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Abstract
This paper presents a methodology for logic synthesis of

Boolean functions in the form of regular structures that can be
mapped into standard cells or programmable devices. Regularity
offers an elegant solution to hard problems arising in layout and
test generation, at no extra cost or at the cost of increasing the
number of gates, which does not always translate into the
increase of circuit area.  Previous attempts to synthesize logic
into regular structures using decision diagrams suffered from an
increase in the number of logic levels due to multiple repetitions
of control variables. This paper proposes new techniques, which
lead to fewer variable repetitions and significantly improve the
performance of synthesis algorithms. Experimental results show
that the generated regular circuits are larger in the number of
gates  and comparable in delay to the circuits without regularity
produced by SIS, yet they exhibit a number of important
advantages, such as localization and predictability of
interconnect, reduction in the gate output load, and improved
testability.

1. Introduction
The traditional design flow of VLSI IC below the RTL level

consists of logic synthesis, technology mapping, and layout
synthesis. These steps are frequently performed iteratively to
achieve timing closure. In deep-sub-micron (DSM) technology,
due to strong influence of interconnect delays on circuit
performance, it is very difficult for physical design to converge
when logic optimization is performed without taking layout into
account.

Besides the problematic convergence issue, the algorithms to
perform layout synthesis are highly complex and often require
many hours of computation time to complete on large industrial
designs. In the last decade, numerous incremental improvements
to placement and routing have been explored, such as incremental
re-mapping, local re-routing, white space insertion, buffer
insertion, wire and transistor sizing. These techniques are
symptomatic of the difficulties experienced by the main-stream
algorithms and tools.

Correspondingly, there is a growing interest in methodologies
that bring together logic synthesis and layout synthesis in an
attempt to solve the interconnect problem earlier in the design
flow.  In recent years, many efforts [9, 10, 12, 13] were devoted to
exploring various regular circuit and layout structures, as they are
more predictable and have advantages from a manufacturing point
of view.

Regularity of layout is especially important when circuits are
mapped into programmable or field-programmable logic devices
and gate arrays (PLDs, or FPLDs and FPGAs).  The majority of
these devices have a large portion of their routing resources

available as local and neighbor-to neighbor connections. Mapping
regular netlists into such devices is denser, which tends to reduce
both area and delay. In some cases, a regular circuit with a larger
number of gates may be implemented using a smaller area,
compared to a non-regular version of the same circuit.

Starting with the early research of Akers [1], regular structures
have become an attractive alternative to the traditional design
styles. Several variations of the regular structures have been
proposed [2, 3, 4, 5, 6, 7, 10, 11]. They provide different trade-
offs between the complexity and applicability of the synthesis
methods and the efficiency of the resulting implementation.

This paper explores a specialized type of decision diagrams [4,
5, 15], called Pseudo-Symmetric Kronecker Functional Decision
Diagrams (PSKFDDs), as a vehicle for achieving efficient regular
implementations. The goal is to transform Boolean functions into
PSKFDDs, which are next mapped into regular circuits composed
of Shannon and Davio gates. The connection between gates is
limited to several wires, which dramatically simplifies placement
and routing. The problems of congestion and long interconnect are
eliminated because connections between gates are local, mostly
neighbor-to-neighbor, and distributed evenly among the gates.
Since gates are placed using a regular pattern, the length and thus
delay of local interconnects between gates can be easily predicted
before the final layout is generated. Because the majority of
connections are short, the need for additional buffers is drastically
reduced and, therefore, the total area of the final circuit is also
reduced. Crosstalk between wires is reduced as well.

It has been shown that CMOS technology is well suited for
regular implementations. Application of similar decision diagrams
to generate regular layout for wave pipelining has been studied
[7]. Our preliminary research indicates that the proposed regular
implementations are highly testable for stuck-at and delay faults
by propagating patterns of 0s and 1s horizontally, vertically, and
diagonally though the array of regular cells. Other possible
benefits of regular structures might include improved reliability
and yield due to a smaller number of vias and buffers. It remains
to be seen to what extent the regularity in layout can help with
power/ground network noise reduction.

The main contributions of this paper are two new efficient
algorithms for generating regular layout using PSKFDDs
constructed for Boolean functions. The first algorithm is based on
the extended set of generalized variable-pair symmetries [8].
Using the complete set of 15 generalized symmetries introduced
below allows us to extend the work of [5], resulting in the
improved regular synthesis for many benchmarks. The second
algorithm performs heuristic PSKFDD synthesis while combining
efficient variable expansion/selection with a number of look-
ahead strategies yielding quality layouts in reasonable time.

The rest of the paper is organized as follows. Section 2 gives the
definitions used in the paper. Section 3 discusses generalized
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symmetries. Section 4 presents our adaptation of the longest paths
computation. Section 5 described two synthesis algorithms:
systematic and heuristic. Section 6 lists experimental results.
Section 7 concludes the paper.

2. Definitions
Given a Boolean function F : Bn

 → B, where B = {0,1}, the
negative (positive) cofactor of F with respect to (w.r.t.) variable x
is the Boolean function F0 (F1) derived by substituting into F
instead of x the value 0 (1). We denote F2 the exclusive sum
(EXOR) of the negative and positive cofactors: F2 = F0 ⊕ F1.

Three canonical expansions of F are defined as follows:

   F = x F0  ⊕ x F1     Shannon expansion (S) (1)
   F =  F0  ⊕ x F2        Positive Davio expansion (pD) (2)
   F =  F1  ⊕ x F2        Negative Davio expansion (nD)  (3)

Cofactors w.r.t. two and more variables are defined as repeated
co-factoring w.r.t to each variable in the set. The final result does
not depend on the variable order. Of particular interest to this
paper are sets of cofactors w.r.t. to variable pairs. Since a pair of
variables can have four polarities (00, 01, 10, 11), there are four
cofactors denoted F00, F01, F10, and F11.

Fig. 1. Join-Vertex operation rules the for left-to-right remainder
propagation.

For example, function G = abd + cba + bca  has the following
cofactors w.r.t. the variable pair (a, b):

G00 = G( 0, 0, c ) = 0,G01 = G( 0, 1, c ) = c,
G10 = G( 1, 0, c ) = c,G11 = G( 1, 1, c ) = d.

Regular structures discussed in this paper are called lattices1.

Essentially, a lattice is a set of regularly placed gates locally
interconnected to form a grid. Each gate has a control signal
propagating from left to right and two data signals propagating
from bottom to top. However, lattice synthesis is performed from
top to bottom.

The Join-Vertex operation has been introduced in [3] as a way
of dealing with the incompatibility of cofactors of the adjacent
nodes (cofactors a1 and b0 in Fig. 1). The idea of this operation is
to multiplex the cofactors using the control variable x of the given
level in such a way that nodes A and B shared one of the cofactors
but preserved the original functions. Fig. 1 lists the Join-Vertex

                                                
1 The use of this term in the paper is not related to the set-
theoretic concept of a lattice.

operation rules for Shannon, Positive Davio, and Negative Davio
gates. In this paper, we consider only Kronecker lattices, which
have the same type of gates throughout a level.

Fig. 2. Join-Vertex operation rules the for right-to-left remainder
propagation.

In the case of the Davio expansions (Fig. 1), to preserve the
function of node B, it is necessary to balance the negative cofactor
of this node by adding a remainder to the positive cofactor. In this
case, Join-Vertex is not a local operation and leads to the
propagation of a remainder from left to right. Fig. 2 shows similar
Join-Vertex rules for the Davio expansions, in which the wave of
remainders is propagated from right to left. The heuristic synthesis
algorithm described in this paper achieves additional flexibility by
using both sets of propagation rules.

3. Generalized Variable Pair Symmetries
A Boolean function F  has a classical non-equivalence

(equivalence) two-variable symmetry [8] iff replacing the first
variable by (the complement of) the second and the second
variable by (the complement of) the first yields the same function.

Fig. 3. The upper part of the decision diagram of a function with a
classical non-equivalence symmetry (left) and equivalence

symmetry (right).

Given the four cofactors of F w.r.t. a pair of variables, F00, F01,
F10, F 11, it is possible to give another definition of classical
symmetries. F has a classical two-variable non-equivalence
symmetry iff F01 ⊕  F10 = 0 and a classical two-variable
equivalence symmetry iff F00 ⊕  F11 = 0. If the variable pair
exhibiting the symmetry is ordered above other variables in the
reduced decision diagram, then the upper part of the diagram
looks as shown in Fig. 3.

For example, function G = a b d + cba + bca  has a non-
equivalence symmetry in pair (a,b), while function H  =

dba + cba + abc, has equivalence symmetry in pair (a,b).
If the function has a two-variable symmetry, then at most three

out of four cofactors w.r.t. a pair of variables are different
functions. It is possible to generalize the concept of classical
symmetries by defining other conditions when at most three out of
the four cofactors are non-constants. For example, the above
condition is true when one out of four cofactors of the function

x x xx

Shannon

a0 a1 b0 b1 a0 b1xa1 ⊕ x b0

Positive Davio

Negative Davio

1 x x xx

a0 a1 b0 b1 a0 a1⊕b0⊕b1xa1 ⊕ x b0

a0 a1 b0 b1 a0 a1⊕b0⊕b1x a1 ⊕ xb0

1 1 1

1111

⇒

⇒

⇒

A B BA

Positive Davio

1 x xxx

a0 a1 b0 b1a0⊕x(a1⊕b0) b1b0

11 1 ⇐

Negative Davio

1

a0 a1 b0 b1a0⊕ x  (a1⊕b0) b1b0

11 1 ⇐

F

F1F0

F00 F11 F01

(F10)

0 1

11 00

F

F1F0

F01 F10 F00

(F11)

0 1

00 11

xxxx

x x x x

xxxx

F
1

F0
F
0

F
1



3

w.r.t. a variable pair is constant 0 or 1. This gives rise to four new
symmetries called constant-cofactor symmetries. Another way of
extending the concept of classical symmetries is by considering
the Davio cofactors, that is, the EXORs of cofactors from the set {
F00, F01, F10, F 11 }. For example, if the three two-variable
cofactors satisfy F00⊕  F10⊕ F11 = 0, this can be considered as a
new kind of symmetry called a Kronecker symmetry. Table 1 lists
15 types of symmetry derived using the set of 4 two-variable
cofactors. Notice that all formulas in the column “Property” can
be equal to constant 0 or constant 1. This leads to two subtypes of
each of the 15 symmetries. When the expression is equal to
constant 0, the symmetry is a non-skew symmetry; when it is equal
to constant 1, the symmetry is a skew symmetry. Experimental
results [9] show that, in MCNC benchmarks, non-skew
symmetries are more common then skew.

Table 1. Classification of generalized symmetries.

# Property Name Symbol

1 F00 = 0/1 C0

2 F01 = 0/1 C1

3 F10 = 0/1 C2

4 F11 = 0/1

Constant-cofactor
symmetries

C3

5 F10 ⊕ F01= 0/1 Non-equivalence T1(NE)
6 F00 ⊕ F11= 0/1 Equivalence T2(Eq)
7 F00 ⊕ F01= 0/1 T3

8 F10 ⊕ F11= 0/1 T4

9 F00 ⊕ F10= 0/1 T5

10 F01 ⊕ F11= 0/1

Two-cofactor
(single-variable)

symmetries
T6

11 F01 ⊕ F10 ⊕ F11= 0/1 K0

12 F00 ⊕ F10 ⊕ F11= 0/1 K1

13 F00 ⊕ F01 ⊕ F11= 0/1 K2

14 F00 ⊕ F01 ⊕ F10= 0/1 K3

15 F00⊕F01⊕F10⊕F11= 0/1

Three/four-
cofactor

(Kronecker)
symmetries

K4

Generalized symmetries of the given function can be computed
using several methods. We have developed two different ways of
computing the generalized symmetry information for all pairs of
variables, without creating intermediate BDD nodes. However,
discussion of these algorithms is beyond the intended scope of the
paper.

The Reduction Types
The study of generalized symmetries is motivated by the fact

that functions with these symmetries can be represented by a
reduced decision diagram, with at most three nodes on the third
level. Fig. 4 shows the upper part of the decision diagram for
constant-cofactor symmetries (C0-C3) and single-variable
symmetries (T3-T6). Figs. 3 and 4 illustrate the usefulness the first
10 symmetries in Table 1 for the generation of regular layout.

The Davio symmetries (K0-K4) also lead to the reduction in the
number of non-constant nodes on the third level, if the Positive
and Negative Davio expansions are used instead of the Shannon
expansion.

For example, suppose the expansions of the first two levels are
Positive Davio and Shannon respectively and the variables have
the four-cofactors symmetry K 4. Notice that after the
transformation of the diagram as shown in Fig. 5, the effect of
these two expansion (pD followed by S) with symmetry K4 is
similar to the effect of symmetry T4.

Fig. 5. Example of using Kronecker symmetries to create the
planar layout.

The above example shows that symmetry T4 (in fact, any of the
first 8 symmetries) can be seen as a reduction type, which
describes how the cofactors are combined on the third level of the
decision diagram. The mapping of symmetries into reduction
types for the nine possible expansion pairs is given in Table 2.
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 Fig. 4. The upper part of the decision diagram for a function with
generalized symmetries.

Table 2. Mapping of generalized symmetries into reductions types
for different expansion pairs.

Generalized SymmetriesExpan.
Pair C0 C1 C2 C3 NE Eq T3 T4 T5 T6 K0 K1 K2 K3 K4

S – S C0 C1 C2 C3 NE Eq T3 T4 - - - - - - -
S–pD C0 T3 C2 T4 - - C1 C3 - - - Eq - NE -
S–nD T3 C0 T4 C2 - - C1 C3 - - Eq - NE - -
pD–S C0 C1 - - - - T3 - C2 C3 - - Eq NE T4

pD–pD C0 T3 - - NE - C1 - C2 T4 Eq - - - C3

pD–nD T3 C0 - - - NE C1 - T4 C2 - Eq - - C3

nD–S - - C0 C1 - - - T3 C2 C3 Eq NE - - T4

nD-pD - - C0 T3 - NE - C1 C2 T4 - - Eq - C3

nD-nD - - T3 C0 NE - - C1 T4 C2 - - - Eq C3

Note that for the two Shannon expansions (row “S–S”) the
reduction types for the first 8 symmetries are the same as these
symmetries. Other expansions lead to different combinations of
cofactors, which is reflected in a change of the reduction type.
The dash in Table 2 means that, for the given expansion pair and
generalized symmetry, this method cannot be used to create a
regular layout.
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Consider another example in Fig. 6. Suppose the expansions are
nD and pD and the generalized symmetry is C2. Table 2 states
that, in this case, the reduction type is C0. The cofactor F10 is
indeed a constant due to symmetry C2.

Fig. 6. Example illustrating the use of Table 2.

4. Longest Path Computation
The Symmetry Compatibility Graph
In [9], the concept of symmetry compatibility graph was

introduced as a directed graph, whose nodes represent variables of
the function and edges represent variable-pair symmetries. If two
variables have no symmetries, there is no edge between the
corresponding pair of nodes; otherwise, the edge is labeled by the
available symmetries. Edges of the graph are directed because
some symmetry types are sensitive to the ordering of variables in
the pairs.

The Longest Path Computation
Given a symmetry graph, it is possible to find a sequence of

variables such that each pair of adjacent variables in the sequence
have a generalized symmetry. This variable sequence in called a
variable path (a variable chain in [9]). When the path of sufficient
length is found, the expansions are assigned to each variable on
the path in such a way that the corresponding reduction type (see
Table 2) allows for the planar layout to be created on each level
similar to how it is created in Figs. 5 and 6. The longest path is
found by depth-first search (DFS) in the symmetry graph starting
from every variable that has symmetries with other variables.
Because for large graphs the enumeration of all candidate paths
takes time exponential in the number of variables, the DFS is
restricted by allowing a limited number of backtracks. For many
benchmarks, this methods yields the exact solution in a short
computation time.

Table 3. Restrictions on reduction type sequences.

C0 C1 C2 C3 NE Eq T3 T4

C0 X X X X X
C1 X X X X X
C2 X X X X X
C3 X X X X X
NE
Eq
T3 X X
T4 X X

Due to the presence of dashes in Table 2, not every symmetry
sequence results in an applicable sequence of reduction types for
every expansion pair, and therefore inclusion of variables into the
path should be restricted by additional requirements.

Besides, it can be observed that certain reduction type
sequences cannot be properly exploited to create the regular
layout. These restrictions are summarized in Table 3. The cross in
this table means that the reduction type specified in the column

cannot follow immediately after the reduction type specified in
the row. These restrictions can be easily incorporated into the
DFS algorithm.

5. Lattice Synthesis Algorithms
The implementation of lattice synthesis discussed in this paper

is based on two approaches: systematic and heuristic.
The systematic approach requires computation of generalized

symmetries of the function w.r.t. all variable pairs and finding the
longest path in the variable-pair symmetry graph, with the
restrictions on symmetry sequences described in Section 5.

The symmetry sequence is computed for each level (except the
first one) as a set of (1) an input variable to be used a control
variable for this level, (2) an expansion type, (3) the symmetry
between the control variable of this level and the previous one in
the order, (4) the reduction type of this expansion and the previous
one in the order.

If the function has no symmetries, or if the symmetry path does
not include all variables, only the upper part of the diagram is
synthesized using the systematic approach based on the longest
path. The rest of the diagram is constructed using a heuristic
algorithm, which does not guarantee that the control variables are
not repeated.

We experimented with a number of heuristic algorithms and
found a simple one that gives the best speed/quality trade-off.
Common to both systematic and heuristic synthesis algorithms is
the iterative lattice construction, level by level from top to bottom.
Synthesis of each level assumes that functions to be implemented
are assigned to the nodes of the lattice.

The iterative synthesis procedures treat functions assigned to the
lattice nodes as the input and proceed cofactoring them according
to the variable and expansion selected followed by the
computation of the layout information. As the last step of
synthesis for the given level, the functions are assigned to the
nodes of the next level. This completes one iteration of lattice
synthesis and prepares the next level for calling the synthesis
procedure.

The main difference in the heuristic synthesis compared to the
systematic synthesis is the need to determine the
variable/expansion pair at each level. There are several criteria for
selecting the variable and expansion to be used on the given level:
(1) the number of join-vertex operations that should be performed
on the given level; (2) the number of constant cofactor that are
produced as a result of expanding all the functions of the level
using this variable; (3) the sum total of variables in the support of
all cofactors produced as a result of expanding all the functions of
the level using this variable. First, variables/expansion pairs are
evaluated according to criterium (1). If there is no tie, the best
variable/expansion pair is returned, without the need for further
computation. If there is a tie, the next level of the lattice is
constructed for each variable and criteria (2) and (3) are used to
find the best variable. This strategy corresponds to the look-ahead
of depth 1.

6. Experimental Results
The algorithms have been implemented and tested using MCNC

benchmarks.  The resulting regular circuits for each output were
written into BLIF files and verified for correctness against the
original functions using SIS. The reported runtimes are in seconds
on a Pentium III 933Mz computer. This runtime includes only
logic synthesis. It does not include the runtime for reading the
input file and constructing the BDDs of the output functions.

Tables 4 and 5 give the comparison of the presented heuristic
synthesis algorithm with the previous work, [5] and [6]. In both
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tables, column “Name” lists the name of the benchmark, column
“Outs” lists the total number of outputs followed, in parentheses,
by the 1-based number of the output of a single-output function
used. Column “Ins” gives the number of inputs in the multi-output
benchmark function, followed, in parentheses, by the number of
inputs in the support of the given single-output function. Results
in [5] do not report the number of gates, so the comparison in
Table 4 is in terms of logic levels and runtime. The shaded
column shows the best result for each function.

In Table 5, the comparison is in terms of logic levels and the
number of nodes (gates) in the resulting circuits. Again, in all but
a few cases, the proposed algorithm generated a more compact
layout. The runtime for all the examples reported in Table 5 was
close to one second.

Table 4. Comparison with [5].

Results from [5] Our resultsName Outs Ins
Levels Time Levels Time [s]

mux 1(1) 21(21) 31 49.27 21 0.10
term1 10(5) 34(17) 20 2.61 17 0.04

10(6) 34(18) 21 2.98 18 0.04
10(7) 34(19) 22 3.36 19 0.08

x2 7(7) 10(10) 11 0.82 10 0.01

Table 5. Comparison with [6].

Results from [6] Our resultsName Outs Ins
Levels Nodes Levels Nodes

apex7 37(30) 49(17) 25 148 17 47
clip 5(2) 9(9) 18 103 16 103

5(2) 9(9) 27 220 13 71
cm162a 5(3) 14(10) 11 24 10 19

cps 109(1) 24(22) 26 134 26 244
109(2) 24(18) 26 164 23 112
109(3) 24(22) 39 342 27 211

duke2 29(13) 22(17) 20 90 19 95
29(17) 22(18) 22 92 18 57
29(21) 22(16) 19 76 16 76
29(7) 22(18) 21 109 21 120

example2 66(23) 85(16) 21 52 16 34
66(59) 85(14) 17 31 14 36
66(63) 85(13) 15 37 13 42

frg2 139(99) 143(20) 22 189 20 46
139(100) 143(19) 28 164 19 103

sao2 4(2) 10(10) 18 71 13 61
4(3) 10(10) 16 73 12 47
4(4) 10(10) 16 68 13 61

Table 6 compares the results of [9] with both the systematic
(column “System”) and the heuristic (column “Heuris”)
algorithms presented in the paper. The comparison is in terms of
logic levels and nodes (gates). The two last rows show the sum
total of entries in the cells of each column and the ratio of the
results compared to the column “DVS”, which is taken to be
100%. For the examples in this table, the heuristic algorithm is on
average better than the systematic one.

Table 7 shows results for multi-output MCNC benchmarks. The
two sections of Table 7 deal with the systematic and the heuristic
algorithm. Inside each section, the column “Nodes” gives the total
number of nodes for all outputs.  Column “Join” shows the
number of outputs that require the application for Join-Vertex
operation. Number 0 in this column means that all the outputs of

the given benchmark can be expanded without variable repetition.
The number in parentheses given in the column “Join” indicates
the number of outputs, for which the layout could be computed
within less than the predefined limit (100) on the number of
levels. Finally, the column “Time” gives the synthesis runtime for
all outputs of each benchmark, for which synthesis completed.

Table 6. Comparison with [9].

Results from [9] Our results
DVS +SVS Heuris System HeurisName Out# Ins

lev nod lev nod lev nod lev nod lev nod
apex6 39 20 41 285 42 262 56 746 25 258 22 146
apex7 29 17 26 142 26 112 25 148 17 63 17 47
frg2 138 13 39 269 24 84 31 155 13 28 13 17
k2 29 20 40 158 38 136 35 269 29 364 28 291
sct 10 14 26 84 19 36 14 47 14 47 14 44

term1 8 18 43 158 44 156 44 426 18 54 18 58
ttt2 15 14 16 32 16 29 14 30 14 34 14 33
vda 25 15 46 219 32 144 28 188 18 118 24 198
x1 17 16 21 52 19 25 19 94 16 46 16 41
x3 39 20 66 681 64 611 56 746 25 258 22 146

Total 364 2080 324 1595 322 2849 189 1270 188 1021
Rat.% 100 100 89.0 76.6 88.4 137 51.9 61.1 51.6 49.0

Table 7. Evaluation of the proposed algorithms.

Systematic HeuristicName Ins Outs
Nodes Join Time Nodes Join Time [s]

clip 9 5 187 3 0.06 306 4 0.08
cordic 23 2 1496 2 1.36 298 1 0.18
9sym 9 1 33 0 0.01 33 0 0.01
alu4 14 8 620 5(3) 8.51 864 5(3) 7.90
rd84 8 4 100 0 0.03 54 0 0.03

duke2 22 29 2906 6 2.05 1347 6 0.41
misex2 25 18 208 0 0.18 187 0 0.08

cps 24 109 6120 13(1) 8.89 5573 13 2.04
vg2 25 8 1482 2 1.34 1924 2(1) 4.08
t481 16 1 125 1 0.07 52 0 0.02
seq 41 35 1699 25(19) 73.22 2365 20(16) 16.91

apex6 135 99 2753 1 3.76 1266 1 0.51
apex7 49 37 1693 3 2.00 911 0 0.34
frg2 143 139 8065 6(2) 19.23 5134 9 2.04

count 35 16 1319 0 0.84 216 0 0.09
term1 34 10 806 4 0.62 398 0 0.13

x1 51 35 1820 4(2) 11.01 1248 3 1.06
x2 10 7 102 0 0.06 67 0 0.02
x3 135 99 2468 1(1) 5.45 1230 0 0.50
k2 45 45 690 21(21) 931.05 13854 22(10) 140.90
i8 133 81 7873 78(19) 16.35 25476 44(11) 8.80
i9 88 63 595 63(56) 68.21 20019 63(1) 5.80

pair 173 137 17070 65(26) 640.34 12696 45(20) 145.96
des 256 245 18739 120(81) 60.83 14634 120(55) 33.51
dalu 75 16 0 16(16) 210.05 4043 15(11) 19.32
Total 78969 144 2065.52 114195 214 390.72

Ratio,% 100.0 100.0 100.0 144.6 148.6 18.9

Finally, table 8 gives the comparison of area and delay of the
regular implementations with the results by SIS. The comparison
is done using circuits, for which the proposed algorithm could
synthesize all outputs. The columns “Ins” and “Outs” list the
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number of inputs and outputs in each benchmark. Columns
“Node” and “Level” show the total number of nodes (gates) and
maximum number of levels in the regular circuits generated by the
proposed algorithm. Columns “Area” and “Delay” contain the
measurements for area and delay of the resulting circuits.

The SIS results are obtained by running script.rugged followed
by mapping for delay (map –m 1.0) into the standard gate library
mcnc.genlib, which comes as part of the distribution of SIS.
Shannon, Positive Davio, and Negative Davio gates are assumed
to have area 2 times larger and delay 1.5 times larger than a 2-
input NAND in mcnc.genlib. The delay of the wires and the
increase in delay due to multiple fanouts are not taken into
account.

Table 8. Area/delay comparison with SIS.

SIS Our resultsName Ins Outs
Area Delay Node Level Area Del Time [s]

rd84 8 4 283 29.84 54 8 216 14.4 0.03
clip 9 5 238 24.67 187 11 748 19.8 0.06

cordic 23 2 138 16.20 102 26 408 46.8 0.07
duke2 22 29 834 44.23 1395 21 5580 37.8 0.95
misex2 25 18 206 16.80 208 14 832 25.2 0.18
apex6 135 99 1274 35.03 1266 24 5064 43.2 0.51
apex7 49 37 409 24.90 828 24 3312 43.2 0.25
count 35 16 308 49.50 216 20 864 36.0 0.09
term1 34 10 326 18.45 268 20 1072 36.0 0.08

x1 51 35 580 18.15 974 26 3896 46.8 0.70
x3 135 99 1362 28.88 1230 24 4920 43.2 0.50

Total 5958 306.65 26912 392.4
Rat,% 100.0 100.0 451.6 127.9

The noticeable increase in area computed using our algorithm is
largely due to the fact that each output is treated independently
and logic is not shared across outputs of multi-output functions.
Comparison between SIS and our representations, even on
mapped circuits, still does not account for delay associated with
long interconnects in SIS-generated solutions.

Additional interconnect delay in our circuits will be
substantially smaller because most wires are local. When
comparing circuit area, we should consider the buffers that will
need to be inserted into SIS-generated circuits to reduce delay
below specified limits. In our solutions buffers are not needed
because connections are short. Moreover, for deep-submicron
technologies, design area is limited by area occupied by
interconnects, not by gate areas, so the areas of SIS and our
solutions might become similar when final and complete layouts
are generated.

7. Conclusions
In this paper, we propose a methodology to synthesize logic

functions into regular structures using decision diagrams. The
resulting regular structures are easy to place and route, because
the wires connecting the cells are short and local. These structures
can be mapped into both standard cells and programmable
devices.

Among the two synthesis algorithms, the systematic one takes a
global view of the problem by pre-computing the set of
generalized symmetries for all variable pairs. The longest path in
the graph of these symmetries is then used to order the variables
for synthesis. The heuristic algorithm, on the contrary, uses a
look-ahead strategy and thereby takes a greedy local view of the
problem of ordering variables. The experimental results show that

the heuristic algorithm is several times faster but sometimes loses
quality compared to the systematic one.

Experiments show that regular circuits generated by the
proposed algorithms come close to those generated by SIS in
delay, but they are, on average, 4.5 times larger in area. The area
increases for two reasons: it is the price to pay for regularity of the
resulting circuits, and it is due to the fact that each output of the
multi-output benchmarks is currently synthesized in isolation
from other outputs. However, as discussed in the previous section
the area disadvantage can disappear in deep-submicron
technology when final layouts are compared. This is due mostly
for two reasons: additional buffer insertion, and definition of area
in terms of wires and not gates.

The future research will focus on efficient area recovery in the
regular implementations of logic functions and on enhancing the
ruggedness of the current implementation to be able to handle
larger functions. One of the promising approaches of solving both
problems is to combine regular synthesis with functional
decomposition.
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