Synthesis of Multi-Valued Logic Using Generalized Multi-Valued Gate Cascades
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1. Introduction

Generalized ternary gates have been shown to be practical for representing reversible ternary functions, due in part to their being fully realizable.  In this paper, we propose an algorithm to fully and systematically synthesize any ternary expression of any number of inputs, or even multi-valued functions of higher powers.  The synthesized implementation is a cascade of generalized multi-value gates.  We present experimental results that show the complexity and cost of the implementations on some ternary benchmark functions.

2. Background
Multiple-valued logic synthesis, is relatively immature.  Several works have been done, notably [1,2,3,4,5], however many of the proposed implementations are far from realizable.  Quantum logic synthesis has much work to be done, and those multi-valued logic synthesis methods often depend upon either costly gates, such as the Toffoli or swap gates, or on unrealizable constructs.
We will propose a synthesis algorithm which, for ternary functions, utilizes fully realizable generalized ternary gates (GTGs), as defined in [1].  For higher power multi-valued functions, we apply the same algorithm using an extension of the GTG, the Generalized Multi-Valued Gate (GMVG).  The GMVG is a multiplexing gate analogous to the GTG, but with more inputs corresponding to the increased possible values of the corresponding multi-valued select line.  The GMVG, which like the GTG is fully reversible, is depicted below in Figure 1.
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In fact, the GTG is just a special case of the GMVG for M=3 (i.e  ternary).  In the following section we present the basic algorithm for combining these GMVGs into a cascade to realize any function in product-or-sums form.  Minimization techniques for multi-valued expressions have been discussed in [1,2,3,4,5], but no approach is discussed here.  The basic algorithm is then enhanced in Section 4 of this paper.  We then present some experimental results of ternary benchmark functions using both the basic and enhanced algorithms in Section 5.  We also discuss the complexity and cost functions of the enhanced algorithm.  Finally, we draw some conclusions and discuss future work to be done in this area.
3. Basic Algorithm

The first basic algorithm generates a cascaded implementation of reversible generalized multi-valued gates (GMVGs).  The algorithm starts with a product-of-sums (POS) expression of a function and generates the cascade of GMVGs, introducing constant inputs along the way.  The product terms in the expression need to be mutually exclusive (i.e. non-overlapping).  This assumed constraint is discussed later, as is a method to relax this constraint to improve the resultant implementation.  No method is proposed here as to how to minimize the POS expression to satisfy this constraint.
The basic algorithm applies to a function F of N variables of the power M (where M=3 implies ternary, etc).  We first develop a GMVG cascade for each prime-implicant of F, noting that each resulting cascade can be implemented in parallel.  Once the prime-implicants are realized, we can make use of the fact that the implicants are mutually exclusive, and we can combine them using another GMVG cascade.  I will refer to these two cascades as either a “prime-implicant cascade” or a “combining cascade” as appropriate.  A complete implementation of function F can be realizing by connecting the combining cascade serially after the longest prime-implicant cascade.
For each prime-implicant cascade, we start with a constant input “0”.  We will have a GMVG corresponding to each literal in the product term (plus a couple additional GMVGs as described shortly).  Thus it is advantageous to have large prime-implicants in our function, not only because it may reduce the total number of prime-implicants and thus the number of prime-implicant cascades, but also because the prime-implicant cascades will be shorter.  Each GMVG corresponding to a literal will have its select line driven by that literal.  The GMVG will have +1 operations at all GMVG inputs corresponding to that literal’s coverage in the prime-implicant.  

For example, if we have a function of five variables (say, a, b, c, d, and e) with a prime implicant a{0,1}b{1}c{0,2}e{1,2}, our cascade will include (among others) a GMVG with select driven by “a”, and with +1 operations at the 0 and 1 input.  The 2 input will have no operation (i.e. wire).  We will have other such gates for b, c, and e.  We do not need a gate corresponding to input d, because d is missing from our product term.  Our cascade, so far, appears as follows:
[image: image1]
For the output of the prime-implicant cascade, the highest values in our resultant matrix directly correspond to the prime-implicant!  Converting this highest value (and eliminating the lesser values, which are don’t-cares here) will be accomplished in the combing cascade.

It should be clear that if we have a low value of M or if we have many inputs in our product term, our +1 operations will eventually cause values of M-1 to “roll-over” (according to the behavior of modular addition).  In this case, we would no longer be accurately tracking the maximum value.  If our example above represented a ternary function, we could no longer represent the values 3 and 4 in a way that distinguishes them from lesser values.  

When such a case occurs, we introduce additional constant inputs.  I will use X to represent the number of GMVGs on a given line.  We increment X for each GMVG we place in our cascade.  When X=(M-1), we introduce a GMVG on a new line (with a constant “0”), which I will refer to as GMVG-X.  The select line is driven by the preceding cascade.  We place a +1 operation at the X-th input of the GMVG-X.  All other inputs to GMVG-X will have no operation (i.e. wire).  We then reset X to one and continue the cascade.

So in a ternary function (M=3), we will need a GMVG-X every two gates.  Thus, this algorithm works extremely well for large values of M, because these GMVG-X gates will be needed less often.  Using our example prime-implicant above for the case M=3, we have the following:
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The figure above depicts the complete prime-implicant cascade. The other prime-implicants will be implemented in parallel.  Once all the prime-implicants are synthesized, the combining cascade is placed serially after the longest prime-implicant cascade.  The combining cascade is on a single line, starting from a constant zero.  No additional constant inputs are needed, and it only requires one GMVG for each prime-implicant cascade.  

[image: image2]
The outputs of each prime-implicant cascade drives the select line for one of the GMVG’s.   Recall that each of the prime-implicant cascades results in a function whose highest possible value,V, may not be equal to the desired covering, C.  Hence, we place a +C operation at the V’th input of the GMVG.  
A complete example is shown below for ternary function Min(a,b,c)=2a{2}b{2}c{2}+1a{1}b{1,2}c{1,2}+1a{2}b{1}c{1,2}+1a{2}b{2}c{1}.


It is probably apparent to the reader that this basic algorithm can be improved in several ways.  Several such improvements are considered in the following sections.

4. Improved Cascade Algorithm

It should be evident from using Min(a,b,c) as an example, that our constraint of requiring prime-implicants to be mutually exclusive results in an excessive number of implicants.  If we treat the 2’s covering in Min(a,b,c) using the basic algorithm above, but then replace the 2’s in our matrix with don’t-cares, we could have larger/fewer 1’s covering prime-implicants.  For example, we would have Min(a,b,c)=2a{2}b{2}c{2}+1a{1,2}b{1,2}c{1,2}, a considerable reduction from our original implementation.
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We can, therefore, expand our algorithm to relax our assumed constraints in the following way:  prime-implicants are permitted to overlap each other when one is a proper subset of the other.  Otherwise, our mutually exclusive constraint should be maintained.  This results in fewer/larger prime-implicants, so we have fewer prime-implicant cascades and possibly shorter cascades at that.  

To handle the overlapping cases, we need to make one slight modification to our combining cascade.  For the GMVG corresponding to the proper subset prime-implicant, the select line remains the same.  However, we replace the +C operation as follows:  add the difference between the coverings of the two overlapping prime-implicants.  For example, using Min(a,b,c) where a 2’s covering is a proper subset of a 1’s covering, we replace the +2 operation with a +(2-1) = +1 operation, as shown in the figures above.
5. Experimental Results and Future Work
The following data was taken using code that we developed to model the above algorithm.  The functions were implemented both with and without the overlapping prime-implicant improvement. 

	
	Mutually Exclusive PIs
	Overlapping PIs

	
	garbage
	constant
	length
	total gates
	GARBAGE OUT
	Constant Inputs
	Length
	total gates

	2cyG2
	4
	5
	6
	12
	3
	4
	5
	9

	2cyM2
	3
	4
	5
	9
	2
	3
	4
	6

	3cyG2
	22
	23
	16
	56
	20
	21
	15
	51

	3cyG3
	16
	17
	12
	40
	10
	11
	9
	25

	3cyM2
	18
	19
	13
	38
	10
	11
	9
	22

	3cyM3
	8
	9
	8
	20
	4
	5
	6
	10

	4cyG3
	94
	95
	38
	220
	73
	74
	31
	171

	4cyG4
	48
	49
	22
	112
	27
	28
	15
	63

	4cyM2
	28
	29
	18
	66
	16
	17
	14
	40

	4cyM3
	53
	54
	25
	125
	21
	22
	14
	50

	4cyM4
	15
	16
	11
	35
	6
	7
	8
	14

	a2bccG
	15
	16
	12
	38
	13
	14
	11
	33

	a2bccM
	15
	16
	12
	38
	12
	13
	11
	31

	avgG2
	3
	4
	5
	9
	3
	4
	5
	9

	avgG3
	14
	15
	12
	36
	14
	15
	12
	36

	avgG4
	54
	55
	26
	128
	50
	51
	25
	119

	prodG2
	4
	5
	6
	12
	3
	4
	5
	9

	prodG3
	16
	17
	12
	40
	10
	11
	9
	25

	prodG4
	48
	49
	22
	112
	27
	28
	15
	63

	prodMin2
	3
	4
	5
	9
	2
	3
	4
	6

	prodMin3
	8
	9
	8
	20
	4
	5
	6
	10

	prodMin4
	15
	16
	11
	35
	6
	7
	8
	14

	sqsumG2
	3
	4
	5
	9
	3
	4
	5
	8

	sqsumG3
	16
	17
	12
	40
	14
	15
	12
	36

	sqsumG4
	33
	34
	17
	77
	29
	30
	17
	69

	sqsumM2
	4
	5
	6
	11
	4
	5
	6
	10

	sqsumM3
	10
	11
	10
	25
	8
	9
	10
	20

	sqsumM4
	19
	20
	14
	45
	14
	15
	14
	34

	sumG2
	6
	7
	8
	18
	6
	7
	8
	18

	sumG3
	36
	37
	22
	90
	36
	37
	22
	90

	sumMax2
	4
	5
	6
	11
	4
	5
	6
	10

	sumMax3
	10
	11
	10
	25
	8
	9
	10
	20

	sumMax4
	19
	20
	14
	45
	14
	15
	14
	34


The test-bench functions used here are similar to the list used in [1].  The details of the functions are defined in Appendix A.  Several observations can be made about the above data.  The number of garbage outputs is always one less than the number of constant inputs, which is intuitive.  

One obvious drawback of the algorithm, as presented, is the use of at least one constant input per prime-implicant.  The maximum cost function for constant inputs for a function of N inputs, power M, and PI prime-implicants is 
Max Constant Inputs = PI[(1)+(max # of GMVG-Xs)] + (1 for combining cascade)

                                  = PI[(1)+(int N/(M-1))] + 1

Similarly, the number of garbage outputs equals the number of constant inputs used for the prime-implicant cascades.

Max Garbage Outputs = PI[(1)+(int N/(M-1))] + 1

In reality of course, we will not always have the maximum number of GMVG-Xs per prime-implicant due to some primary inputs not being present in a given prime-implicant.  Still, for functions with a large number of prime-implicants, there is a higher number of constant inputs.  This is particularly true of functions that are primarily based upon Galois sums, which by nature, have a large number of product terms.  Those functions that use minimum and maximum (instead of Galois operators) to represent AND and OR respectively have a much lower cost using these algorithms.  This is intuitively obvious, since the algorithm counts “highest values”, which is analogous to maximum.

One approach to reduce the cost is to reuse lines by changing garbage outputs into a more useful form.  Because the GMVGs are all reversible, then we can apply the inverse GMVGs (once we are done with that line) to return to constant zero.  We can then reuse this line instead of introducing a new constant.  This concept is illustrated in the figure below.
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Another cost function to consider is the maximum length of the cascade, which is affectively the length of the longest prime-implicant cascade plus the length of the combining cascade.  This can be expressed as follows:
Max Length = (Max Length of PI Cascade) + (Length of Combining Cascade)



= (N + (int N/(M-1)))  +  (PI)

The upper bound on both the length and total gate cost functions can be reduced by having fewer, larger prime-implicants, such as min/max functions, rather than modsum functions.  The algorithm is most affective for large values of M and low values of N.  

Further effort should be made to reduce the impact of, or ideally remove, the constraint of mutually exclusive prime-implicants within a covering.  Exact and optimal minimization techniques need to be developed and applied to meet these constraints.

In conclusion, we have shown an algorithm that systematically and deterministically synthesizes a function of any number of inputs of any multi-valued power.  We have demonstrated the algorithm using ternary benchmark functions.  We have identified additional improvements that can be made.
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Appendix:  Ternary Benchmark Functions
ncyGr:   input x0, x1, ... xn ;  output consists of n outputs of r input variables in cyclic order (e.g.  3cyG2:  y(a,b,c) = ab + bc + ca), using Galois mod3 multiplication.

ncyMr:  input x0, x1, ... xn ;  output consists of n outputs of r input variables in cyclic order (e.g.  3cyG2:  y(a,b,c) = ab + bc + ca), using Min/Max operations.
a2bccG:  input a, b, c;   output y = (a^2 + bc + c), using Galois mod3 operations.

a2bccM:  input a, b, c;  output y = (a^2 + bc + c), using Min/Max operations.

avgGn:  input x0, x1, ... xn ; output y = int [(x0 + x1 + .... + xn) / n], using Galois mod3 operations.

prodGn:  input x0, x1, ... xn ;  output y = (x0 * x1 * ... * xn), where * is Galois mod3 multiplication.

prodMinn:  input x0, x1, ... xn ;  output y = (x0 * x1 * ... * xn), where * is the Minimum operation.

sqsumGn:  input x0, x1, ... xn ; output y = (x0^2 + x1^2 + .... + xn^2), using Galois mod3 operations.

sqsumMn:  input x0, x1, ... xn ; output y = (x0^2 + x1^2 + .... + xn^2), using Min/Max operations.  This is omitted from the data taken in this paper, because this is the same as sumMaxn!
sumGn:  input x0, x1, ... xn ;  output y = (x0 + x1 + ... + xn), where + is Galois mod3 addition.

sumMaxn:  input x0, x1, ... xn ;  output y = (x0 + x1 + ... + xn), where + is the Maximum operation.
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  Q =   x0(B) if A=0


            x1(B) if A=1


            x2(B) if A=2


            etc,


            xM(B) if A=M





wher x* is some reversible operation, also of power M
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