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Abstract Two methods of decomposition of probabilistic relations are presented in this paper.
They consist of splitting relations (blocks) into pairs of smaller blocks related to each other by new
variables generated in such a way so as to minimize a cost function which depends on the size and
structure of the result. The decomposition is repeated iteratively until a stopping criterion is met.
Topology and contents of the resulting structure develop dynamically in the decomposition process
and reflect relationships hidden in the data.

1. Introduction
There exist two main approaches to the analysis of complex systems:
probabilistic and non-probabilistic. Probabilistic approach assumes a
knowledge of probability distribution over the variables of the system and
the decomposition consists of determination of a set of simplest possible
marginal probabilities. Non-probabilistic approach requires specification of the
global relation over the variables of the system and the decomposition consists
of determination of a set of simplest possible projected relations describing
the system.

Here a system is described by a contingency table. Each cell of the table
contains the frequency observed for a particular combination of variable
values. These frequencies can be normalized to the total number of
observations and used to approximate the true probability distribution over
the variables of the system. The system is referred to as a probabilistic system.

In many situations it may be impossible or unreasonable to collect frequency
information which is statistically reliable, but it is relatively easy to collect
meaningful information on the set-theoretic relation which exists between
variables of the system. This corresponds to the situation where the cell
frequency is either 0 or 1. This approach is also justified if cells of the
contingency table contain only two distinct values of frequency (or values that
are close to two distinct values) which may be assigned to two classes 0 or 1.
In such situations the system is referred to as non-probabilistic.

Systems are also characterized as being either directed or neutral. In directed
systems, variables are distinguished as being either independent variables
(inputs) or dependent variables (outputs); in neutral systems no such
distinction is made.
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The decomposition of a complex system into an organized set of subsystems
is motivated by the belief that a simpler decomposed structure will better
describe unobserved data (Occam razor principle) and will make it easier to
understand relationships hidden in the data. Each subsystem can be viewed as
defining a certain concept and the whole structure can be viewed as a higher
level relation expressed in terms of these concepts (variables).

In this paper, both probabilistic and non-probabilistic approaches will be
considered and a new method of their decomposition will be presented.

This paper is organized as follows. Section 2 presents the related work,
Section 3 presents the decomposition algorithms, Section 4 presents the cost
function used in this paper, Section 5 discusses results and Section 6 concludes
the paper.

2. Related work
The decomposition of complex systems was analyzed by many researchers in
the past. In the terminology of systems science both decomposition and
composition are known under the name of reconstructability analysis (RA)
(Klir, 1985).

The approach presented by Ashby (1965), Conant (1972), Klir (1976) and
Krippendorff (1979) consists of generating a lattice of possible decomposition
structures and evaluating them in terms of both complexity and accuracy using
either a set-theoretic (non-probabilistic) or an information-theoretic
( probabilistic) approach. Both approaches are based on uncertainty
measures, the first on Hartley’s (1928) entropy and the second on Shannon’s
entropy (Shannon and Weaver, 1975). A structure that results in the smallest
complexity and yet describes the data with a high accuracy is selected to be the
best solution.

An overview of decomposition approaches developed within the framework
of general systems methodology (RA) is presented by Zwick (2001) and an
extended bibliography of RA as a whole is given by Klir (1996). RA of directed
systems was further clarified by Zwick (1995a), and some additional details on
set-theoretic RA are presented by Conant (1981) and Zwick (1995b).

In standard (both set-theoretic and information-theoretic) approaches to RA,
the number of system variables remains unchanged in the process of
decomposition. By contrast, the methods presented in this paper, which are
based on ideas used in the decomposition of binary functions, introduce new
variables in the decomposition process to reduce complexity. These methods,
while inherently non-probabilistic in nature (Grygiel, 2000), can be applied also
as approximate techniques for probabilistic systems.

3. Decomposition
Decomposition of relation consists, in general, of splitting a larger relational
block into a number of smaller, possibly interrelated, blocks (Figure 1).
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We will focus in this paper on decomposing one block into two smaller
blocks in such a way as to reduce a certain cost measure. This process can be
iteratively repeated until termination criterion is satisfied. The cost measure
will be discussed in more details in Section 4.

In Figure 1, X denotes a set of independent and Y a set of dependent
variables of the relation. In the decomposed structure, if X1 > X2 – Y then
decomposition will be called non-disjoint, otherwise we will call it disjoint. In the
most general case, both R1 and R2 have both dependent and independent
variables. It is also possible that dependent variables of one block are
independent in another block, for instance it may be Y 1 > X2 – Y:

The presentation of the decomposition algorithms in this paper will be based
on tabular representation of relations (contingency tables). The software
implementation of the algorithm, however, uses lr-partition representation
which is more memory efficient for manipulation of large multiple-valued
relations (Grygiel and Perkowski, 1998; Grygiel et al., 1997).

Other notations used in this paper are as follows. Upper case characters will
denote sets and lower case will denote variables. jX j is the cardinality of the set
X and jxj is the cardinality of the variable x (number of values the variable x
can take). A relational/functional block with a set X of independent variables
and set Y of dependent variables will be denoted by (X, Y).

3.1 Relations
The following definition of relation will be used in this paper:
Definition 1 (relation). Let S ¼ fSig be a set of sets Si. A subset R of the

Cartesian product S1 £ S2 £ . . . £ Sk will be called a k-ary relation. A
Such a defined relation can always be represented by a two-dimensional
contingency table based on the fact that the Cartesian product operation is
associative and Cartesian product is a set so we can reduce a k-ary relation to a
binary relation R # Sa £ Sb where Sa and Sb are sets of n-ary andm-ary tuples,
respectively, and nþm ¼ k:

Cells of the contingency table representing relation can either contain 0s
and 1s or any numbers. The first case corresponds to non-probabilistic
relations, 1s and 0s denote tuples which are and are not contained in a given

Figure 1.
Decomposition
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relation. The second case corresponds to probabilistic relations, and numbers
represent probabilities or frequencies associated with the corresponding
tuples.

3.2 Decomposition type I
This type of decomposition is always non-disjoint, i.e. the sets of independent
variables of the decomposed blocks are non-disjoint.

Let X ¼ fxig; i ¼ 1; . . .; n; be a set of variables, X1, X2 be a partition of X, and
Qxi be a set of values the variable xi can take. If R is a relation based on the set
of variables X then R # Qx1 £ . . . £ Qxn ¼ QX1

£ QX2
; where QXj

¼ fqkXj
g; qkXj

is a tuple (combination of values) for the set Xj, and QXj
is a set of all tuples for

the set Xj. Such defined relation R can be represented by a contingency table of
jQX1

j columns and jQX2
j rows, each column corresponding to a different tuple

qkX1
[ QX1

and each row to a different tuple qkX2
[ QX2

: Each cell of the
contingency table contains 1 if the corresponding combination of tuples qiX1

;
qjX2

belongs to the relation and 0 if it does not.
Definition 2 (column multiplicity). Column multiplicity m is a number equal

to the number of distinct columns in the contingency table. A
Definition 3 (row multiplicity). Row multiplicity m is a number equal to the

number of distinct rows in the contingency table. A
Column multiplicity m is greater than or equal to 1 (it is equal to 1 if all the
columns are identical) and less than or equal to jQX1

j (all the columns are
different).

Our goal is to decompose the original relation R into two sub-relations R1

and R2.
Let us create a new variable a such that jaj ¼ m and label each of the m sets

of identical columns with a different value aj of variable a.
Let R1 # QX1

£ Qfag be a relation created by extending every tuple qiX1
[

QX1
with the value aj of variable a assigned to the column qiX1

so that
R1 ¼ fqiX1

ajg: To achieve our goal, R2 has to be created in such a way that the
composition of R1 and R2 results in R. The process of creation of R2 will be
defined by the following theorem.
Theorem 1 (decomposition). Relation R2 # QX2

£ Qfag meeting the above
conditions can be represented by a contingency table created from the original
table for relation R by combining the identical columns of the table. The new
columns will correspond to the tuples qjA [ QA:
Proof. It is enough to show that for every pair of tuples qiX1

ak [ R1 and
qjX2

ak [ R2; the pair of tuples qiX1
qjX2

is part of the relation R ðqiX1
qjX2

[ RÞ:
Let us assume that there exists a pair of tuples qiX1

ak [ R1 and qjX2
ak [ R2;

such that qiX1
qjX2

� R: The condition qiX1
qjX2

� R means that the intersection
of column qiX1

and row qjX2
in the original contingency table contains 0. The

condition qjX2
ak [ R2 means that the intersection of row qX2

and column ak in
the contingency table corresponding to R2 contains 1. By the construction of R1,
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column ak corresponds to the set of identical columns containing column qiX1
:

Hence, by the condition qjX2
ak [ R2; intersection of the row qjX2

and co1umn
qiX1

contains 1 which is in contradiction with the assumption qiX1
qjX2

� R:
This completes the proof. A
Figure 2 shows the process of decomposition of a relation.
Relation R is represented by tables in Figure 2(a) and (b). A cell in the table in

Figure 2(b) contains 1 if the corresponding tuple belongs to the relation and 0
otherwise. The column multiplicity index of the table in Figure 2(b) is equal to 2
and so is the cardinality of the new variable a. The table in Figure 2(c)
corresponds to the block R1 in Figure 2(e), a cell of the table contains 1 if the
corresponding combination of variable values exist in the table in Figure 2(b).
For instance, the columns x3x4 ¼ 00; x3x4 ¼ 01 in Figure 2(b) are labeled with
a ¼ 0 and x3x4 ¼ 10; x3x4 ¼ 11 with a ¼ 1 so the cells corresponding to these
combinations of values will contain 1 in table R1 in Figure 2(c). Other
combinations of values of x3x4 and a will yield 0 in the table R1.

Figure 2.
Decomposition type I
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The table in Figure 2(d) which corresponds to the block R2 in Figure 2(e) is
created from the table in Figure 2(b) by combining identical columns and
replacing variables x3x4 with a new variable a.

The same decomposition method can be used to decompose probabilistic
relations, i.e. relations with probability or frequency associated with each tuple.
For this kind of relations however, the probabilities have to be discretized
before decomposition can be performed. The most often used discretization
method, uniform binning, divides the space of each variable value into a
number of equally sized bins. Another type of discretization methods are
methods based on the entropy measure (Catlett, 199l; Fayyad and Irani, 1993)
which use minimum entropy criterion to assign values to different bins. They
often yield better results.

Figure 3 shows the decomposition process of such a relation.

3.3 Decomposition type II
The decomposition described in Section 3.2 resulted always in a non-disjoint
solution. In this section, we will describe a decomposition which may result in
either disjoint or non-disjoint solutions. The main distinction of the
decomposition described in this section is that it is a functional
decomposition. We decompose not the relation itself, but the probability

Figure 3.
Decomposition type I,
probabilistic relation
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density function defined by the frequencies or probabilities in the contingency
table describing the relation. The result of the decomposition can again be
viewed as a neutral relation. The type II decomposition procedure is shown in
Figure 4.

The relation used in this example is the same as the one shown in Figure 3.
The relation to be decomposed is shown in Figure 4(a) and (b). The result of
uniform binning to five values is shown in Figure 4(c). The decomposition
alone is performed in the manner similar to the decomposition described in
Section 3.2. The difference between the two is the way the block R1 is created.
For decomposition of type I, the new variable a is always an independent
variable in R1. For decomposition of type II described in this section, the new
variable a is always a dependent variable in R1. In block R2, variable a is
independent in both type I and type II decompositions.

The decomposition in Figure 4 is a disjoint decomposition because the sets
of independent variables of blocks R1 and R2 are disjoint. In Figure 5, we show
the type II non-disjoint decomposition procedure. Since for the type II
decomposition the extra variable a cannot be shared between R1 and R2 the
only way to achieve non-disjoint decomposition is to share some of the
independent variables from the set X.

Figure 4.
Decomposition type II
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The disjoint decomposition with X1 ¼ fx1x2g and X2 ¼ fx3x4g in Figure 5 leads
to jaj ¼ 4 and does not simplify the original structure. Selecting non-disjoint
sets X1 ¼ fx1; x2g; X2 ¼ fx2; x3; x4g leads to the table in Figure 5(c). Some of the
cells in this table correspond to impossible combinations of variable values for
instance, a variable taking values 0 and 1 at the same time. These cells are
denoted by “-” and correspond to structural zeroes as defined by Krippendorff
(1986). Since structural zeroes correspond to impossible observations we can
replace them with any values for the sake of column multiplicity computations.
Selecting the values as in Figure 5(d) results in column multiplicity equal to 2.
This value is smaller than the value of column multiplicity of the table in
Figure 5(b) corresponding to the non-disjoint case. Relations R1 and R2 can be
determined the same way as for the disjoint case. The results of the
decomposition are shown in Figure 5(e)-(g).

Figure 5.
Non-disjoint

decomposition type II
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The same procedure can also be used in type I decomposition to increase the
number of shared variables if needed.

4. Cost measure: cardinality
The cost measure used in this paper is based on the measure proposed by
Abu-Mostafa (1988). He defined complexity of a binary function (functional
block) as a number of tuples describing it:

C ¼ 2jX jjY j ð1Þ

where X and Y are sets of independent and dependent variables, respectively.
The cost of a combination of functional blocks was defined as a sum of costs

of particular blocks.
According to his definition the number of tuples, which is determined by the

set of independent variables X, is multiplied by the number of dependent
variables. This is due to the fact that each dependent variable corresponds to a
separate function defined on the same set of independent variables.

We will extend Abu-Mostafa’s definition to the multiple-valued case and call
it cardinality (Grygiel, 2000):

C ¼
xi[X

Y
xi log2

yi[Y

Y
yi ð2Þ

where
Q

xi[Xxi is the number of tuples and log2
Q

yi[Yyi is a normalized

number of binary variables, i.e. an equivalent number of binary variables
corresponding to the set Y of multiple-valued variables.

If there are no dependent variables we will assume:

C ¼
xi[X

Y
xi ð3Þ

This is justified by the fact that every neutral relation (only independent
variables present) can be always transformed to a function with one binary
dependent variable which takes value 1 if the corresponding combination of
values of independent variables belongs to the relation, and takes value 0 if it
does not. For one binary variable y, the expression log2

Q
yi[Yyi in equation (2)

is equal to 1 and equation (3) follows.
Let us consider decomposition of the block ðX ;Y Þ into blocks ðX1;Y 1Þ and

ðY 1 < X2;Y Þ: The complexity of the decomposed structure is equal to:

C ¼ pX1
log2 pY 1

þ pY 1
pX2

log2 pY ð4Þ

where
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X1 < X2 ¼ X

pX1
¼

Y

xi[X1

xi

pX2
¼

Y

xi[X2

xi

pY 1
¼

yi[Y 1

Y
yi

pY ¼
Y

yi[y

yi

Comparing equation (4) to the complexity of the original structure we can easily
show that in order to achieve complexity reduction the following necessary
condition must be true:

pY 1
, pX1

ð5Þ

in fact, if pY 1
$ pX1

then:

pX1
log2 pY 1

þ pY 1
pX2

log2 pY $ pX1
log2 pX1

þ pX1
pX2

log2 pY

$ pX1
pX2

log2 pY ¼ pX log2 pY

and decomposition increases, instead of decreasing, the complexity of the
structure.

5. Results
In this section, we will present type II decomposition of a small real life
example (Ries-Smith data) (Ries and Smith, 1963) and compare the complexities
of few simple decomposition examples presented in the previous sections.

Figure 6(a) shows the contingency table of the Ries-Smith data.
We have four independent variables here, each combination of variable

values is associated with a frequency in the table in Figure 6(a). In Figure 6(b),
the result of uniform binning into three equally sized bins is shown. We
performed uniform binning for the number of bins ranging from 2 to 10, but
only for the three bins case our program was able to find a decomposition.

The decomposed structure is shown in Figure 6(c). In the decomposition
process (disjoint decomposition of type II) three blocks were extracted from the
original data and two new variables price a0 and a00 added. The tables in
Figure 7 describe relations between variables in these three blocks.

The complexity of original structure in Figure 6(b) is equal to C ¼
jx1jjx2jjx3jjx4j log2j f

0j ¼ 3 £ 2 £ 2 £ 2 £ log2 3 ¼ 38:04; the decomposed
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structure complexity is smaller and equal to CII ¼ jx2jjx4j log2 ja
0j

þjx1jja
0j log2 ja

00j þ jx3jja
00j log2 j f

0j ¼ 2 £ 2 £ log2 3 þ 3 £ 3 £ log2 3 þ 2 £
3 £ log2 3 ¼ 30:11; which makes for 21 percent complexity reduction.

Table I summarizes complexity gains for different structures discussed in
this paper.

In Table I, d and nd denote disjoint and non-disjoint decompositions, p and
np denote probabilistic and non-probabilistic relations, C 0 is the complexity of
the initial structure, C 00 is the complexity of the structure after decomposition

Figure 6.
Ries-Smith data

Figure 7.
Ries-Smith data:
decomposed blocks
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and equations (2)-(4) were used to calculate complexity. Remember also that
Figures 3-5 show decomposition of the same relation but using different
decomposition methods.

As we can see in Table I for the decomposition in Figure 2 complexity of the
decomposed structure is the same as that of the initial structure. However, if we
count the number of tuples in the original and decomposed structures we will
obtain 10 and 9, respectively (10 percent). This means that the complexities
calculated using equations (2)-(4) are equal to the maximum number of tuples
that can used to describe a given structure. The real complexity (number of
tuples) can be in fact smaller. In other words, the values of C 0 and C 00 in Table I
compare the size of the state space of the original table (the binned table, if the
data are probabilistic) and the sum of the sizes of the state spaces of the tables
which the decomposition gives.

The second observation we can make is that non-disjoint decompositions
usually result in higher complexity structure than the disjoint ones (Figures 3
and 5 for non-disjoint and Figure 4 for disjoint decompositions). The disjoint
decomposition however, is harder to find and the non-disjoint one may be the
best we can obtain. The non-disjoint decomposition may not exist either, but
the chance of finding it is higher than for disjoint one.

6. Summary
In this paper, we presented two types of decomposition that can be used for
decomposing both probabilistic and non-probabilistic relations. The
decomposition of type I can be applied to relations directly and leads to
non-disjoint decomposed structures. The type II decomposition is a functional
decomposition so we apply it to probability density function or frequency
distribution specified for a given relation.

Both decompositions act on discrete values only, if they are applied to
probabilistic relations the continuous values of probabilities or frequencies
have to be discretized before decomposition. All decompositions are “lossless”
in the sense that they yield the binned table exactly (but they are not lossless
relative to original tables with unbinned frequencies). No analysis has yet been
done on the loss of information which occurs when frequencies are binned.

The decomposition process is driven by a cost function which assures that
the decomposed structure is of lower complexity than the decomposed one.

Type C 0 C 00 Drop (percent)

Figure 2 I d np 16.00 16.00 0
Figure 3 I d p 37.15 26.58 28
Figure 4 II d p 37.15 22.58 39
Figure 5 II nd p 37.15 26.58 28
Figure 6 II nd p 38.04 30.11 21

Table I.
Complexity drop
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The cost function used in this paper (cardinality) defines a relation’s
complexity as number of its tuples. Other cost functions could be used as well
(Grygiel, 2000), but more detailed discussion of this subject is beyond the
scope of this paper.

We also presented few simple decomposition examples to illustrate the
algorithms used. In one of the examples we decomposed a small real life data
set ( Ries-Smith data) running our software implementation of type II
decomposition method. The data values were discretized using uniform
binning method and decomposed iteratively into three blocks with two
independent variables each.

Summarizing, we think that the methods of decomposition presented in this
paper can serve as a useful alternative to the uncertainty based methods most
often used for the decomposition of probabilistic relations.
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