decision Diagrams, well-
known for their ability to efficiently represent many 
problems.  

With respective fault model the approach can be used 
to arbitrary multiple-valued quantum circuits and 
multiple-valued reversible (non-quantum) circuits 
[8,28,24]. Because we do not know yet how to convert 
QuiDPro to ternary logic, we wrote another software 
package for ternary quantum circuits [16] in which the 
basis states are |0>, |1> and |2>. We used there standard 
realization of matrix operations to implement matrix and 
Kronecker multiplications on unitary and non-unitary 
matrices [10]. Because these operations are repeated 
many times, the speed of this program variant suffers and 
we can handle only 3-qutrit (ternary) circuits.  

Quaternary quantum logic circuits are realized in 
Hilbert space [8] using the model with values {|0>, |1>, 
|V0>, |V1>} similar to the one presented above. In this 
model two measurements (as in sec. 4.3) are necessary to 
read any standard logic value in 4-valued logic [8], and 
the same is true for testing faulty circuits. The methods 
presented here can be adapted for test generation and fault 
localization also for this logic. In all these variants, if  
possible, deterministic tests are first selected, while 
covering faults with tests, in order to shorten the total 
length of the test sequence. The solution (test set or a tree) 
is found, for any type of measurement gates, with 
arbitrary assumed accuracy. The system allows in 
principle to generate test sequences and adaptive fault 
localization trees for medium-size binary quantum (~ 20 
qubits) and 3-qubit ternary quantum circuits.

6. Conclusion 

This paper presents a new approach to test generation 
and fault localization for quantum binary circuits. 

Although all our examples were permutative circuits, the 
presented method can be applied with no difference to 
non-permutative (truly quantum) circuits, such as those 
used by a quantum source emitting entangled pairs on a 
quantum channel. We use in a uniform way the gate 
removal/gate insertion model with repeated initializations 
and measurements of various types, and in various bases. 
Our preliminary results are very promising – we showed 
on several reversible benchmark functions that they can 
be tested with smaller number of tests in quantum than in 
classical realization. 
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